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Introduction: Remarkable clinical benefits have been achieved for patients with 
haemophilia through intravenously administered adeno-associated virus (AAV)-
based liver-directed gene therapy. However, no comprehensive meta-analysis 
based on hemophilia types, various transgene types, AAV capsid, neutralizing 
antibody titers, and baseline factor VIII activity has been conducted to assess 
the efficacy of AAV vector gene therapy in hemophilic patients. We aimed to 
perform a systematic review and meta-analysis of the literature to assess the 
efficacy and safety of AAV-based gene therapy for hemophilia.

Methods: We systematically searched PubMed, Clinical Trials, Medline, Web of 
Science, Embase, Cochrane Central Register of Controlled Trials, and Cochrane 
Database of Systematic Reviews for clinical trials involving patients diagnosed 
with hemophilia and treated with AAV gene therapy. The outcomes included 
annualized bleeding rate (ABR), annualized infusion rate (AIR), the incidence 
of treatment-related adverse events (TRAEs), alanine aminotransferase (ALT) 
elevation, and aspartate transaminase (AST) elevation.

Results: A total of 13 articles were selected from 879 articles for meta-analysis. 
Pooled analyses showed that after gene therapy, the ABR was 1.10 and the AIR was 
3.92, respectively. At 1 year after AAV gene therapy, all participants exhibited factor 
activity levels above their baseline values, with the highest level reaching 93.47%. 
Additionally, 50% of the hemophilia patients had elevated TRAEs, 50% had elevated 
ALT levels, and 29% had elevated AST levels. We also performed a subgroup analysis 
of these results according to different haemophilia types, various transgene types, 
AAV capsids, neutralizing antibody titers, and baseline factor VIII activity.

Discussion: Our analysis supported the efficacy and safety of AAV-mediated 
gene therapy for hemophilia, providing a reference for clinical practice and the 
development of more gene therapy drugs.
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1 Introduction

Hemophilia is an X-linked recessive bleeding disorder that results from a defect in the 
gene encoding coagulation factor (1). Its main feature is spontaneous bleeding, which, over 
repeated incidences, can lead to arthropathy, joint disability, or false tumors. These 
complications have a serious impact on patients’ quality of life and can even be life-threatening 
(2). Hemophilia A and B represent the most common and widely recognized types of 
hemophilia. Hemophilia A occurs in 1 in 5,000 live male births, making it approximately six 
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times more common than hemophilia B (3). The severity classification 
of the disease is dependent on the level of factor IX activity: individuals 
with <1% factor IX activity are classified as severe, those with 1–5% as 
moderately severe, and those with 5–40% as having mild hemophilia. 
In its most severe form (circulating factor IX activity levels of <1%), 
symptoms can become apparent early in life (4). The ultimate dream 
for anyone with a serious disease is to cure the disease, and hemophilia 
is no exception. In contrast to the conventional frequent coagulation 
factor infusion treatment, gene therapy replaces or corrects damaged 
genes in target cells by introducing genetic material into those cells 
using viral or non-viral vectors. Consequently, it is the first treatment 
that can provide a stable, sustained, long-term factor level of over 15% 
and even more than 40% in some patients (5). At present, adeno-
associated virus (AAV) has been extensively studied as gene therapy 
vectors (6). Three AAV-based gene therapy drugs, including 
Roctavian, Hemgenix, and BeQvez, have been approved for the 
treatment of adult hemophilia. Many trials have reported increased 
factor activity, reduced bleeding episodes, and decreased dependency 
on factor replacement following AAV-mediated factor gene therapy. 
Therefore, a growing number of clinical trials utilizing AAV vectors 
for in vivo gene therapy are currently underway.

However, limited sample sizes, non-randomized designs, varied 
doses, AAV capsids, and transgene may have contributed to assessment 
bias and a lack of knowledge on the safety and effectiveness of AAV-based 
gene therapy for hemophilia. As of yet, no comprehensive meta-analysis 
based on various transgene types, AAV capsid, neutralizing antibody 
titers, and baseline factor VIII activity has been conducted to assess the 
efficacy and safety of AAV vector gene therapy in hemophilic patients. 
By conducting a comprehensive review and meta-analysis of existing 
studies, we integrated safety and efficacy data on AAV-based hemophilia 
gene therapy to fill this research gap. Significant evidence from our 
analysis supports the development and clinical application of AAV-based 
gene therapy for the treatment of hemophilia.

2 Methods

2.1 Search strategy and selection criteria

We included studies that reported data on the outcomes of 
hemophilia A or hemophilia B patients who were treated with AAV 
gene therapy. The most recently updated results of each trial were 
analyzed, either from published articles or from conference 
proceedings. First, we searched PubMed, Clinical Trials, Medline, 
Web of Science, Embase, Cochrane Central Register of Controlled 
Trials, and Cochrane Database of Systematic Reviews before July 2024, 
using the search terms “AAV,” “adeno-associated virus,” “gene therapy,” 
“hemophilia,” “hemophilia A,” and “hemophilia B.” Second, 
we assessed the articles’ reference lists and applied a rigorous selection 
procedure to find the most relevant research. In addition, we hand-
searched abstracts from relevant conference proceedings (American 
Society of Hematology, American Society of Clinical Oncology, 
European Hematology Association, European Society of Medical 
Oncology, American Society for Transplantation and Cellular Therapy, 
European Society for Blood and Marrow Transplantation, and 
American Association for Cancer Research). Moreover, we discarded 
trials that were published in languages other than English, had 
duplicate data, did not have outcomes that were fully complete after 
AAV-based gene therapy or were irrelevant. Animal experimental data 

were also excluded. Finally, two reviewers managed and analyzed all 
studies using Zotero independently. The search was performed in 
accordance with the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses and registered with the International Prospective 
Register of Systematic Reviews (PROSPERO registration ID: 
CRD42024572094).

2.2 Data extraction

These data were extracted independently by one reviewer using a 
predesigned data extraction form. In the process of data analysis, the 
following data were extracted: characteristics of the trial (authors, title, 
and year); baseline characteristics of patients and diseases (sample 
size, factor VIII activity, neutralizing antibody titers, annualized 
bleeding rate, annualized number of FVIII infusions); intervention 
doses. Data extraction differences were resolved either by consensus 
or by a third party.

2.3 Quality assessment

The quality of all studies was independently evaluated by two 
researchers using the methodological index for non-randomized studies 
(MINORS) (7). The MINORS instrument is made up of 12 items in total. 
The first eight items are only related to non-comparative studies and are 
used to evaluate the methodological quality of non-randomized clinical 
research. These eight items are evaluated using a scoring system (0, not 
reported;1, reported but inadequate; or 2, reported and adequate), with 
an ideal score of 16 for non-comparative studies. Disagreements were 
resolved through discussion by a third researcher.

2.4 Statistical analysis

All data in this meta-analysis were analyzed with STATA 14.2 
software. We estimated from each study cohort the cumulative effect 
size (event rate) and 95% CI for each outcome. We pooled event rates 
for each intervention in a meta-analysis using a random-effects model 
to incorporate heterogeneity in the analysis (8) and the Freeman-
Tukey double arcsine transformation to stabilize the variance of 
proportions (9). We assess the heterogeneity with I2 statistics. I2 values 
were defined as low heterogeneity (>25%, up to 50%), moderate 
heterogeneity (>50%, up to 75%), or high heterogeneity (>75%) (10). 
Prespecified subgroup analyses were done for different hemophilia 
types including hemophilia A and hemophilia B, AAV capsid, 
transgene, baseline factor VIII activity, and neutralizing antibody 
titers. We used the Cochran’s Q-test to evaluate the heterogeneity 
between subgroups. Q was calculated as the weighted sum of squared 
differences between each subgroup and the pooled effect across 
subgroups, with the weights being those used in the pooling method.

3 Results

3.1 Results of the database search

Figure 1 shows the scan flowchart for academic rescan. The scan 
strategy detected 879 potentially relevant citations. Meticulous 
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screening excluded 694 studies due to duplication. Of the remaining 
studies, 619 were excluded because they did not meet the inclusion 
criteria, such as inadequate outcome reporting, unable to link to 
clinical trials, and so on. An additional 62 references were excluded 
after a detailed evaluation of the entire text. Finally, 13 studies satisfied 
the eligibility criteria and were included in the systematic review and 
meta-analysis (11–23). All included studies achieved MINORS scores 
greater than 12, indicating a satisfactory level of studies quality. 
Detailed results are presented in Supplementary material 7.

3.2 Characteristics of the included study 
selection

An overview of the features involved in the 13 trials is given in 
Table 1, with 6 trials for hemophilia A and 7 for hemophilia B. These 
single-arm studies, which encompassed a total of 410 patients, used a 
variety of more than 5 diverse vector types, and 4 transgenes, and were 
administered over 10 distinct dosages of AAV-based therapies.

3.3 Annualized bleeding rate (ABR) at 1 year 
after adeno-associated virus gene therapy

ABR at 1 year after adeno-associated virus gene therapy was 
observed in 11 studies. A random-effects model was chosen due to 
significant heterogeneity (I2 = 83.4%, p < 0.001). The results of the 
analysis indicated a pooled Standardized Mean Difference(SMD) of 

1.10 (95% CI: 0.62–1.58)(Table 2; Figure 2). Further analysis examined 
the SMD concerning different types of hemophilia, AAV capsid, 
transgene, baseline factor VIII activity, and neutralizing antibody 
titers. Subgroup analysis 1 demonstrated that the pooled SMD in 
hemophilia A patients was 0.76 (95% CI: 0.06–1.45), while in 
hemophilia B patients, it was 1.40 (95% CI: 0.61–2.18) (Table  2; 
Supplementary Figure 2B). Subgroup analysis 2 demonstrated that the 
pooled SMD in the AAV5 capsid was 0.77 (95% CI: 0.28–1.26), while 
it was 2.04 (95% CI: 0.69–3.39) in other AAV capsids (Table  2; 
Supplementary Figure 2C). Subgroup analysis 3 demonstrated that the 
pooled SMD in codon-optimized BDD-FVII was 1.83 (95% CI: 0.75–
2.91), while it was 0.76 (95% CI: 0.06–1.45) in codon-optimized FIX 
containing the Padua mutation (Table 2; Supplementary Figure 2D). 
Subgroup analysis 4 demonstrated that the pooled SMD in neutralizing 
antibody titers negative was 0.85 (95% CI: 0.34–1.36), while it was 2.06 
(95% CI: 0.51–3.62) in neutralizing antibody titers positive (Table 2; 
Supplementary Figure 2E). Subgroup analysis 5 demonstrated that the 
pooled SMD in baseline factor VIII activity (<2/≤2) 1.83 (95% CI: 
0.75–2.91), baseline A factor VIII activity (≤1.5/≤1) 0.90 (95% CI: 
0.28–1.52), while it was 0.68 (95% CI: −0.12–1.47) in baseline factor 
VIII activity (<1) (Table 2; Supplementary Figure 2F).

3.4 Annualized infusion rate(AIR) at 1 year 
after adeno-associated virus gene therapy

AIR at 1 year after adeno-associated virus gene therapy was 
observed in 9 studies. A random-effects model was chosen due to 

FIGURE 1

Flow diagram of study scan and selection process.
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TABLE 1 Overall characteristics of the 13 trials included in the analysis.

Name Year Study 
registration 
number

AAV capsid Transgene Baseline factor 
VIII activity

Neutralizing 
antibody titers

Dose N Outcomes Factor VIII activity 
level 1 year

Hemophilia A

Savita RJ 2017 NCT02576795 AAV5-hFVIII-SQ Codon-optimized BDD-F VII ≤1 Negative 6 × 1013vg/kg 7 ①②③④⑤⑥ 93 ± 48

Pasi KJ 2020 NCT02576795 AAV5-hFVIII-SQ Codon-optimized BDD-F VII ≤1 Negative 4 × 1013vg/kg 6 ①②③④ 20.83 + 11.38

M.C. Ozelo, J 2022 NCT03370913 AAV5-hFVIII-SQ Codon-optimized BDD-F VII <1 Negative 6 × 1013vg/kg 132 ①②③④⑤⑥ CS:42.9 ± 45.5

Mahlangu J 2023 NCT03370913 AAV5-hFVIII-SQ Codon-optimized BDD-F VII <1 Negative 6 × 1013vg/kg 132 ①④⑤⑥ NA

George LA 2021 NCT03003533 

NCT03432520

AAV-Spark 200 BDD-F VII ≤2 ≤1:5 5 × 1011vg/kg 2 ②③④ OS:9.5 ± 1.5

CS:5.5 ± 0.5

1 × 1012 vg/kg 3 ②③④ OS:11.7 ± 17.2

CS:6.7 ± 1.8

1.5 × 1012vg/kg 4 ②③④⑤ OS:12 ± 4.5

CS:7.3 ± 2.2

2 × 1012 vg/kg 9 ②③④⑤ OS:9 ± 2.3

CS:5.4 ± 2.7

Andrew D 2024 NCT03061201 rAAV6 BDD-F VII <1 Negative 3 × 1013vg/kg 5 ①③④⑤⑥ CS:

42.6 (7.8–122.3)

Hemophilia B

Nathwani AC 2011 NCT00979238 AAV8 Codon-optimized FIX <1 Negative 2 × 1011vg/kg

6 × 1011vg/kg

2 × 1012 vg/kg

6 ④⑤⑥ NA

Nathwani AC 2014 NCT00979238 AAV8 Codon-optimized FIX <1 Negative 2 × 1011vg/kg

6 × 1011vg/kg

2 × 1012 vg/kg

10 ②③④⑤ OS:3.91 ± 0.87

Chowdary P 2022 NCT03369444 AAVS3 Codon-optimized 

FIXcontaining the Padua 

mutation

<2 Negative 3.84 × 1011vg/kg

6.4 × 1011vg/kg

8.32 × 1011vg/kg

1.28 × 1012vg/kg

10 ①③④⑤⑥ 70.18 ± 68.66

George LA 2017 NCT02484092 AAV-Spark100 Codon-optimized

FIX containing the Padua 

mutation

<2 ≤1:5 5 × 1011vg/kg 10 ①②③④⑤ 33.7 ± 16.77

Miesbach W 2018 NCT02396342 AAV5 Codon-optimized FIX ≤1.5 Negative 5×1012 vg/kg 5 ①②③④⑤ 4.4 ± 1.86

2 × 1013vg/kg 5 ①②③④⑤ 6.96 ± 2.88

(Continued)
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significant heterogeneity (I2 = 85.2%, p < 0.001). The results of the 
analysis indicated a pooled SMD of 3.92 (95% CI: 2.87–4.98) (Table 2; 
Figure 3). Further analysis examined the SMD concerning different 
types of hemophilia, AAV capsid, transgene, baseline factor VIII 
activity, and neutralizing antibody titers. Subgroup analysis 1 
demonstrated that the pooled SMD in hemophilia A patients was 5.09 
(95% CI: 2.51–7.68), while it was 3.76 (95% CI: 2.11–5.41) in 
hemophilia B patients (Table 2; Supplementary Figure 3B). Subgroup 
analysis 2 demonstrated that the pooled SMD in the AAV5 capsid was 
4.78 (95% CI: 3.64–5.93), while it was 2.38 (95% CI: 0.65–4.11) in other 
AAV capsids (Table 2; Supplementary Figure 3C). Subgroup analysis 3 
demonstrated that the pooled SMD in codon-optimized BDD-FVII 
was 5.19 (95% CI: 1.39–9.00), BDD-FVII was 5.09 (95% CI: 2.51–7.68), 
while it was 3.10 (95% CI: 0.75–5.45) in codon-optimized FIX 
containing the Padua mutation (Table 2; Supplementary Figure 3D). 
Subgroup analysis 4 demonstrated that the pooled SMD in neutralizing 
antibody titers negative was 4.66 (95% CI: 3.18–6.14), while it was 3.10 
(95% CI: 0.75–5.45) in neutralizing antibody titers positive (Table 2; 
Supplementary Figure 3E). Subgroup analysis 5 demonstrated that the 
pooled SMD in baseline factor VIII activity (<2/≤2) 3.10 (95% CI: 
0.75–5.45), while it was 6.50 (95% CI: 4.70–8.30) baseline factor VIII 
activity (≤1.5/≤1) (Table 2; Supplementary Figure 3F).

3.5 Factor activity level at 1 year after AAV 
gene therapy

Over time, expectations for feasible factor levels have evolved for 
both physicians and patients. The initial aim was to stop spontaneous 
joint bleeding by reaching levels of 5 IU/dL. Endogenous factor 
activity during the 1 year after treatment is shown in Table  1. At 
diagnosis, all participants had factor IX activity of less than or equal 
to 2%, which 5 participants (26.3%) had factor IX activity of less than 
1%. The results of the pooled studies indicate that factor activity levels 
at 1-year post-gene therapy range from a minimum of 3.91 ± 0.87 to 
a maximum of 93 ± 48. The comparison of factor activity using two 
distinct methods, the one-stage clot (OS) assay, and the chromogenic-
substrate (CS) assay. Each method has its unique advantages and 
limitations, influencing the interpretation of factor activity levels (24). 
Furthermore, there is a significant association between the level of 
coagulation factor activity and the dose used, especially when the 
maximum dose is reached, which essentially follows the pattern of the 
dose–effect relationship, as shown in Table 2.

3.6 Safety of AAV therapy

We analyzed the TRAEs associated with AAV-based gene therapy 
for hemophilia. The pooled data revealed the incidence of TRAEs as 
0.47 (95% CI: 0.25, 0.69), with significant heterogeneity (I2 = 93.08%, 
p < 0.01) (Figure 4). In hemophilia A, the incidence of TRAEs was 0.657 
(95% CI: 0.398–0.879), and in hemophilia B, the incidence of TRAEs 
was 0.413 (95% CI: 0.159–0.691) (Table 2; Supplementary Figure 4B). 
Subgroup analysis demonstrated that AAV5 capsid was 0.586(95% CI: 
0.323–0.828), while it was 0.376(95% CI: 0.129–0.655) in other AAV 
capsids (Table  2; Supplementary Figure  4C). Subgroup analysis 
demonstrated that codon-optimized BDD-FVII was 0.456 (95% CI: 
0.173–0.768), while it was 0.418 (95% CI: 0.093–0.784) in T
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codon-optimized FIX containing the Padua mutation (Table  2; 
Supplementary Figure CD). Subgroup analysis demonstrated that 
neutralizing antibody titers negative was 0.539 (95% CI: 0.276–0.793), 
while it was 0.341(95% CI: 0.076–0.666) in neutralizing antibody titers 
positive (Table  2; Supplementary Figure  4E). Subgroup analysis 
demonstrated that baseline factor VIII activity (<2/≤2) 0.428 (95% CI: 
0.168–0.708), baseline factor VIII activity (≤1.5/≤1) 0.313 (95% CI: 
0.056–0.636), while it was 0.855 (95% CI: 0.673–0.979) in baseline factor 
VIII activity (<1) (Table  2; Supplementary Figure  4F). Further 
investigation of AEs showed that the incidence of ALT and AST 
elevation in the pooled data was 0.50 (95% CI: 0.27–0.72) and (95% CI: 
0.17–0.41), respectively (Figures 5, 6). The results of the other subgroup 
analyses are presented in Table 2 and Supplementary material 5.

4 Discussion

The current standard of care is the recurrent infusion of FVIII or 
FIX concentrate to improve hemostasis, administered in response to 
bleeding or prophylactically to prevent hemorrhage. Practically, this 
requires intravenous infusions of FVIII or FIX concentrate several times 
weekly to maintain factor activity troughs above 1% of normal, though 
these great improvements with the advent of extended-half-life factor 
products (25, 26). Over the past few decades, remarkable breakthroughs 
and clinical benefits have been achieved in patients with hemophilia 
through intravenously administered AAV-based liver-directed gene 
therapy. The effects of gene therapy may be long-lasting without the 

need for repeated interventions (27). The AAV vectors are usually 
preferred for in vivo gene therapy due to several advantages, including 
the ability to transduce both dividing and quiescent cells, robust in vivo 
transduction efficiency, long-term transgene expression in quiescent 
cells, tropism for specific tissues and cell types, relatively low 
immunogenicity, non-pathogenicity, and a history of clinical safety (28). 
Nowadays, great clinical benefit has been achieved in patients with 
hemophilia A and B through intravenously administered AAV-based 
liver-directed gene therapy. Although some studies have previously 
reviewed AAV gene therapy for hemophilia (29–31), as of yet, no 
comprehensive meta-analysis based on various transgene types, AAV 
capsid, neutralizing antibody titers, and baseline factor VIII activity has 
been conducted to assess the efficacy of AAV vector gene therapy in 
hemophiliac patients. We aimed to gain a more exhaustive and accurate 
comprehension of the effect of this novel therapy in hemophilia 
management by taking advantage of more elaborate statistical analysis 
methods of the included studies and to provide data support for the 
development of gene therapy drugs for hemophilia. ABR and AIR are 
commonly utilized as endpoints to assess the efficacy of therapy in 
clinical trials involving individuals with hemophilia. According to our 
pooled data, AAV-based gene therapy resulted in reduced ABR and AIR 
among hemophilia patients. The subgroup analysis indicated that 
different hemophilia types, AAV capsid, transgene, neutralizing 
antibody titers, and baseline factor VIII activity led to slight differences 
in the results. The severity of bleeding in hemophilia patients is mainly 
related to the level of factor activity. In the studies included in our 
analysis, all participants were diagnosed with factor IX activity levels of 

TABLE 2 Results of subgroup analysis.

ABR AIR TRAEs ALT elevation AST elevation

Total 1.10 (0.62, 1.58) 3.92 (2.87, 4.98) 0.47 (0.25, 0.69) 0.50 (0.27, 0.72) 0.29 (0.17, 0.41)

Hemophilia types

  Hemophilia A 0.76 (0.06, 1.45) 5.09 (2.51, 7.68) 0.657 (0.398, 0.879) 0.532 (0.251, 0.805) 0.402 (0.336, 0.470)

  Hemophilia B 1.40 (0.61, 2.18) 3.76 (2.11, 5.41) 0.413 (0.159, 0.691) 0.336 (0.053, 0.72) 0.131 (0.056, 0.225)

AAV capsid

  AAV5 0.77 (0.28, 1.26) 4.78 (3.64, 5.93) 0.586 (0.323, 0.828) 0.482 (0.161, 0.810) 0.339 (0.188, 0.506)

  Other 2.04 (0.69, 3.39) 2.38 (0.65, 4.11) 0.376 (0.129, 0.655) 0.399 (0.091, 0.754) 0.131 (0.056, 0.225)

Transgene

  Codon-optimized BDD-F VII 1.83 (0.75, 2.91) 5.19 (1.39, 9.00) 0.465 (0.173, 0.768) 0.524 (0.272, 0.771) 0.123 (0.050, 0.217)

  Codon-optimized FIX containing the Padua 

mutation

0.76 (0.06, 1.45) 3.10 (0.75, 5.45) 0.418 (0.093, 0.784) 0.354 (0.005, 0.838) 0.406 (0.340, 0.473)

  BDD-F VII NA 5.09 (2.51, 7.68) NA NA NA

Neutralizing antibody titers

  Negative 0.85 (0.34, 1.36) 4.66 (3.18, 6.14) 0.539 (0.276, 0.793) 0.710 (0.537, 0.859) NA

  Other 2.06 (0.51, 3.62) 3.10 (0.75, 5.45) 0.341 (0.076, 0.666) 0.179 (0.093, 0.283) NA

Baseline factor VIII activity

  <2/≤2 1.83 (0.75, 2.91) 3.10 (0.75, 5.45) 0.428 (0.168, 0.708) 0.300 (0.004, 0.747) 0.123 (0.50, 0.217)

  ≤1.5/≤1 0.90 (0.28, 1.52) 6.50 (4.70, 8.30) 0.313 (0.056, 0.636) NA NA

  <1 0.68 (−0.12, 1.47) NA 0.855 (0.673, 0.979) 0.574 (0.332, 0.800) 0.395 (0.329, 0.)

ABR, annualized bleeding rate; AIR, annualized infusion rate; TRAEs, the incidence of treatment-related adverse events; ABR and AIR, The contrast values before and after treatment are ABR 
and AIR.
AAV, other include AAV-Spark 200; AAV-Spark100; rAAV6; AAV8; AAVS3; AAV843; Neutralizing antibody titers: other include≤1:5;≤1:4;maximum titer:3212.3; All of the subgroup analysis’s 
findings came from outcomes that were more than or equal to three.
NA, not available; N, number of patients included.
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less than or equal to 2%. Of these, 5 participants (26.3%) had factor IX 
activity levels below 1%. The results of the pooled studies indicate that 
factor activity levels are apparently elevated at 1-year post-gene therapy, 
despite the differences in the data from the different detection methods. 
As Ozelo et  al. (13) suggested that AAV-modulated gene therapy 
enabled stable endogenous factor activity without requiring regular 

prophylactic treatment with factor infusions. Furthermore, the efficacy 
outcomes are significantly impacted by individual variations in the 
effects of gene therapy and by varying doses. Additionally, it is important 
to note that variability in the range of FIX activity has been reported 
between OS assays conducted with different reagents, as well as between 
OS and CS assays conducted at different testing sites (32). These 

FIGURE 2

Overall ABR at 1 year after AAV gene therapy.

FIGURE 3

Overall AIR at 1 year after AAV gene therapy.
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FIGURE 4

TRAEs associated with AAV gene therapy.

FIGURE 5

ALT elevation after AAV gene therapy.
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discrepancies arise from differences in standardization, reagent 
sensitivity, and interference profiles (33), more standardized tests will 
be needed to assess the exact efficacy of gene therapy in the future. It is 
noteworthy that we conducted a combined analysis of the specific values 
in which AAV-based gene therapy altered ABR, AIR, and factor IX 
activity, and performed a subgroup analysis of them. However, the 
efficacy results should be interpreted with caution. This caution is due 
to several factors: the greater emphasis on outcome measures compared 
to other studies, the absence of comparable data, small sample size, 
differences in measurement methods, inadequate duration of long-term 
follow-up, preselection bias in the enrolled subjects, and various 
confounders that may have influenced the results.

Safety is a critical outcome of interest in clinical trials, with an 
incidence of 0.47 for TRAEs. Our comprehensive analysis found that 
nearly all studies reported increased ALT levels as an AE following gene 
therapy, and some studies have also reported elevated AST levels. Our 
meta-analysis revealed that the incidence of ALT and AST elevation 
resulting from AAV-based gene therapy in hemophilia patients was 
estimated at 0.50 and 0.29, respectively. The subgroup analysis indicated 
that different hemophilia types, AAV capsid, transgene, neutralizing 
antibody titers, and baseline factor VIII activity led to slight differences 
in the results. Several potential causes of elevated ALT and AST levels 
include the interaction of cytotoxic T lymphocytes with the AAV capsid, 
which induces an immune response in transduced hepatocytes (34). 
Additionally, the type and dose of vector used for gene delivery, release 
of cytokines during delivery, number of CpG motifs, and use of other 
potentially hepatotoxic drugs may also contribute to increased ALT and 
AST levels (27, 35). Despite the acceptable safety profile of 

AAV-mediated gene therapy in hemophilia patients being acceptable, it 
must be emphasized that the majority of studies conducted thus far have 
comprised small cohorts, which increases the potential for imprecision. 
Therefore, large-scale studies are necessary to gain further insight into 
the safety of AAV-based gene therapy for hemophilia patients.

Our meta-analysis, based on various transgene types, AAV capsid, 
neutralizing antibody titers, and baseline factor VIII activity, has been 
conducted to assess the efficacy and safety of AAV vector gene therapy 
in hemophiliac patients. Nonetheless, there were some limitations. First, 
there was high heterogeneity that existed among the included studies. 
To mitigate the impact of this heterogeneity, we have used a random 
effects model throughout our analysis. Factors contributing to this 
heterogeneity included small sample sizes due to the rarity of 
hemophilia, patient population variability (such as age, race, and 
pre-existing conditions), differences in vector design (AAV serotypes, 
promoter selection, and transgene modifications), dosing strategies, and 
immunological factors (neutralizing antibodies, cytotoxic T-cell 
responses, and corticosteroid prophylaxis). Second, the included studies 
were all non-controlled trials with a small sample size, potentially 
introducing significant bias to our results, and thus, we only evaluated 
the efficacy and risk without definite conclusions. Third, hemophilia 
gene therapy studies often use single-arm trials due to the rare nature of 
the disease and ethical considerations, which restrict robust 
comparisons with standard treatments. This design can introduce 
selection bias and confounding factors, making it challenging to 
definitively attribute observed outcomes solely to the gene therapy. 
Future research should prioritize conducting more randomized 
controlled trials (RCTs) to rigorously assess the efficacy and safety of 

FIGURE 6

AST elevation after AAV gene therapy.
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gene therapy compared to other treatments, such as emicizumab or 
extended half-life factor concentrates. Furthermore, the follow-up 
period is insufficient to assess the safety and long-term effectiveness of 
gene therapy, particularly in terms of the durability of factor activity 
levels and potential genotoxicity risks. Clotting factor levels may decline 
over time, highlighting the need for longer-term data to fully understand 
the therapeutic effectiveness and potential adverse effects.

Despite the above-mentioned limitations, our evidence-based 
analysis supports earlier studies demonstrating the advantages of 
AAV-based gene therapy in the treatment of hemophilia patients. 
Thus, additional trials are needed to demonstrate the efficacy and 
safety of gene therapy in all patients. Our current study provides only 
a reference to clinical practice and the development of more gene 
therapy drugs. We look forward to the development and application 
of more effective AAV-based gene therapy medications.

The field of gene therapy is witnessing a surge in the development 
of novel therapeutic products. Second-generation gene therapies 
represent a significant advancement, characterized by enhanced safety 
and efficacy profiles achieved through optimized delivery mechanisms, 
reduced immunogenicity, and refined transgene regulation. These 
innovations are not only improving the therapeutic outcomes for 
existing indications but also expanding the scope of gene therapy into 
diverse disease areas, including ophthalmology, diabetes, oncology, 
and beyond. The growing availability of these advanced gene therapy 
products holds the potential to transform the treatment landscape, 
offering a greater number of patients the prospect of long-term disease 
management and, in some cases, a cure.

5 Conclusion

In summary, our meta-analysis demonstrates the efficacy and 
safety of AAV-based gene therapy in hemophilia patients, providing 
evidence for its future clinical application.

However, since there are limited clinical data, future large-scale 
and multiple-center RCTs are required to confirm this conclusion.
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