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An interpretable machine learning 
model for predicting mortality 
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acute respiratory distress 
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Background: Acute respiratory distress syndrome (ARDS) is a clinical syndrome 
triggered by pulmonary or extra-pulmonary factors with high mortality and 
poor prognosis in the ICU. The aim of this study was to develop an interpretable 
machine learning predictive model to predict the risk of death in patients with 
ARDS in the ICU.

Methods: The datasets used in this study were obtained from two independent 
databases: Medical Information Mart for Intensive Care (MIMIC) IV and eICU 
Collaborative Research Database (eICU-CRD). This study used eight machine 
learning algorithms to construct predictive models. Recursive feature 
elimination with cross-validation is used to screen features, and cross-
validation-based Bayesian optimization is used to filter the features used to 
find the optimal combination of hyperparameters for the model. The Shapley 
additive explanations (SHAP) method is used to explain the decision-making 
process of the model.

Results: A total of 5,732 patients with severe ADRS were included in this study 
for analysis, of which 1,171 patients (20.4%) did not survive. Among the eight 
models, XGBoost performed the best; AUC-ROC was 0.887 (95% CI: 0.863–
0.909) and AUPRC was 0.731 (95% CI: 0.673–0.783).

Conclusion: We developed a machine learning-based model for predicting 
the risk of death of critically ill ARDS patients in the ICU, and our model can 
effectively identify high-risk ARDS patients at an early stage, thereby supporting 
clinical decision-making, facilitating early intervention, and improving patient 
prognosis.
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1 Introduction

Acute respiratory distress syndrome (ARDS) is a common clinical syndrome triggered by 
either pulmonary or extrapulmonary factors and is characterized mainly by persistent 
hypoxemia accompanied by bilateral infiltrates on chest imaging (1). ARDS has a wide range 
of causative factors, including infections, noninfectious factors, and systemic inflammatory 
responses. Among infectious causes, pneumonia is a prevalent infectious cause; among 
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noninfectious causes, pancreatitis, aspiration, severe traumatic shock, 
and transfusion reactions are frequently encountered (2). The 
pathophysiological processes of ARDS are highly intricate and involve 
lung inflammation, endothelial and epithelial injury, increased 
permeability, and coagulopathy, among other factors (2, 3). Despite 
more than 50 years of advancements in clinical research on ARDS by 
clinical experts, no specific drug or medical treatment has been found 
for curing the disease, and the primary treatment of ARDS has relied 
predominantly on supportive and conservative therapies (3). Current 
therapies mainly include protective pulmonary ventilation, prone 
ventilation, neuromuscular blockade, extracorporeal life support, and 
glucocorticoids (4). Nonetheless, ARDS remains a predominant cause 
of elevated mortality in intensive care units (ICUs) (5).

The Berlin definition, proposed in 2012, categorizes patients with 
ARDS on the basis of the degree of hypoxemia: mild (200 mmHg < 
PaO2/FIO2 ≤ 300 mmHg), moderate (100 mmHg < PaO2/
FIO₂ ≤ 200 mmHg), and severe (PaO2/FIO₂ ≤ 100 mmHg) (6, 7). 
However, the Berlin definition has a limited ability to predict mortality 
risk in ARDS patients in the ICU. This is particularly applicable to 
patients with severe ARDS (PaO2/FIO2 ≤ 100 mmHg), as their 
unfavorable prognosis significantly affects their quality of life and 
survival. Severe ARDS is often associated with sequelae such as long-
term cognitive deficits, mental health problems, ICU-acquired frailty, 
pulmonary impairment, imaging abnormalities, and limitations in 
motor function (8). Past studies have shown that the incidence of 
ARDS in the ICU is approximately 10% (9, 10), with a mortality rate 
reaching 40% among ARDS patients in the ICU across more than 50 
countries globally (9). Consequently, the development of an effective 
model to predict the mortality risk of ARDS patients in the ICU is 
highly valuable for assessing the clinical risk of patients in a timely 
manner (11).

Artificial intelligence (AI), particularly machine learning, has seen 
significant advancements and applications in critical care medicine. 
Previous studies have successfully developed a variety of machine 
learning models for cancer diagnosis, prognosis assessment, and 
treatment prediction (12, 13). Furthermore, artificial intelligence and 
machine learning have demonstrated promise in the early detection, 
diagnosis, severity assessment, and prognosis prediction of ARDS (1, 
14). However, the development and validation of predictive models 
for the risk of ARDS death in ICU patients are lacking. Owing to the 
impact of different practice patterns on mortality risk prediction 
models, continuously updating and optimizing prediction models by 
existing databases combined with the latest machine learning 
techniques has become an urgent problem (15). The aim of this study 
was to develop a death prediction machine model for ARDS patients 
based on admission data from the ICU of several hospitals, using the 
most accessible clinical information and laboratory indicators to 
assess disease severity and predict the risk of death in ARDS patients, 
to provide decision-making support to clinicians, and to help 
formulate a more effective treatment plan.

2 Methods

2.1 Study design

This was a retrospective study utilizing data collected on the initial 
day of ICU admission for ARDS patients, comprising five primary 

phases: model building, hyperparameter optimization, performance 
validation, model evaluation, and interpretive interpretation. To 
guarantee the independence of data assessment, all samples are 
initially divided at random into a training set and a validation set to 
prevent any data from leaking between the two datasets. The training 
set is subsequently used for model development, and the optimal 
parameter combinations are determined via hyperparameter 
optimization methods to improve the predictive performance of the 
model. Next, the model is independently evaluated on the validation 
set to test its generalizability. To increase the interpretability of the 
model, this study employed the Shapley additive explanations (SHAP) 
technique to assess the model and identify the key factors associated 
with mortality risk in ARDS patients. The overall workflow of this 
study includes data preprocessing, feature selection, hyperparameter 
optimization, model training, model evaluation, and model 
interpretation. The detailed process is illustrated in Figure 1.

2.2 Overview of machine learning methods

To construct a prediction model, this study establishes and 
compares eight machine learning algorithms, including decision tree 
(DT), gradient boosting tree (GBDT), random forest (RF), LightGBM, 
XGBoost, AdaBoost, backpropagation neural network (BPNN), and 
ensemble learning. The DT is used for predicting the output of 
unknown data via recursive splitting of data, which progressively 
decomposes the problem into a tree structure for predicting the output 
of unknown data (16). GBDT significantly improves the prediction 
accuracy by iteratively training multiple weak classifiers (usually DTs) 
and optimizing subsequent models on the basis of the prediction error 
of the previous round (17). RF is also a model that integrates multiple 
decision trees and reduces the correlation between different decision 
trees through a bagging mechanism, which effectively reduces the risk 
of overfitting (18). LightGBM and XGBoost are improved algorithms 
of GBDT, in which LightGBM adopts histogram-based optimization 
instead of traditional feature splitting methods, which significantly 
improves computational efficiency, especially for large datasets; 
XGBoost further enhances model performance and robustness through 
gradient optimization, regularization, and weighting strategies (19, 20). 
The core idea of AdaBoost is to dynamically adjust the sample weights, 
and in each round of iteration, it increases the weight of the samples 
that have been incorrectly classified in the previous iteration (21). The 
BPNN is a multilayer feedforward neural network that adjusts weights 
and biases via backpropagation and has strong nonlinear modeling 
capabilities (22). We  also integrated multiple models (RF, GBDT, 
XGBoost, and support vector machine) to construct an ensemble 
learning model. Ensemble learning usually significantly improves 
prediction performance and enhances model stability by combining 
the advantages of different benchmark models. The machine learning 
models in this study were all implemented in Python (version 3.9.19), 
built, and trained via the scikit-learn library (version 1.5.1), and the 
neural network model was developed via PyTorch (version 2.0.0).

The eight machine learning models selected for this study 
encompass tree-based models, bagging-based methods, boosting-
based methods, ensemble models, and neural networks. These models 
are widely used in clinical prediction tasks, and each has advantages in 
terms of interpretability, robustness, and computational efficiency, 
making them suitable for comprehensive comparison in this study 
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(1, 12, 15, 23). In contrast, some other models have relatively weak 
applicability in clinical prediction tasks. For example, logistic regression 
may have limited performance when dealing with high-dimensional 
and complex clinical data (12, 15). The K-nearest neighbor (KNN) 
algorithm is computationally intensive and is not applicable to large-
scale datasets. Deep learning models (e.g., convolutional neural 
networks) are weakly interpretable, despite their superior performance 
in certain tasks. In addition, in ICU settings, deep learning models may 
be at risk of overfitting due to limited sample size. Therefore, when data 
availability is limited or interpretability is a priority, these models are 
not the preferred choice. This study prioritizes the use of machine 
learning models that are mature, stable, and widely used in clinical 
practice to improve the acceptability and realizability of the models in 
real-world clinical applications.

2.3 Data sources

All clinical data used in this study were obtained from two publicly 
available independent databases in the United States: The Medical 

Information Mart for Intensive Care (MIMIC) IV and the eICU 
Collaborative Research Database (eICU-CRD). MIMIC-IV version 3.0 
and eICU-CRD version 2.0 were used in this study. The MIMIC-IV 
v3.0 database, revised on July 19, 2024, has data from more than 
300,000 patients gathered from Beth Israel Deaconess Medical Center 
between 2008 and 2022 (24). The first author of this study successfully 
completed the official online course and assessment, thereby obtaining 
authorized access to the data (Record ID: 13283944). The eICU-CRD 
includes ICU data from 208 hospitals across the Midwest, Northeast, 
South, and West regions of the United States, covering over 200,000 
ICU patients from 2014 to 2015 (25). Since all the data were 
deidentified, this study did not require patient consent.

2.4 Study population and variables

This study included patients diagnosed with ARDS on the basis of 
the criteria established by the International Classification of Diseases 
(ICD-9 and ICD-10). The exclusion criteria included patients under 
18 years of age, those who were in the ICU for fewer than 24 h, those 

FIGURE 1

Flowchart of the study design.
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with multiple ICU admissions, and those with missing data for more 
than 20% of the total dataset. Both databases conformed to identical 
inclusion and exclusion criteria (refer to Figure 1). We used data from 
the first day of ICU admission for ARDS patients to predict in-hospital 
mortality and identify potential risk factors. The selected predictors 
consisted of 6 key categories, encompassing 54 variables that are easy 
to collect on the first day of ICU admission. These variables included 
basic information, first-day vital signs, first-day arterial blood gas 
analysis, laboratory tests, comorbidities, and severity scores.

Specifically, the basic information included age, sex, admission 
height, admission weight, admission BMI, length of hospital stay 
before ICU admission, and hours spent in the ICU; first-day vital signs 
included heart rate, respiratory rate, temperature, systolic blood 
pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure 
(MBP), and oxygen saturation (SpO2); first-day blood gas analysis 
included partial pressure of oxygen in arterial blood (PaO2), partial 
pressure of carbon dioxide in arterial blood (PaCO2), fraction of 
inspired oxygen (FiO2), PaO2/FiO2 ratio, and pH; Laboratory tests 
included hematocrit, hemoglobin, platelet, white blood cell count 
(WBC), albumin, anion gap, bicarbonate, total bilirubin, blood urea 
nitrogen (BUN), chloride, creatinine, calcium, sodium, potassium, 
alanine aminotransferase (ALT), alkaline phosphatase (ALP), and 
aspartate aminotransferase (AST); and comorbidities included 
diabetes, renal disease, liver disease, malignant cancer, myocardial 
infarction, congestive heart failure, peripheral vascular disease, 
cerebrovascular disease, dementia, chronic pulmonary disease, 
autoimmune disease, peptic ulcer, and acquired immune deficiency 
syndrome (AIDS). Additionally, several important scoring systems 
were included: the Glasgow Coma Scale (GCS), the Acute Physiology 
and Chronic Health Evaluation (APACHE), the Oxford Acute Severity 
Index (OASIS), and the Charlson Comorbidity Index (Charlson score).

2.5 Data preprocessing

We excluded variables with more than 20% missing data. For 
variables with less than 20% missingness, we applied multiple imputation 
by chained equations (MICE) using LightGBM as the imputation model. 
During the imputation process, MICE generated five imputed datasets, 
and the final dataset was obtained by averaging these datasets. To ensure 
that the MICE method did not significantly alter the original data 
structure, we compared the mean and median differences between the 
pre-and post-imputation datasets using the bootstrap method and 
calculated the 95% confidence intervals (CI). The results are provided in 
the Supplementary material. Differences closer to zero indicate that 
MICE did not significantly affect the dataset’s mean and median values. 
The MICE imputation was implemented using the miceforest library 
(version 6.0.3) in Python. In the dataset used for this study, a degree of 
class imbalance was observed, with a positive-to-negative sample ratio 
of approximately 1:4. To improve the model’s ability to identify the 
minority class, we assigned a higher weight to the underrepresented 
group (equal to the ratio of the two class sizes) during model training.

2.6 Statistical analysis

The patients’ clinical features were delineated as categorical and 
continuous variables. We  eliminated extreme outliers deemed 

physiologically implausible and removed variables with a missing 
percentage exceeding 20%. Multiple imputation by chained 
equations was conducted on the final samples included in the study 
to address the missing variables (15). Categorical variables were 
characterized by frequencies and percentages, and the chi-square test 
was used to compare the differences between the two groups. The 
distribution of continuous variables was assessed via the 
Kolmogorov–Smirnov test. Continuous variables that conformed to 
a normal distribution were described via means and standard 
deviations (means ± standard deviations), and differences between 
the two groups of data were compared via independent samples 
t-tests. Continuous variables that did not follow a normal 
distribution were described via medians and interquartile ranges, 
and differences between the groups were assessed via the Mann–
Whitney U test. All tests in this study were two-tailed, and the 
significance level was set at 0.05, with p < 0.05 considered statistically 
significant. The statistical analysis in this study was performed via 
the SciPy library (version 1.12).

This study thoroughly evaluated the model’s predictive 
performance via various metrics, including the area under the receiver 
operating characteristic curve (AUC-ROC), area under the precision-
recall curve (AUC-PR), positive predictive value (PPV), negative 
predictive value (NPV), specificity, recall, accuracy, and Brier score. 
The prediction threshold was determined by maximizing the F1 score, 
and all evaluation metrics were calculated on the basis of this 
threshold. The discriminatory ability of the models was evaluated by 
AUC-ROC and AUC-PR, and the differences in AUC-ROC between 
different models were compared using the DeLong test. To mitigate 
the cumulative impact of the false-positive rate resulting from 
numerous paired tests, the Holm–Bonferroni correction was applied 
to adjust the p-value of the DeLong test in this study, thus ensuring 
the reliability and rigor of the statistical conclusions. In addition, the 
calibration curve is used to assess the consistency between the model’s 
predicted probability and the actual event occurrence probability; 
decision curve analysis (DCA) is used to assess the model’s net benefit 
under different risk thresholds; and the precision-recall curve is used 
to demonstrate the trade-off relationship between the model’s 
precision and the recall under different categorization thresholds. The 
95% CI for all the evaluation metrics is calculated via the 1,000 
bootstrap sampling method to increase the robustness of the results.

2.7 Feature selection

Recursive feature elimination (RFE) is mainly used for screening 
features and identifies and gradually removes features of low 
importance in an iterative manner until an optimal subset of features 
is reached (26). Therefore, we use RFE to reduce the dimensionality of 
the input features and thus reduce the computational complexity. 
Recursive feature elimination with cross-validation (RFECV) 
integrates a cross-validation process to assess the model’s performance 
across varying feature quantities, with the objective of identifying the 
optimal feature number. This work employed RFE with ten-fold cross-
validation to identify the ideal feature subset for models capable of 
generating feature significance outputs, such as random forest. For 
models that do not explicitly provide feature importance (e.g., neural 
networks), the feature subset associated with the model exhibiting 
optimal final prediction performance was selected.
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In this study, RFECV helped to remove the features that were 
weakly associated with ARDS, improved the stability of the model, 
and reduced the risk of overfitting. The final selection of features not 
only improves the computational efficiency of the model but also 
enhances its interpretability, increasing the model’s practical value in 
clinical settings.

2.8 Model optimization

Bayesian optimization uses a surrogate model (e.g., Gaussian 
process) to approximate the objective function and finds the optimal 
solution of the objective function in a defined region through the 
combination of the surrogate model and the acquisition function (27). 
The Bayesian optimization updates the prior distribution during 
iterations to find the optimal hyperparameter combination more 
efficiently. This method improves the generalization ability of the 
model while reducing the computational cost, and it makes the final 
model more robust on the test set. Therefore, we used cross-validation-
based Bayesian optimization to obtain the best combination of 
hyperparameters for machine learning models. K-fold cross-validation 
partitions the data into several folds, enabling the Bayesian optimizer 
to assess hyperparameter performance across several data splits, hence 
mitigating the risk of model overfitting.

This research employed Bayesian optimization with ten-fold 
cross-validation utilizing the scikit-optimize library (version 0.10.2). 
Ultimately, all the prediction models were based on the optimal 
hyperparameter combinations and the filtered optimal feature subsets, 
and the models were retrained and validated using the training and 
validation sets to ensure optimal model performance.

2.9 Model interpretability

Machine learning models are frequently regarded as “black boxes,” 
characterized by an opaque and incomprehensible decision-making 
process. SHAP is a model interpretation method derived from Shapley 
values that measures the individual contribution of each feature to a 
machine learning model’s prediction (28). Although some ensemble 
learning models are able to provide feature importance, these 
explanations focus mainly on the global level and cannot meet the 
demand for detailed analysis of individual samples. In contrast, SHAP 
is not only able to provide global explanations of the model but also 
local explanations for individual samples with higher accuracy and 
nuance. Therefore, the SHAP technique is adopted in this study to 
improve the interpretability of the model and help to understand the 
role of features in the prediction process in detail.

3 Results

3.1 Baseline characteristics

A total of 29,357 patients were included in this study, and after 
23,625 patients who did not meet the inclusion criteria were excluded, 
5,732 patients were ultimately included as the study sample. 
We categorized these samples into a non-survivor group (n = 1,171, 
20.4%) and a survivor group (n = 4,561, 79.6%). The differences in 

baseline characteristics between the two groups are shown in 
Tables 1, 2. Except for the twelve indicators, there were significant 
differences in all other pathologic characteristics between the two 
groups. Compared with those in the survivor group, patients in the 
non-survivor group were older, had a longer length of hospitalization, 
had higher APACHE, OASIS, and CCI scores, and had lower GCS 
scores. In the comparison of the first-day vital signs between the two 
groups, SBP, SpO2, PaO2/FiO2, and pH were lower in the non-survivor 
group than in the survivor group; in addition, platelets, white blood 
cells, albumin, anion gap, BUN, bicarbonate, AST, ALP, and ALT 
were significantly different.

3.2 Model performance comparison

To ensure the prediction performance of each model, RFECV and 
Bayesian optimization were applied to each model in this study. 
RFECV requires the model to be able to output the feature importance 
to progressively remove features with lower importance in each 
iteration. However, since the BPNN and ensemble models cannot 
provide feature importance directly, this study employs the optimal 
subset of features based on XGBoost (filtered by RFECV) as input 
features for these models. The features retained by different models 
after RFECV and their corresponding importance can be viewed in 
the Supplementary material. In addition, Bayesian optimization 
combined with ten-fold cross-validation is used to search for the 
optimal hyperparameter combinations of different models within the 
specified parameter intervals. The hyperparameter search intervals for 
all models can be found in the Supplementary material.

We integrated important features from a number of perspectives 
in our feature screening of key variables, as follows. In the critical care 
scoring system, APACHE, as one of the important indicators for 
comprehensively assessing the severity of critical patients’ conditions, 
integrates multiple information such as physiological parameters, age, 
and chronic diseases and can effectively reflect the risk of multi-organ 
dysfunction; Among the blood gas analysis indexes, FiO2 and PaO2/
FiO2 are both related to the oxygenation status of patients, which are 
the core indexes for the diagnosis and severity of ARDS, and low 
PaO2/FiO2 is closely related to the destruction of the alveolar-capillary 
barrier and diffusion dysfunction, and it can be used to predict the 
respiratory failure and the progression of the disease; Among the 
laboratory indicators, elevated BUN levels suggest impaired renal 
function, which is a sensitive marker of the severity of systemic 
inflammatory response; in addition, although AST is not a specific 
indicator, its elevation may reflect ischemic injury of hepatocytes or 
secondary inflammatory factor storm, which suggests the risk of 
multi-organ involvement.

Among the deleted variables, MBP, as a hemodynamic index, is 
actively regulated in the early management of ARDS, and its 
fluctuations are strongly influenced by fluid resuscitation and 
vasoactive drugs; Mean blood glucose levels were disturbed by insulin 
therapy, stress, and other factors; Although the anion gap may reflect 
metabolic acidosis, patients with ARDS are often comorbid with 
complex acid–base imbalances (e.g., respiratory alkalosis 
compensation), making it difficult to accurately assess metabolic 
status, and all of these metrics may weaken predictive stability. 
Therefore, feature screening ultimately focuses on the most 
pathophysiologically representative and independently predictive 
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TABLE 1 Baseline characteristics of the study cohort.

Variables Survival (n = 4,561) Death (n = 1,171) p-value

Basic information

Age(years) 66 (55.0–76.0) 69 (60.0–80.0) <0.01

Gender (%)

  Male 53 57

  Female 47 43

Admission height (cm) 168 (160.0–177.0) 168 (162.22–175.3) 0.99

Admission weight (kg) 81.2 (66.0–100.7) 77.6 (64.85–93.65) <0.01

Admission BMI (kg/m2) 28.34 (23.76–34.62) 27.11 (23.06–32.7) <0.01

Length of hospital stay (d) 8.53 (5.04–15.46) 7 (3.28–13.46) <0.01

Length of ICU stay (h) 85 (48.0–168.0) 123 (55.96–233.76) <0.01

First day vital signs

Heart rate 109 (93.0–126.0) 106 (89.0–123.0) <0.01

Respiratory rate 32 (23.85–40.0) 29.51 (22.12–36.0) <0.01

Temperature (°C) 36.56 (36.2–36.9) 36.6 (36.3–36.94) 0.04

SBP (mmHg) 122.2 (102.0–143.0) 107 (76.3–130.0) <0.01

DBP (mmHg) 71 (60.0–87.0) 72 (58.0–100.72) 0.02

MBP (mmHg) 68 (52.0–119.0) 71.58 (55.0–111.0) 0.43

SpO2 (%) 0.96(0.93–0.99) 0.96 (0.93–0.98) <0.01

First day blood gas

PaO2 (mmHg) 88 (66.8–130.0) 89 (65.15–127.25) 0.60

PaCO2 (mmHg) 43.1 (35.5–54.5) 43 (34.45–53.0) 0.01

FiO2 0.5 (0.4–0.78) 0.6 (0.4–1.0) <0.01

PaO2/FiO2 190 (122.4–286.67) 160 (98.11–255.48) <0.01

PH 7.36 (7.29–7.42) 7.35 (7.27–7.41) <0.01

Laboratory parameters

Hematocrit (%) 34 (29.0–38.85) 32.05 (27.83–37.0) <0.01

Hemoglobin (g/dL) 11 (9.35–12.75) 10.35 (9.0–12.05) <0.01

Platelets (K/μL) 400 (292.0–534.0) 318.5 (186.7–474.5) <0.01

WBC (K/μL) 11.45 (8.28–15.35) 12.3 (8.5–16.86) <0.01

Albumin (g/dL) 3 (2.6–3.4) 2.7 (2.3–3.12) <0.01

Anion gap 11 (8.4–14.3) 12.3 (9.0–15.62) <0.01

Bicarbonate (mmol/L) 25 (21.5–28.5) 23.4 (19.5–27.0) <0.01

Total bilirubin (mg/d) 0.6 (0.4–0.95) 0.8 (0.5–1.5) <0.01

BUN (mg/dL) 23 (15.0–37.5) 31 (20.0–47.5) <0.01

Base excess (mmol/L) 0.4 (−3.2–3.9) -1 (−6.0–2.3) <0.01

Chloride (mmol/L) 102.5 (98.5–106.5) 102.5 (98.5–107.0) 0.18

Creatinine (mg/dL) 1.1 (0.79–1.76) 1.35 (0.9–2.16) <0.01

Calcium (mg/dL) 8.6 (8.1–9.1) 8.4 (7.88–8.9) <0.01

Sodium (mmol/L) 138 (135.5–141.0) 138 (134.5–142.0) 0.45

Potassium (mmol/L) 4.15 (3.8–4.55) 4.25 (3.85–4.65) <0.01

ALT (IU/L) 27 (17.0–47.6) 34 (19.0–75.0) <0.01

ALP (IU/L) 86.5 (66.0–118.0) 95 (69.0–143.0) <0.01

AST (IU/L) 30 (20.0–52.2) 51 (27.0–122.5) <0.01

Clinical scores

GCS 14.82 (12.0–15.0) 14 (10.5–15.0) <0.01

APACHE 60 (47.0–77.0) 78 (59.0–98.0) <0.01

OASIS 29 (23.0–37.0) 36 (28.0–43.0) <0.01

Charlson score 4 (2.0–6.0) 5 (3.0–7.0) <0.01
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efficacy metrics to improve the clinical interpretability and 
generalizability of the model.

After the optimal feature subset and optimal hyperparameter 
combination are determined, the evaluation metrics of the eight 
models and their 95% CI are summarized in Table 3. Figure 2A shows 
the ROC curves of the eight models, and the results indicate that all 
the models exhibit good discriminatory ability in predicting the risk 
of ARDS mortality. XGBoost demonstrated excellent performance in 
terms of AUC-ROC, achieving a value of 0.887 (95% CI: 0.863–0.909). 
GBDT performed best in terms of NPV, reaching 0.923 (95% CI: 
0.904–0.940), and had the highest F1 score of 0.676 (95% CI: 0.625–
0.720), outperforming the other models. LightGBM achieved the 
highest accuracy at 0.846 (95% CI: 0.843–0.882). In contrast, DT, RF, 

and BPNN showed relatively poorer performance across multiple 
evaluation metrics. The DeLong test results, after applying the Holm–
Bonferroni correction, indicated that the AUC–ROC curve of 
XGBoost was not significantly different from those of GBDT and 
LightGBM but was significantly greater than those of the other 
models. The p-values of the DeLong test before and after calibration 
are detailed in the Supplementary material.

To further analyze the clinical application value of different 
models in predicting the risk of mortality in ARDS patients, DCA 
curves were plotted in this study (Figure  2B). The DCA curves 
revealed that the net benefit of the XGBoost model was greater than 
that of the GBDT model and the LightGBM model over risk thresholds 
ranging from 0 to 1. This suggests that under several different decision 

TABLE 2 Comorbidities of the study cohort.

Comorbidities Survival (n = 4,561) Death (n = 1,171) p-value

With (%) Without (%) With (%) Without (%)

Diabetes (%) 32.58 67.42 30.15 69.85 0.12

Renal disease (%) 16.64 83.36 19.21 80.79 0.04

Liver disease (%) 3.99 96.01 10.42 89.58 <0.01

Malignant cancer (%) 13.81 86.19 21.01 78.99 <0.01

Myocardial infarct (%) 9.73 90.27 11.61 88.39 0.06

Congestive heart failure (%) 22.25 77.75 22.97 77.03 0.63

Peripheral vascular disease (%) 5.37 94.63 6.32 93.68 0.23

Cerebrovascular disease (%) 3.55 96.45 6.58 93.42 <0.01

Dementia (%) 4.65 95.35 5.47 94.53 0.28

Chronic pulmonary disease (%) 27.06 72.94 23.06 76.94 <0.01

Autoimmune disease (%) 2.61 97.39 2.65 97.35 1

Peptic ulcer (%) 2.48 97.52 2.82 97.18 0.58

AIDS (%) 0.3 99.7 0.85 99.15 0.02

TABLE 3 Evaluation metrics for eight machine learning models to predict the risk of death from ARDS.

Model AUC PPV NPV Recall Specificity F1 Score Accuracy

DT
0.753 0.537 0.858 0.451 0.895 0.490 0.800

(0.716, 0.789) (0.464, 0.603) (0.834, 0.879) (0.389, 0.510) (0.875, 0.916) (0.435, 0.547) (0.777, 0.825)

XGBoost
0.887 0.663 0.912 0.676 0.907 0.669 0.858

(0.863, 0.909) (0.602, 0.722) (0.892, 0.930) (0.619, 0.730) (0.887, 0.925) (0.618, 0.716) (0.837, 0.877)

RF
0.855 0.649 0.894 0.598 0.913 0.623 0.846

(0.828, 0.880) (0.585, 0.707) (0.872, 0.913) (0.542, 0.656) (0.894, 0.931) (0.571, 0.668) (0.826, 0.866)

GBDT
0.879 0.632 0.923 0.725 0.886 0.676 0.852

(0.853, 0.904) (0.576, 0.684) (0.904, 0.940) (0.671, 0.782) (0.866, 0.907) (0.625, 0.720) (0.831, 0.873)

Ensemble
0.869 0.610 0.908 0.668 0.885 0.638 0.839

(0.841, 0.893) (0.552, 0.665) (0.888, 0.927) (0.609, 0.727) (0.864, 0.906) (0.588, 0.685) (0.816, 0.859)

AdaBoost
0.832 0.487 0.926 0.770 0.781 0.597 0.779

(0.801, 0.861) (0.439, 0.538) (0.908, 0.945) (0.718, 0.821) (0.754, 0.806) (0.551, 0.638) (0.754, 0.802)

LightGBM
0.881 0.688 0.909 0.660 0.919 0.674 0.864

(0.858, 0.904) (0.630, 0.744) (0.891, 0.929) (0.601, 0.721) (0.903, 0.937) (0.621, 0.718) (0.843, 0.882)

BPNN
0.767 0.487 0.888 0.615 0.825 0.543 0.780

(0.730, 0.803) (0.432, 0.544) (0.865, 0.908) (0.561, 0.674) (0.801, 0.849) (0.489, 0.592) (0.757, 0.804)
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thresholds, the prediction results of XGBoost are capable of more 
effectively assisting in clinical decision-making by increasing the 
identification of true positive cases while reducing the occurrence of 
false positive cases. In addition, Figure 2C shows the precision-recall 
curve and calculates AUC-PR. Owing to the severe imbalance between 
positive and negative samples in ARDS-related data, the traditional 
ROC curve may exhibit an overly optimistic tendency, whereas the PR 
curve is more sensitive to the predictive performance of positive class 
samples; thus, the AUC-PR is more suitable for measuring the 
predictive ability of the model in positive class samples. The AUC-PR 
of XGBoost is 0.731 (95% CI: 0.673–0.783), which is higher than those 
of the other models. Figure 2D shows the calibration curve of the 
model, which is used to assess whether the predicted probabilities 
output by the model can accurately reflect the actual probability of an 
event occurring. The closer the calibration curve is to the diagonal 
line, the closer the predicted probability of the model is to the real 
occurrence probability. The Brier score is used to measure the 
deviation between the predicted probability of the model and the 
actual result, and the smaller the Brier score is, the better the 
calibration performance of the model. In this study, XGBoost has the 

lowest Brier score of 0.099 (95% confidence interval: 0.088–0.112), 
which is better than those of the other models. In summary, XGBoost 
performed well on several evaluation metrics, especially compared to 
other models, in terms of discriminatory ability, calibration 
performance, and prediction ability for positive class samples. 
Therefore, XGBoost was identified as the model of choice for 
predicting the risk of mortality from ARDS in this study.

3.3 Subgroup analysis

To further evaluate the performance of XGBoost in predicting 
mortality risk in ARDS patients, we performed five types of subgroup 
analyses based on age, sex, liver disease, renal disease, and chronic 
pulmonary disease. Detailed results of the subgroup analyses are 
presented in the Supplementary material and Figure 3 illustrates the 
bar chart of the subgroup analyses. XGBoost demonstrated high 
discriminatory power across age groups, with the highest AUC-ROC 
of 0.976 (95% CI: 0.93–1) in the 18–39 years age group, while its 
predictive performance was comparable between the 40–64 age group 

FIGURE 2

Performance of machine learning models in predicting ARDS mortality. (A) Receiver operating characteristic curve. (B) Decision curve analysis. 
(C) Precision–recall curve. (D) Calibration curve.
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(AUC-ROC = 0.88, 95% CI: 0.830–0.924) and the ≥ 65 age group 
(AUC-ROC = 0.872, 95% CI: 0.838–0.901). Sex-based analysis 
indicated that the model performed slightly better in male patients 
(AUC-ROC = 0.895, 95% CI: 0.863–0.922) than in female patients 
(AUC-ROC = 0.876, 95% CI: 0.837–0.909).

In the comorbidity subgroup analysis, XGBoost demonstrated 
stable predictive ability across different comorbidity categories. 
Specifically, in patients with liver disease, the AUC-ROC of the model 
was 0.88 (95% CI: 0.797–0.951), which was slightly lower compared 
to the other comorbidity groups, whereas it demonstrated higher 
predictive accuracy in patients with chronic pulmonary disease 
(AUC-ROC = 0.892, 95% CI: 0.848–0.931).

These findings suggest that XGBoost maintains strong 
discriminatory ability in predicting ARDS mortality risk across 
diverse patient populations, highlighting its potential 
clinical applicability.

3.4 Interpretability

Understanding how machine learning models make decisions on 
the basis of different features is crucial for researchers and clinicians. 
Therefore, this study combines the feature importance of the XGBoost 
output and SHAP to enhance the interpretability of the model. 
XGBoost’s feature importance primarily provides a global explanation, 
measuring the significance of each feature in the overall model 
decision-making process. In contrast, the SHAP method not only 
offers a global explanation but also provides more detailed local 
explanations for individual samples.

Figure 4A illustrates the ranking of feature importance derived 
from the XGBoost model output. The principal features include 
APACHE, length of hospital stay before ICU admission, length of ICU 
stay, AST, SBP, albumin, Charlson, history of malignant cancer, 

platelet, age, OASIS, FiO2, history of liver disease, BUN, GCS, total 
bilirubin, admission weight, DBP, and base excess.

Figure 4B shows the SHAP summary plot of the XGBoost model, 
which provides enhanced insights. For example, when a patient has 
elevated AST levels, the associated SHAP value is positive, indicating 
that APACHE is a significant contributor to increased mortality risk; 
furthermore, as APACHE levels increase, patient mortality risk 
increases accordingly. The SHAP force plot for two patients is shown 
in Figure 4C. The upper plot shows the force plot for a non-surviving 
patient, and the bottom shows the force plot for a surviving patient. 
For non-survivors, the model predicts a high mortality risk, primarily 
due to low albumin, elevated APACHE, high AST, and BUN, all of 
which collectively increase the mortality risk.

Figure  4D illustrates the impact of alterations in individual 
feature values on SHAP values and examines potential relationships 
among features. Using FiO2 as an illustration, when FiO2 levels were 
maintained between 0.2 and 0.5, the corresponding SHAP values 
ranged from-0.5 to 0, indicating that, at this stage, FiO2 negatively 
influenced the model’s ability to predict decreased mortality risk 
from ARDS, suggesting that the patient’s condition was more stable 
and had not yet progressed to severe respiratory failure in this range 
of oxygen support. As FiO2 increased to between 0.5 and 0.6, the 
SHAP values further decreased, indicating that an increase in FiO2 
had a more severe negative impact on mortality risk within this 
range, implying that the patient received increased oxygen support 
at this stage. When FiO2 surpassed 0.6, the SHAP values were 
positive, indicating that an increase in FiO2 at this stage increased 
the risk of mortality. This phenomenon indicates that the patient 
may have reached a critical condition necessitating mechanical 
ventilation or extracorporeal membrane oxygenation, resulting in 
a higher risk of mortality. The Supplementary material, further 
illustrates SHAP’s interpretation of XGBoost in predicting mortality 
risk in ARDS patients.

FIGURE 3

Subgroup analysis of XGBoost for predicting risk of mortality in patients with ARDS.
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4 Discussion

In this retrospective study, we developed, optimized, validated, 
evaluated, and interpreted a mortality prediction model for ARDS 
patients aimed at predicting the severity and mortality of patients 
on the basis of their clinical information on the first day of ICU 
admission. We constructed eight machine learning models on the 

basis of 54 physiological variables and found XGBoost to be the 
best performer on the basis of model performance comparisons. 
Using characteristic importance analysis, we  identified the 20 
clinical variables that have the greatest impact on ARDS patients, 
in order of importance: AST, length of hospital stay, SBP, 
APACHE, ICU admission hours, FiO2, total bilirubin, platelets, 
OASIS, Charlson score, albumin, ALT, malignant neoplasms, age, 

FIGURE 4

Explanation of ARDS mortality risk prediction models. (A) Top 20 risk factors predicted by XGBoost. (B) Top 20 risk factors for the SHAP. 
(C) A nonsurviving patient and a surviving patient. (D) SHAP dependence plot.
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BUN, ALP, DBP, SpO2, PaO2/FiO2, and PaO2. Most of these 
variables are readily available at the time of the patient’s admission 
to the ICU; thus, the predictive model we have developed can 
provide clinicians with a prediction of mortality risk on the first 
day in the ICU, helping to make more timely and accurate 
clinical decisions.

To date, a number of researchers have worked on developing 
machine learning predictive models of incidence and mortality in 
ARDS patients, for example, Maddali et  al. developed machine 
learning models for identifying ARDS subphenotypes, with 
AUC-ROCs of 0.92 (95% CI: 0.90–0.95) and 0.88 (0.84–0.91) for their 
EARLI and VALID clinical classification models, respectively, (29); 
Lin et  al. used XGBoost to build a machine learning model for 
predicting deaths from non-sepsis ARDS, which predicted NPS-ARDS 
with an accuracy of 78.0% in external validation (1), Huang et al. 
developed a prediction model for in-hospital mortality in patients 
with ARDS using the RF model, and the RF model predicted 
in-hospital, 30-day, and 1-year mortality rates with AUC-ROCs of 
0.891, 0.883, and 0.892, respectively, and showed good generalization 
ability in cross-dataset validation (23); The XGBoost hyperparametric 
optimization model constructed by Patel et al. using the blood gas 
analysis metric SpO2/FiO2 also achieved good results, with an 
AUC-ROC of 0.85 on the test set (30).

Compared with existing ARDS prediction models and traditional 
clinical scoring systems, the interpretable machine learning model 
developed in this study demonstrated unique advantages; we overcame 
the limitation of heterogeneity of single-center data through a 
multicenter cohort design, improved the generalizability of the model 
in diverse ICU populations, and integrated a number of clinical 
indicators of the patients (covering vital signs, laboratory tests, 
comorbidities, organ function scores, and other multidimensional 
data), which compensated for the lack of coverage dimensions of 
physiologic indicators in previous studies; In addition, the 
combination of the Bayesian optimization algorithm and the recursive 
feature elimination technique has some methodological improvements 
compared with previous studies on ARDS predictive models, and 
we constructed a more efficient and accurate subset of features with 
trade-off properties, and the final XGBoost predictive model 
established in this study demonstrated a good predictive efficacy on 
the test set (AUC-ROC: 0.887, 95% CI: 0.863–0.909), and its 
prediction performance is better than the traditional criticality scoring 
system (31). More importantly, the clinical value of this study is 
reflected in the fact that our study improves the interpretability 
mechanism under the premise of guaranteeing the prediction 
accuracy. By introducing the SHAP value, we  have solved the 
limitations of the previous “black-box” machine-learning models in 
the field of intensive care and provided clinically actionable 
interpretations, which further enhance the practicality of the 
application of the model to ICUs and clinicians’ applications. This 
combination of predictive performance and interpretability represents 
an advancement in the AI tools available for clinical work. As the 
application of machine learning models in healthcare continues to 
deepen, it will usher in a new era of healthcare management 
systems (32).

The “black box” nature of machine learning refers to the fact 
that its decision-making process is typically not understandable to 
users. Although these models usually demonstrate high accuracy 
and predictive power for tasks, clinicians rely on clear reasons and 

evidence to make decisions. Therefore, improving the interpretability 
of machine learning models is key to their widespread application 
in the medical field. This work employed SHAP to elucidate and 
investigate the decision-making process of machine learning models 
in predicting the mortality risk associated with ARDS. SHAP aims 
to provide interpretability for black-box models, making the impact 
of each feature on the model’s predictions transparent and 
understandable. SHAP not only explains individual predictions, 
showing which specific features positively or negatively influence 
the prediction, but also aggregates the contributions of all data 
points to provide the overall feature importance of the model, thus 
helping us understand the model’s general behavior. This study also 
presents local sample explanations for both non-surviving and 
surviving patients, further enhancing the interpretability of 
the model.

Our findings align with expectations, indicating that the total 
length of hospital stay and duration of ICU admission are critical 
indicators of disease severity and prognosis. Previous studies have 
demonstrated that the length of hospitalization in ARDS patients is 
highly correlated with the severity of the disease (33). Moreover, the 
mortality rate of critically ill patients in the early stage of deterioration 
can be significantly reduced if they are admitted to the ICU in a timely 
manner to receive interventional treatments such as respiratory 
support or fluid support. Conversely, postponed ICU admission is 
positively correlated with in-hospital mortality (34, 35). The period of 
ICU admission accurately indicates the onset of increased therapy 
following the deterioration of the patient’s health, and as a time-
dependent dynamic indicator, it can be  combined with condition 
scores (e.g., APACHE, OASIS) in the machine-learning model of this 
study to further enhance the evaluation of patient severity and 
mortality risk. The length of hospital stay may indicate that the patient 
has undergone a complex course of treatment accompanied by 
multiple complications, such as secondary infections, sepsis, or 
multiple organ dysfunction, which aggravate the condition of patients. 
However, a longer hospitalization may also mean that the patient is 
likely to eventually recover after a prolonged course of treatment. In 
the predictive model, the length of hospital stay can be combined with 
disease scores (e.g., Charlson score) in a stratified analysis to better 
explain the impact of length of hospitalization on mortality risk.

This study revealed indices of liver function impairment, 
including AST, total bilirubin, and ALT, as important determinants of 
severity and mortality risk in ARDS patients, with AST being the most 
influential according to the XGBoost model. Elevated AST, ALT, and 
total bilirubin levels typically indicate liver impairment. Compromised 
liver function results in a diminished capacity to eliminate 
inflammatory factors, toxins, and metabolic waste, which in turn 
exacerbates the systemic inflammatory response and further worsens 
the condition of patients with ARDS. Liver impairment in patients 
with ARDS is frequently attributed to hypoxia, the systemic 
inflammatory response, or sepsis, which are key pathological 
mechanisms in the progression of ARDS (36). Increased AST levels 
may also indicate the emergence of multiple organ dysfunction 
syndrome (MODS). Previous studies have shown that elevated AST 
levels are significantly associated with a decreased PaO2/FiO2 in ARDS 
patients, and when AST levels are significantly elevated, patient 
mortality risk increases substantially (37). Therefore, AST levels can 
be used as important markers to reflect the state of liver function and 
the existence of MODS. In patients with ARDS, which is often 
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accompanied by a systemic inflammatory response, hypoxia, and 
multiorgan failure, especially in patients with impaired liver function, 
elevated AST, ALT, and total bilirubin suggest the potential for liver 
failure. Likewise, indicators of impaired renal function, such as BUN, 
were also included as risk factors in this study. An elevated BUN level 
suggests that patients may have fluid retention and metabolic waste 
accumulation, serving as crucial indicators of renal function and 
protein metabolism in the body. Some studies have demonstrated that 
in ARDS patients, elevated BUN levels suggest renal impairment, 
which is especially common in critically ill patients, and high BUN 
levels significantly increase the risk of death in ARDS patients (38). 
Acute kidney injury (AKI) is a prevalent consequence in individuals 
with ARDS (39). These abnormal indicators imply that MODS may 
significantly contribute to mortality in severe ARDS patients, in which 
liver and kidney failure are usually the earliest organ failures 
manifested in MODS and play a crucial role in the prognosis of 
ARDS patients.

This study highlights the importance of three grading systems for 
the early identification of high-risk severe ARDS patients: APACHE, 
OASIS, and Charlson score. The APACHE scoring system is a widely 
utilized tool for predicting the mortality of patients in the ICU. It 
amalgamates several physiological indications (including blood 
pressure, oxygenation index, body temperature, etc.) as well as the 
patient’s chronic health status to provide a comprehensive assessment 
of disease severity. A higher APACHE score indicates that the patient’s 
condition is more critical and may be  accompanied by organ 
dysfunction or a systemic inflammatory response, with a greater risk 
of death (40, 41). The APACHE scoring system is extensively utilized 
in ICU mortality risk prediction and is equally effective in severe 
ARDS patients. Studies have shown that for ARDS patients, the 
APACHE score is an important tool for the early identification of 
high-risk patients, with higher scores indicating greater mortality risk 
(42). The dynamic monitoring of APACHE scores in ICU patients 
helps clinicians track the effectiveness of treatments. A decrease in the 
APACHE score as treatment progresses suggests improvement, 
whereas persistently high scores indicate poor prognosis. Compared 
with the APACHE score, the OASIS score is more straightforward and 
user-friendly to apply. The OASIS score integrates physiological 
indicators (blood pressure, respiratory rate, etc.) and underlying 
disease information. Consistent with the APACHE score, the higher 
the OASIS score is, the worse the prognosis. Research on ICU patients 
indicated a strong correlation between the OASIS score and death in 
ARDS patients, especially in those with an OASIS score greater than 
40, where the risk of mortality markedly escalates (43). In addition, 
the CCI is a tool that scores patients on the basis of their underlying 
comorbidities, such as heart disease, diabetes mellitus, liver disease, 
kidney disease, and malignancy. In this study, an elevated CCI score 
was strongly associated with an increased risk of death in patients 
(44). In patients with ADRS, an increase in the CCI score indicates a 
higher burden of underlying disease and a higher risk of death, 
especially in elderly patients, where the impact of the CCI score on 
patient prognosis is more pronounced.

FiO2 reflects the patient’s oxygen requirements, and higher FiO2 
values generally signify that the patient requires increased oxygen to 
sustain arterial oxygen equilibrium, which at the same time may 
suggest that the patient’s lung function is severely impaired, indicating 
the severity of ARDS. Numerous studies have shown that FiO2 is 
inversely linked with the PaO2/FiO2, suggesting that elevated FiO2 is 
correlated with poorer prognoses for ARDS patients (45). 

Furthermore, extended exposure to high FiO2 may also increase 
mortality risk in critically sick patients, probably because prolonged 
use of high oxygen concentrations (FiO2 > 60%) leads to oxygen 
toxicity, worsening lung tissue damage and perpetuating a detrimental 
cycle. Therefore, FiO2 serves as a critical indicator for assessing disease 
severity and determining oxygen support strategies in patients with 
ARDS. When treating critically ill ARDS patients in the ICU, FiO2 
should be dynamically adjusted according to the patient’s oxygenation 
status to maintain appropriate oxygenation levels. The significance of 
FiO2 is particularly apparent in mortality prediction models, and 
when used in combination with PaCO2, SBP, and other indicators, it 
can yield a more thorough assessment of a patient’s respiratory and 
circulatory function.

Moreover, other additional indicators deserve attention. Many 
studies have shown that the albumin concentration is a significant 
independent risk factor for the progression of ARDS (46). Researchers 
have reported that the lactate–albumin ratio (LAR) serves as a reliable 
predictor of risk in acute respiratory distress syndrome patients and is 
positively correlated with 28-day mortality in ARDS patients (47). Our 
study further confirmed the significance of the albumin concentration. 
The fundamental pathophysiological characteristic of ARDS is the 
heightened permeability of the alveolar-capillary barrier, and 
hypoalbuminemia is a typical manifestation of this pathological state, 
which may exacerbate the occurrence of non-cardiogenic pulmonary 
edema. In addition, lower albumin decreases colloid osmotic pressure, 
further exacerbating body fluid leakage. It has been shown that body 
fluid overload in ARDS patients is closely related to the length of 
hospital stay, duration of mechanical ventilation, mortality rates, and 
overall prognosis (48). Therefore, albumin concentration directly 
impacts a patient’s fluid balance, thus indirectly influencing their 
prognosis. These findings suggest that albumin replacement therapy 
may be a potential method for enhancing pulmonary symptoms in 
patients with ARDS.

Age has historically been regarded as an important risk factor for 
ARDS patients (49), which aligns with the results of this study’s 
predictive model. Studies have demonstrated that age is an important 
independent predictor of mortality in ARDS patients, particularly for 
those aged 65 and older, whose mortality rate is significantly higher than 
that of younger patients (50). With advancing age, patients experience 
a steady decline in organ reserve and compensating capacity. Geriatric 
individuals frequently present with multiple chronic conditions, 
including cardiovascular disease, diabetes, chronic obstructive 
pulmonary disease (COPD), and malignancies, and typically exhibit 
higher CCI scores. The combination of these factors results in a 
markedly elevated mortality risk for older patients with ARDS.

Surprisingly, arterial blood gas analysis indicators, including 
SpO2, PaO2/FiO2, and PaO2, were ranked last in the mortality 
prediction model of this study on the initial day of ICU admission. 
Although low SpO2, low PaO2, and low PaO2/FiO2 are fundamental 
clinical manifestations of ARDS, evidence suggests that the PaO2/FiO2 
classification in the Berlin definition has not been confirmed as a 
predictive factor for mortality in ARDS patients (11, 51). This result 
indicates that the mortality rate of ARDS patients is not always directly 
correlated with the severity of their condition; mortality is also further 
influenced by various other factors. Similarly, the prognosis of ARDS 
patients does not depend solely on lung-related indicators. However, 
since we only collected vital signs and arterial blood gas analysis data 
from the first day of ICU admission and did not capture the trend of 
changes in SpO2, PaO2/FiO2, and PaO2 during the treatment process, 
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this may be  a key reason for these findings. Therefore, clinicians 
should still consider a combination of SpO2, PaO2/FiO2, and PaO2 
holistically when making decisions.

In the ICU, the construction of accurate and interpretable 
prediction models is essential for treatment decisions and resource 
allocation for patients with ARDS. Especially when clinical decisions 
need to be made quickly, the early warning provided by the model can 
help medical staff to intervene and manage in a targeted manner with 
limited time and resources. The SHAP method demonstrates certain 
application values in clinical practice. First, SHAP values can reveal 
the characteristics that contribute most to the risk of death in ARDS 
patients, thus providing a basis for the development of individualized 
treatment strategies. Secondly, by dynamically observing the trend of 
SHAP values, clinicians are able to detect the risk and intervene 
promptly when the patient’s condition changes slightly. In addition, 
the SHAP method helps to assist in diagnostic and therapeutic 
decision-making: for high-risk patients, active interventions can 
be  taken based on key indicators, such as adjusting ventilation 
strategies or increasing monitoring frequency, while for low-risk 
patients, interventions can be appropriately reduced, thus optimizing 
resource allocation. Combined with the results of SHAP analysis and 
clinical monitoring indicators, medical staff can better balance the 
risks and benefits of therapeutic interventions and ultimately improve 
the prognosis of patients and the efficiency of resource use.

However, there are still some limitations to the interpretive nature 
of SHAP in complex and severe clinical situations. First, the SHAP 
value mainly reflects the contribution of local changes in the model to 
the predicted results, and there are often complex interactions between 
multiple variables in clinical data, and it may be difficult for a single 
SHAP analysis to fully capture these effects. In addition, SHAP 
provides model-based interpretations that may not encompass the full 
range of contextual information needed for clinical decision-making. 
If model-based explanations are overly relied upon, physicians may 
overlook individual patient differences, clinical experience, and other 
qualitative factors that can be  misleading in specific cases. 
Furthermore, problems of missing, noise, or bias in the data may also 
affect the accuracy of the results of SHAP analysis.

Therefore, in complex clinical scenarios, it is recommended that 
clinicians combine the SHAP analysis results with their own 
professional knowledge and clinical experience so as to make up for 
the model’s deficiencies in capturing variable interaction effects and 
avoid misjudgments caused by relying solely on the model 
interpretation. At the same time, presenting SHAP results through 
intuitive visualization tools allows decision-makers to better integrate 
model interpretation with actual clinical situations. During the data 
acquisition and pre-processing phases, it is also critical to regularly 
review the data quality to ensure that the data fed into the model is 
reliable. Combining the above strategies, the clinical team can more 
effectively leverage the advantages of the SHAP method and achieve 
more accurate and scientific clinical decision support.

To promote the practical application of the model in the ICU, its 
integration with clinical workflow needs to be considered. Although 
the model in this study has good performance and interpretability, it 
still faces challenges in clinical deployment, such as data availability, 
computational resource requirements, physician acceptance, and 
model interpretability. For example, this study used a publicly available 
database, whereas the electronic medical record systems of different 
hospitals may have differences in data structure and recording 
methods, requiring localized adaptation. In addition, clinicians’ trust 

in the model’s prediction results relies on whether the model has a 
clear explanation mechanism, such as the SHAP method used in this 
study. In the future, the model can be integrated into the electronic 
medical record system to realize automated risk assessment and real-
time warning based on patient information, assisting clinicians to 
make more scientific decisions in high-risk situations, thus enhancing 
its clinical utility.

Future research could expand this study in several ways. First, 
more clinical variables, such as medication records and dynamic vital 
signs, can be  introduced to improve the predictive ability and 
individualization of the model, and attempts can be  made to 
incorporate deep learning methods, such as the attention mechanism, 
to further enhance the performance and interpretability of the model. 
Second, given the evolving nature of ICU treatment practices, it is 
important to explore the model’s adaptability to new ventilation 
strategies and therapeutic protocols. In addition, this study 
constructed the model based on two U.S. public databases and has not 
been validated in external datasets, which is acceptable in initial 
studies but should still be stated as an important limitation. Future 
studies could be externally validated on multicenter, cross-regional 
data to assess the generalizability and clinical portability of the model.

5 Conclusion

We developed a model to predict the mortality risk of critically ill 
ARDS patients in the ICU and validated its performance. To enhance 
the interpretability of the model, we employed SHAP techniques, 
which help users identify the key factors that have the greatest impact 
on ARDS mortality risk. This machine learning model effectively 
identifies high-risk ARDS patients at an early stage, thereby supporting 
clinical decision-making, promoting early intervention, and 
improving patient prognosis.
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