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Background: Postoperative delirium (POD) manifests as severe mental 
disorientation, often experienced by elderly patients undergoing surgery, 
significantly hindering recovery and deteriorating the quality of life. Despite 
numerous clinical studies, the molecular mechanisms behind POD in elderly 
patients are still not well understood, requiring further investigation to identify 
potential biomarkers and therapeutic targets.

Methods: This study amalgamates Gene Set Variation Analysis (GSVA), Weighted 
Gene Co-expression Network Analysis (WGCNA), differential expression analysis, 
and immune infiltration assessments to identify molecular pathways and hub 
genes linked to the initiation of POD in the elderly. Gene expression data were 
sourced from the GSE163943 dataset in the Gene Expression Omnibus (GEO) 
database. A total of 18,894 protein-coding genes were extracted for analysis.

Results: We constructed a gene co-expression network using WGCNA and 
performed GSVA to investigate the link between POD and different types of cell 
death. The results indicated that POD is positively associated with pyroptosis and 
parthanatos, while negatively correlated with oxidative stress and disulfidptosis. 
Differential expression analysis revealed 145 differentially expressed genes (DEGs), 
including 83 downregulated and 62 upregulated genes. Analysis of functional 
enrichment revealed that DEGs were enriched in activities like neuron projection 
development, axonogenesis, and synapse organization, with KEGG pathway 
analysis identifying neuroactive ligand-receptor interaction and neurodegeneration 
pathways. Gene Set Enrichment Analysis (GSEA) further revealed the upregulation 
of the apoptosis pathway and the downregulation of neuroactive ligand-receptor 
interaction. Protein–protein interaction (PPI) network analysis identified 10 hub 
genes, including COL18A1, CD63, and LTF. Immune infiltration analysis indicated 
that the occurrence of POD is strongly associated with immune cell activation, 
particularly in T cells and macrophages.

Conclusion: Overall, this research primarily examines the intricate interplay 
between cell death processes and alterations in the immune microenvironment 
throughout the development of geriatric POD, pinpointing essential genes that 
provide vital theoretical support for further studies on geriatric POD. However, 
this discovery is only an initial one derived from analyzing the datasets. 
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Upcoming research ought to evaluate and scrutinize additional datasets and 
conduct essential experiments to guarantee the precision and widespread 
relevance of the analytical findings.
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1 Introduction

Postoperative delirium (POD) is a common perioperative 
neurological complication in the elderly, characterized by acute 
neurocognitive impairment that occurs over a short period (1). As 
society ages, the adverse effects of POD on the quality of postoperative 
recovery, healthcare costs, and mortality rates are increasingly being 
recognized. Even with the growing focus on preventing and treating 
POD, along with extensive experimental and clinical studies (2, 3), the 
fundamental molecular mechanisms of its pathogenesis remain 
mostly a mystery, highlighting the need for further research to 
improve treatment outcomes.

With the emergence of bioinformatics technologies, such as high-
throughput sequencing, transcriptome analysis, and weighted gene 
co-expression network analysis (WGCNA) (4), the field of 
pathophysiological research on POD has significantly expanded, 
providing more precise directions for research. Current theories suggest 
that different types of programmed cell death could intensify 
neuroinflammation and oxidative stress, thereby accelerating the onset of 
POD (5, 6). Additionally, immune dysfunction is also thought to 
be closely associated with the occurrence of POD. These research findings 
offer new perspectives—integrating transcriptome data with immune 
characteristic analysis may help us gain a deeper understanding of the 
interactions and effects between neuroinflammation and immune 
responses in the development of POD (7, 8).

Our aim is to elucidate the precise link between POD and the 
diverse patterns of cell death using advanced analytical techniques, 
such as GSVA and WGCNA. The study also employed several 
methods, including differential expression analysis, functional 
enrichment analysis (9), and protein–protein interaction (PPI) 
network analysis (10, 11), to identify the pathogenic molecular 
pathways and key genes associated with the development of 
POD. Finally, we performed immune infiltration analysis to explore 
the roles of various immune cells in the progression of POD. By 
employing various bioinformatics methods, our comprehensive 
molecular analysis of POD in the elderly led to the discovery of its key 
pathogenic genes and novel therapeutic targets, establishing a solid 
foundation for future studies and the development of more effective 
diagnostic and treatment approaches.

2 Materials and methods

2.1 Data acquisition and preprocessing

Gene expression data were obtained from the GSE163943 dataset 
in the Gene Expression Omnibus (GEO) database. This dataset 
includes peripheral blood samples from four elderly patients (aged > 
75) who developed POD after orthopedic surgery, as well as four age- 
and sex-matched non-POD orthopedic surgery patients. The original 

study employed a rigorous case–control matching design to ensure 
that there were no statistically significant differences in baseline 
characteristics between the two groups, including age, sex, body mass 
index (BMI), surgery duration, coronary heart disease (CHD), 
cerebrovascular disease (CVD), hypertension, and diabetes (all 
p > 0.05). All sample collections followed standardized preoperative 
fasting, anesthesia protocols, and postoperative care standards to 
minimize confounding factors. Ultimately, a total of 18,894 protein-
coding genes were extracted for further analysis.

The key regulatory genes for 14 types of programmed cell death 
(PCD) patterns come from various sources, including the KEGG 
database (12), GeneCards database (13), Molecular Characterization 
database, Reactome database (14), and review articles (15, 16). The 
final gene list for the 14 different PCD patterns is provided in 
Supplementary material 1. This includes genes related to various types 
of cell death pathways: alkaliptosis (17) (7 genes), apoptosis (18) (136 
genes), autophagy (19) (151 genes), cuproptosis (20) (14 genes), 
disulfidptosis (21) (4 genes), entotic cell death (22, 23) (15 genes), 
ferroptosis (24) (64 genes), lysosome-dependent cell death (255 
genes), necroptosis (25) (27 genes), netotic cell death (26) (17 genes), 
oxeiptosis (27, 28) (26 genes), parthanatos (29–31) (9 genes), 
pyroptosis (32, 33) (27 genes), and lactylation (34) (333 genes). A total 
of 1,216 PCD-related genes were collected.

2.2 GSVA and cell death pathway analysis

Investigating the link between POD and different types of cell death, 
GSVA was performed using predefined gene sets corresponding to 
various cell death mechanisms. A heatmap was generated to visualize the 
correlation between POD occurrence and the types of cell death.

2.3 WGCNA

A gene co-expression network was constructed using the 
WGCNA package in R. Sample hierarchical clustering was performed 
to assess clustering quality and detect potential outliers. The soft-
threshold power was determined using the “sft$powerEstimate” 
function to ensure a scale-free network topology. To distinguish 
unique gene modules, a baseline of 30 units was established. An 
analysis of module eigengene (ME) correlations was performed to 
explore the link between gene modules and the incidence of POD.

2.4 Differential expression analysis

DEGs between POD and normal samples were identified using 
the “limma” package in R (35). The thresholds were set to |log2(fold-
change)| > 1 and p < 0.05.
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2.5 Functional enrichment analysis

GO and KEGG pathway enrichment analyses were performed 
using the “clusterProfiler” package in R (36). GO enrichment 
concentrated on biological processes, molecular functions, and 
cellular components, whereas KEGG analysis identified key signaling 
pathways linked to POD. Additionally, GSEA was conducted to 
determine upregulated and downregulated pathways with 
statistical significance.

2.6 PPI network construction

Genes overlapping between DEGs and key WGCNA modules 
were imported into the STRING database (37) to construct a PPI 
network. Cytoscape software was used for network visualization and 
analysis (38). The MCC algorithm in the CytoHubba plugin was 
applied to identify the top 10 hub genes.

2.7 Immune infiltration analysis

The CIBERSORT (39) and XCELL (40) algorithms were used to 
evaluate immune cell infiltration levels in both POD and normal 
samples. The study examined the relationships between the top 10 hub 
genes and immune cell populations. Furthermore, a correlation 
analysis between immune-related genes and the hub genes was 
performed to explore their potential roles in immune regulation.

2.8 Statistical analysis

All statistical analyses were performed using R software (version 
4.2.2). Pearson correlation analysis was used to assess associations 
between gene modules and POD. A p-value < 0.05 was considered 
statistically significant in all analyses.

3 Results

3.1 GSVA analysis

For evaluating the association between different types of cell death 
and POD in elderly patients, we first performed GSVA scoring and 
generated a heatmap that shows the relationship between the 
occurrence of POD and various types of cell death (Figure 1A). A 
correlation analysis between POD and different types of cell death in 
the dataset revealed that POD occurrence was positively correlated 
with Pyroptosis and Parthanatos, and negatively correlated with 
Oxidative Stress and Disulfidptosis, with statistical significance 
(Figure 1B).

3.2 WGCNA network construction and 
module analysis

Analyzing the raw data statistically reveals no notable disparities 
in clinical factors like age, BMI, duration of surgery, and comorbidities 

between the POD and non-POD groups. Based on the balanced 
baseline characteristics of both groups, we  constructed a gene 
co-expression network in the GSE163943 dataset using the WGCNA 
algorithm. Sample hierarchical clustering analysis revealed strong 
clustering among the eight samples, with no obvious outliers 
(Figure 1C). The soft threshold power was established to be 9 using 
the “sft$powerEstimate” function (Figure 1D).

Gene hierarchical clustering dendrograms were constructed based 
on gene correlations, with a minimum module size of 30, identifying 
50 distinct gene modules. A dendrogram was generated based on the 
dissimilarity measurement (1-TOM) for all genes (Figure 1E). The 
MEwhite module displayed a strong positive correlation with POD 
(r  = 0.87, p  = 0.005), as well as a strong positive association with 
Pyroptosis and Parthanatos. The MEsienna3 module showed a strong 
negative correlation with POD (r = −0.79, p = 0.02) and a strong 
negative correlation with Pyroptosis. The MElightcyan1 module 
exhibited a strong negative correlation with POD (r = −0.80, p = 0.02) 
and with Necroptosis. The MEorangered4 module was strongly 
negatively correlated with POD (r  = −0.83, p  = 0.01) and with 
Pyroptosis and Neotic cell death. The MEbrown module showed a 
strong negative correlation with POD (r = −0.80, p = 0.02) and with 
Pyroptosis. The MEtan module showed a strong negative correlation 
with POD (r = −0.76, p = 0.03) and with Pyroptosis and Neotic cell 
death. The MEdarkorange2 module displayed a strong negative 
correlation with POD (r  = −0.72, p  = 0.05), a strong negative 
correlation with Neotic cell death, and a strong positive correlation 
with Lactylation. Finally, the MEplum2 module showed a strong 
positive correlation with POD (r = 0.76, p = 0.03).

By integrating WGCNA modules with GSVA scores, a heatmap 
was created to visualize the correlations between different modules 
and types of cell death (Figure  1F). Scatter plots (Figures  1G–N) 
demonstrate strong correlations between Gene Significance (GS) and 
Module Membership (MM) within the identified modules, with all 
p-values being statistically significant (p < 0.05).

3.3 Differential expression analysis and 
module intersections

The differential expression study of GSE163943 was performed 
with thresholds of |log2(fold-change)| > 1 and p < 0.05, identifying 
145 DEGs, comprising 83 downregulated and 62 upregulated genes 
(Figure 2A). Modules with |r| ≥ 0.8 overlapped with DEGs, identifying 
common genes across MEwhite (8 genes), MElightcyan1 (3 genes), 
MEorangered4 (9 genes), and MEbrown (64 genes) (Figure  2B). 
Similarly, modules with |r| ≥ 0.7 identified common genes across 
MEsienna3 (2 genes), MEtan (17 genes), MEdarkorange2 (4 genes), 
and MEplum2 (2 genes) (Figure 2C).

3.4 Functional enrichment analysis

Enrichment analysis of the 145 DEGs showed that the GO terms 
were enriched in processes like regulation of neuron projection 
development, axonogenesis, synapse organization, neuron to neuron 
synapse, and glutamatergic synapse (Figure  2D). Analysis of the 
KEGG pathway revealed enrichment in pathways such as neuroactive 
ligand-receptor interaction, pathways of neurodegeneration (multiple 
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FIGURE 1

Association between POD and Cell Death pathways. (A) Heatmap of different types of cell death scores. (B) A heatmap depicts the relationship 
between various types of cell death and POD, with red indicating a positive correlation, blue indicating a negative one, and the completeness of the pie 

(Continued)
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diseases), calcium signaling pathway, PI3K-Akt signaling pathway, 
MAPK signaling pathway, circadian entrainment, and regulation of 
the actin cytoskeleton (Figure 2E). Furthermore, the KEGG analysis 
revealed enrichment in the GABAergic synapse pathway 
(Supplementary material 2).

GSEA indicated the upregulation of the apoptosis pathway and 
the downregulation of the neuroactive ligand-receptor interaction 
pathway, each showing statistical significance (Figures  2F,J). 
Additionally, there was a noticeable increase in oxidative 
phosphorylation, necroptosis, pathways of neurodegeneration 
(multiple diseases), Huntington disease, and Alzheimer disease 
pathways, while the GABAergic synapse pathway showed 
downregulation (Figures 2G–I,K–M).

3.5 PPI network analysis

The genes from the intersecting modules with the DEGs were 
combined, culminating in a total of 109 genes. Subsequently, these 
genes were integrated into the STRING website to construct a PPI 
network (Figure  3A). Results from the PPI 
(Supplementary material 3) were transferred to Cytoscape software, 
where the MCC algorithm was used to extract the top 10 genes. 
These genes were COL18A1, CD63, LTF, MCAM, CRP, KITLG, 
RPL13A, STAB1, RPL17-C18orf32, and ABCF3 (Figure  3B). A 
heatmap of the top 10 genes in the expression profile was generated, 
showing that RPL17-C18orf32, LTF, and MCAM were upregulated 
in the POD samples, while COL18A1, CD63, CRP, KITLG, RPL13A, 
STAB1, and ABCF3 were downregulated in the POD samples 
(Figure 3C).

3.6 Correlation between key genes and 
immune microenvironment

Investigating the relationship between the top 10 genes and the 
immune microenvironment involved conducting further analysis of 
immune infiltration. CIBERSORT results revealed that CD8 T cells, 
Monocytes, memory CD4 T cells resting, memory CD4 T cells 
activated, and M0 Macrophages had higher proportions in the samples 
(Figures  3D,E). In the correlation between the top  10 genes and 
CIBERSORT results, Plasma cells, M1 Macrophages, Dendritic cells 
activated, and Mast cells resting were closely related. RPL17-C18orf32, 
LTF, and MCAM showed a negative correlation with Plasma cells and 
M1 Macrophages, but a positive correlation with Dendritic cells 
activated and Mast cells resting. COL18A1, CD63, CRP, KITLG, 
RPL13A, STAB1, and ABCF3 demonstrated a positive correlation 
with Plasma cells and M1 Macrophages, but a negative correlation 
with Dendritic cells activated and Mast cells resting. Additionally, LTF, 
KITLG, and RPL17 − C18orf32 exhibited a strong correlation with 
various immune cells (Figure 3F).

The immune infiltration analysis of the samples using XCELL 
showed a significant correlation between the top 10 genes and the 
XCELL results. The following cell types were closely related: 
Astrocytes, Basophils, CD4 + Tcm, CD4 + Tem, CD8 + Tcm, 
CD8 + Tem, Chondrocytes, Dendritic cells (DC), Endothelial cells, 
immature Dendritic cells (iDC), lymphatic Endothelial cells (ly 
Endothelial cells), Macrophages M2, microvascular Endothelial cells 
(mv Endothelial cells), Myocytes, Neutrophils, plasmacytoid 
Dendritic cells (pDC), Platelets, Preadipocytes, pro B-cells, and 
Tregs. RPL17-C18orf32, LTF, and MCAM showed a positive 
correlation with Astrocytes, Basophils, CD8 + Tem, Chondrocytes, 
DC, iDC, mv Endothelial cells, Myocytes, Neutrophils, pDC, 
Preadipocytes, and a negative correlation with CD8 + Tcm, 
Endothelial cells, ly Endothelial cells, Platelets, and Tregs. COL18A1, 
CD63, CRP, KITLG, RPL13A, STAB1, and ABCF3 exhibited a 
negative correlation with Astrocytes, Basophils, CD8 + Tem, 
Chondrocytes, DC, iDC, mv Endothelial cells, Myocytes, 
Neutrophils, pDC, Preadipocytes, and a positive correlation with 
CD8 + Tcm, Endothelial cells, ly Endothelial cells, Platelets, and 
Tregs (Figure 3G).

For a deeper exploration of the relationship between the top 10 
genes and immune targets, a correlation study was conducted between 
the 122 immune-related targets (Supplementary material 4) and the 
top 10 genes. A strong link was observed between several cytokines 
and chemokines, immune receptors and ligands, antigen presentation, 
major histocompatibility complex (MHC)-related genes, ligands, and 
activation molecules with the top  10 genes. Specifically, RPL17-
C18orf32, LTF, and MCAM demonstrated a positive correlation with 
multiple cytokines and chemokines, while exhibiting a negative 
correlation with several MHC-related genes. Conversely, COL18A1, 
CD63, CRP, KITLG, RPL13A, STAB1, and ABCF3 exhibited an 
inverse relationship with multiple cytokines and chemokines, while 
displaying a positive correlation with several MHC-related genes 
(Figure 3H).

4 Discussion

POD significantly increases the risk of postoperative complications 
and mortality in elderly patients, exerting considerable strain on 
healthcare resources for both families and society (1, 41). However, 
there is still a lack of effective pharmacological treatments for 
POD. Consequently, an extensive study and assessment were carried 
out to explore the link between 14 distinct forms of programmed cell 
death (PCD) (17–34) and the emergence of POD in elderly patients, 
with the aim of discovering better treatments. Through the application 
of protein–protein interaction (PPI) network technology, we effectively 
pinpointed crucial genes implicated in POD development and their 
effects on the immune microenvironment, thereby establishing a 
robust theoretical foundation for seeking more effective POD 
treatment approaches.

chart representing the strength of the correlation. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001. (C) Sample dispersion. 
(D) WGCNA soft threshold. (E) Gene dendrogram and module colors. (F) A heatmap illustrating the relationship between different gene modules from 
WGCNA and different types of cell death, where red represents positive correlation and blue represents negative correlation. (G–N) Scatter plots 
demonstrated strong correlations between the GS and MM within the identified modules.

FIGURE 1 (Continued)
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FIGURE 2

Differential expression analysis and functional enrichment analysis. (A) Volcano plot of differential analysis, where red represents upregulation and blue 
represents downregulation. (B) Modules with |r| ≥ 0.8 overlapped with DEGs. (C) Modules with |r| ≥ 0.7 overlapped with DEGs. (D) GO enrichment 
analysis. (E) KEGG enrichment analysis. (F–M) GSEA enrichment analysis.
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FIGURE 3

PPI network analysis and correlation between key genes and immune microenvironment. (A) PPI network diagram exported from the STRING website. 
(B) The top 10 genes were extracted using the MCC algorithm in Cytoscape software. (C) The heatmap displays the expression levels of the top 10 

(Continued)
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Each neuron requires a rich supply of blood oxygen, a stable 
immune system, and a balanced endocrine environment to ensure the 
normal transmission of neuronal signals and neurotransmitters, thus 
preserving brain function (42). However, in the perioperative phase, 
stressors such as surgical trauma, ischemia, or infection can modify 
the activity of crucial genes, potentially affecting the function of 
plasma cells, M1 macrophages, activated dendritic cells, and quiescent 
mast cells. This exacerbates the release of pro-inflammatory factors, 
such as IL-1β, IL-6, and TNF-α, which in turn regulate 
neuroinflammation, the balance of the blood–brain barrier (BBB), 
and imbalances in cellular metabolism by impacting pathways such as 
calcium, PI3K-Akt, and MAPK signaling, ultimately triggering POD 
in the elderly population (43, 44).

After screening, we identified 10 core genes closely associated 
with POD pathological changes, including RPL17-C18orf32, LTF, 
MCAM, COL18A1, CD63, CRP, KITLG, RPL13A, STAB1, and 
ABCF3. Within the POD specimens, there was a diminished 
expression of Col18a1, an essential element of the basement 
membrane. This decrease may be triggered by various mechanisms: 
firstly, diminished COL18A1 levels might interfere with the anchoring 
of proteins at endothelial cell junctions (like ZO-1 (45)), weakening 
the blood–brain barrier, thereby permitting external pro-inflammatory 
elements (such as IL-6, TNF-α) to infiltrate the central nervous 
system, intensifying inflammation in neural cells (46, 47); secondly, 
Col18A1 is responsible for coding the endostatin precursor protein, 
and its C-terminal non-collagenous domain (NC1) can emit 
endostatin with anti-angiogenic effects post-protease hydrolysis (48, 
49). The downregulation of Col18A1 leads to a reduction in the levels 
of endothelial cell inhibitors, which in turn lessens the inhibition of 
MMP-9 activity (50) and promotes pathological restructuring of 
cerebral blood vessels (46, 51), thus intensifying ischemic harm in 
specific functional regions and brain malfunctions due to BBB 
permeability. In addition, Col18A1 reduces the binding region of its 
laminin, weakening the interaction between neurons and glial cells, 
which may result in neuronal dysfunction and a reduced ability to 
repair (52). Furthermore, some studies suggest that Col18A1 may 
affect cerebral blood supply by adjusting the release of neuroactive 
ligands or the sensitivity of receptors (53). These various changes act 
together, disrupting the protective function of the BBB, exacerbating 
neuroinflammation, and leading to the occurrence of POD.

The reduced expression of CD63 (lysosome-associated membrane 
protein) could indicate irregular immune interactions facilitated by 
extracellular vesicles (EVs). CD63-positive EVs typically carry anti-
inflammatory molecules such as miR-124 (54, 55), capable of 
preventing the activation of pro-inflammatory M1-type microglia and 
A1-type astrocytes, thus safeguarding neurons by curbing 
neuroinflammation. Dysfunction of the GABAergic system is 
considered a key factor in the onset of delirium (56). A reduction in 
CD63 expression impacts lysosomal activity, potentially causing 

irregular regeneration of GABAergic synaptic vesicles and 
exacerbating the dysfunction of GABAergic synapses. Imbalance 
between excitatory neurotransmitters (such as glutamate) and 
inhibitory neurotransmitters (such as γ-aminobutyric acid, GABA) 
may have a negative impact on the consciousness level of elderly 
patients post-surgery. Given that benzodiazepines are widely and 
frequently used during the perioperative period for sedation and 
anesthetic induction, these medications enhance GABA_A receptors 
function and increase the efficacy of inhibitory neurotransmission 
(57). The interaction of these two elements can disturb synaptic 
balance, resulting in alterations in neural adaptability, which may 
potentially exacerbate cognitive impairments (58).

Neurons exhibit a high sensitivity to oxidative damage. The 
removal of RPL13A hinders the production of antioxidant enzymes 
(such as SOD), impacts the Nrf2/ARE pathway, worsens 
mitochondrial dysfunction, and elevates ROS levels (59, 60). An 
overabundance of peroxides triggers pathways like NF-κB, leading 
to the production of numerous inflammatory factors. The 
culmination of these reactions creates a harmful loop of 
inflammation and oxidative stress, which, in turn, impairs the 
synaptic plasticity of hippocampal neurons, negatively impacting 
cognitive abilities. The simultaneous downregulation of RPL13A 
and ABCF3 suggests a synergistic disruption of protein synthesis 
and metabolic homeostasis. A decline in RPL13A could result in 
issues with synaptic protein synthesis (61), and a decrease in 
ABCF3 expression might hinder the repair of damaged nerve cells, 
thus intensifying neurodegenerative changes.

It’s important to highlight that our research revealed an inverse 
relationship between oxidative stress and POD, with an increase in 
LTF observed in POD samples. This is in opposition to the findings 
of numerous studies, which suggest that oxidative stress contributes 
to delirium (62, 63). The following processes may be responsible for 
this variance: (1) The biphasic effect of oxidative stress: Moderate 
reactive oxygen species (ROS) can enhance cellular antioxidant 
defenses by activating the Nrf2/ARE pathway, whereas excessive 
ROS may lead to neuronal damage (64, 65). (2) Time-dependent 
effects: The data we gathered for our study relied on transcriptomic 
analysis of peripheral blood samples taken within 24 h after surgery, 
potentially revealing the physiological signaling roles of ROS in the 
initial stress stage (like aiding in tissue healing), as opposed to the 
long-term pathological consequences of accumulation. (3) In 
elderly patients, a decrease in fundamental antioxidant abilities 
(like lower glutathione levels) can lead to moderate oxidative stress, 
potentially enhancing neuroprotection through the Hormesis effect 
(an adaptive response triggered by small amounts of harmful 
substances) (66). (4) Our research focuses on patients aged 75 years 
or older who are undergoing orthopedic surgery. The distinct 
metabolic alterations they exhibit with age, such as defects in 
mitochondrial autophagy, could lead to varying levels of oxidative 

genes, with red indicating high expression and blue low expression. (D) CIBERSORT immune infiltration percentage bar plot. (E) CIBERSORT immune 
infiltration box plot. (F) The heatmap of the correlation between the top 10 genes and CIBERSORT immune infiltration, where red represents positive 
correlation and blue represents negative correlation. (G) A heatmap depicts the relationship between the leading 10 genes and xCell immune 
infiltration, with yellow-green indicating a positive link and cyan a negative one. (H) The heatmap of the correlation between the top 10 genes and 122 
immune targets, where red represents positive correlation and blue represents negative correlation.

FIGURE 3 (Continued)
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stress responses and roles compared to those in other groups, 
resulting in diverse outcomes (67).

Finally, we  revealed the complex interaction between innate 
immunity and adaptive immunity in POD through immune 
microenvironment analysis. The positive correlation between 
COL18A1, CD63, plasma cells, and M1 macrophages may indicate an 
imbalance between anti-inflammatory reactions (like IL-10 release) 
(68, 69) and pro-inflammatory damage (like Tau phosphorylation) 
(70), potentially impacting cognitive abilities after surgery in older 
patients. Future research should incorporate multi-omics techniques 
(e.g., cerebrospinal fluid EVs miRNA sequencing) and gene knockout 
models under specific conditions (e.g., Cx3cr1-Cre mice) to explore 
the unique functions of these genes in BBB integrity, neuroimmune 
interference, and metabolic reprogramming, providing scientific 
evidence for targeted interventions.

Despite deriving numerous significant insights from our analysis, 
we must acknowledge certain limitations: First, the sample size of the 
dataset we used is relatively small (n = 8). Although the original study 
effectively controlled potential confounding factors such as age, gender, 
type of surgery, and comorbidities through a strict case–control 
matching design, the small sample size may lead to insufficient 
statistical power (such as the risk of false negatives), overfitting of gene 
expression variations, exaggerated false discovery rates, limited 
robustness in module detection, and reduced reliability of immune 
cell-related analysis results. Second, the analysis was limited to just one 
dataset (GSE163943), lacking experimental confirmation, potentially 
diminishing the precision and applicability of the findings and 
neglecting the intricate interconnections and characteristics of the data. 
Considering that there are relatively few datasets available for research 
related to POD in elderly patients, future studies might benefit from a 
second external group (like GSE174367) for comparative studies and 
additional clinical investigations. By enlarging the sample size and 
comparing it with cohorts from multiple centers, the precision and 
applicability of our current research findings can be further confirmed. 
Furthermore, the primary dataset collected for this research consists of 
peripheral blood samples. Although these blood samples are easier to 
obtain and the research findings can provide some guidance for POD 
treatment, the peripheral blood transcriptome may not fully capture 
the specific changes in the central nervous system. Therefore, future 
studies may need to incorporate cerebrospinal fluid proteomics or 
single-cell sequencing techniques to gain a deeper understanding of 
the mechanisms of neuroimmune interactions.

Even with some constraints, our research offers new data and 
guidance to support the advancement of treatment processes and the 
evolution of POD. With the aging population increasing, the 
effectiveness of POD in treating older patients continues to 
be inadequate. Therefore, it is critically important to persistently and 
thoroughly investigate this area to enhance postoperative recovery and 
improve the quality of life for older patients.

5 Conclusion

Overall, our research focused on 10 crucial genes closely linked to 
POD, exploring their roles in key signaling pathways, types of cell 
death, and changes in the immune microenvironment, with the aim 
of deepening our understanding of POD development in older 
individuals. Our study confirmed that the pathogenic origins of POD 

are complex in the elderly population, showing significant variation 
among patients. Therefore, future research should carefully assess 
these factors, integrating current findings with the unique 
circumstances of patients to develop more effective treatment 
strategies. This clarifies future research trends for POD in elderly 
patients and highlights the factors that need to be  considered in 
subsequent experiments, thereby improving the applicability of the 
research findings and advancing clinical treatments.
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