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Artificial intelligence in
ophthalmology: a bibliometric
analysis of the 5-year trends in
literature

Bosen Peng, Jiancheng Mu, Feng Xu, Wanyue Guo,

Chuhuan Sun and Wei Fan*

Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China

Purpose: This study aims to generate and elucidate the latest perspectives on

the application of artificial intelligence (AI) in ophthalmology using bibliometric

methods. By analyzing literature from the past 5 years (2020–2024), we seek to

outline the development trends of this technology, provide guidance for its future

directions, and assist clinicians in adapting to these innovations.

Methods: We conducted a comprehensive search of all literature related to

AI and ophthalmology in the Web of Science Core Collection (WoSCC) using

bibliometric methods. The collected data were analyzed and visualized using

three widely recognized bibliometric software tools: CiteSpace, VOSviewer, and

the R package “Bibliometrix.”

Results: A total of 21,725 documents were included from 134 countries and

7,126 institutions, consisting of 19,978 articles (91.96%) and 1,714 reviews

(8.04%), with China and the United States leading the contributions. The number

of publications in AI and ophthalmology has increased annually, with the

University of California System, the National University of Singapore, and the

University of London being the primary research institutions. Ophthalmology

and Proc CVPR IEEE are the most co-cited journals and conferences in this

field. These papers were authored by 87,695 individuals, with Wang Y, Liu

Y, and Zhang Y the most prolific authors. Ting DSW was the most co-cited

author. Major research topics include using various models to scan retinal

images for diagnosing conditions such as age-related macular degeneration,

diabetic retinopathy, and retinal nerve fiber layer thinning caused by glaucoma.

The intersection of AI with other subfields of ophthalmology, such as in the

diagnosis of ametropia, strabismus, eyelid disease, and orbital tumors, as well

as in postoperative follow-up, is also rapidly developing. Key research hot

spots are identified by keywords such as “deep learning,” “machine learning,”

“convolutional neural network,” ”diabetic retinopathy,“ and ”ophthalmology.“

Conclusion: Our bibliometric analysis outlines the dynamic evolution and

structural relationships within the AI and ophthalmology field. In contrast to

previous studies, our research transcends individual domains to o�er a more

comprehensive insight. Notably, our analysis encompasses literature published

beyond the year 2022, a pivotal year marking both the post-pandemic era and

the rapid advancement of AI technologies. This temporal scope potentially fills a

gap that prior bibliometric studies have not addressed. This information identifies

recent research frontiers and hot spot areas, providing valuable reference points

for scholars engaging in future AI and ophthalmology studies.
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1 Introduction

For Original Research Articles, Clinical Trial Articles, and

Technology Reports, the introduction should be succinct, with

no subheadings. For Case Reports, the Introduction should

include symptoms at presentation, physical examinations, and

laboratory results.

Artificial intelligence (AI) is now broadly used in many fields,

especially in medical science. For example, machine learning such

as basic regression and classification algorithms, decision trees and

random forests, and support vector machines is widely used for

predicting hypertension-supporting clinical decisions (1, 2). Deep

learning, a subfield of machine learning inspired by the neural

network structure of the human brain, is now used in the fields of

processing images in medicine (3). This direction of AI, computer

vision, is often utilized in the field of ophthalmology.

Ophthalmology has evolved from initial vision correction

techniques to modern minimally invasive surgeries, with

continuous advancements in technology and theory (4, 5).

Historical milestones include the development of the

ophthalmoscope and advancements in cataract surgery, which

have greatly improved patient outcomes (6, 7). However, the

field of ophthalmology still faces numerous challenges, such

as early disease diagnosis, treatment outcome assessment, and

patient-specific variations. These challenges drive researchers to

explore new technological solutions to enhance the quality and

efficiency of ophthalmic care. AI presents a promising avenue to

address these challenges (8, 9).

The potential of AI in ophthalmology is vast, with applications

ranging from automated image analysis to predictive modeling

of disease progression. The intersection of ophthalmology with

computer vision has emerged as a focal point of innovation,

particularly in the realm of object detection (OD). Within this

space, convolutional neural networks (CNNs, a class of deep neural

networks designed to learn spatial hierarchies of features from

input data using convolutional layers, pooling operations, and

fully connected layers) stand out as prominent tools owing to

their superiority in semantic segmentation and image analysis,

making them indispensable in ophthalmic imaging. For instance,

a notable study utilized this algorithm to sample every pixel on

the corneal limbus, calculating the distance from the pupil center

to the inner and outer canthus, thereby facilitating the screening

of strabismus (10). Another research endeavor applied the same

algorithm to scan 245,760 images to assess the thickness and density

of the meibomian glands, a critical factor in diagnosing meibomian

gland dysfunction (11). Additionally, a variety of models, such as

ResNet, AlexNet, VGGNet, and the Inception series, have been

effectively employed in diagnosing retinal diseases (12–15). Beyond

computer vision, the integration of AI in ophthalmology has also

extended to natural language processing. Recurrent neural network

models such as Graph LSTM have shown remarkable prowess in

utilizing diverse datasets, including electronic health records (EHR)

and optical coherence tomography (OCT, a non-invasive imaging

modality that uses low-coherence interferometry to generate high-

resolution, cross-sectional images of biological tissues in real time)

images, for the diagnosis of ocular diseases (16). Moreover, there

have been studies proposing the use of multimodal integration

models for the treatment of pulmonary infections, indicating

potential applicability within ophthalmology as well (17).

The convergence of AI with the field of ophthalmology has

garnered increasing attention in recent years. This fusion presents

numerous opportunities for advancements in clinical practices,

diagnostic accuracy, and patient outcomes. Given the rapid

development and integration of AI technologies, a bibliometric

analysis in this area is not only timely but also essential. While

a number of bibliometric studies concentrating on AI and

ophthalmology were published in 2022, they primarily focused

on literature up to 2021 or were confined to specific subfields

within ophthalmology (18, 19). For example, studies conducted

by Monson et al. and Tang et al. only focus on literature from

2018 to 2021 (20, 21). In addition, the research proposed by

Zhang et al. and Zhou et al. only focuses on thyroid-associated

ophthalmopathy or strabismus, which lacks a comprehensive

understanding of the combination of AI and ophthalmology

(22, 23). In comparison, our study not only pays attention to

literature beyond 2021 but also discusses the integration of AI and

ophthalmology from a comprehensible perspective. This analysis

pinpoints 2022 as a pivotal year, not just due to the end of

the COVID-19 pandemic, but also because it marked significant

advances such as the emergence and widespread adoption of

ChatGPT and large language models. These developments have

introduced unique progress and shifts that earlier studies might not

have captured comprehensively, limiting their relevance for future

research trajectories. In this study, we employ three tools to conduct

a comprehensive bibliometric study and visualization analysis of

the literature from 2020 to 2024. Our focus specifically targets

articles indexed within WoSCC concerning the application of AI

in ophthalmology. We believe that this methodological framework

allows us to encapsulate a broader range of the latest developments

and applications of AI models in the field of ophthalmology,

providing an in-depth perspective on the promising future roles AI

is poised to play in ophthalmic practices.

2 Materials and methods

2.1 Search strategies and data collection

Since the analytical tools we used only support analyzing data

from one database format at a time, and it is nearly impossible to

merge and reanalyze results from different databases, we could only

select data from a single database for analysis. Among PubMed,

Scopus, Embase, and Web of Science, we chose Web of Science,

which is a relatively authoritative database that includes high-

quality research from both the medical and computer science fields.

Furthermore, to ensure the quality of the included studies, we

limited our analysis to literature from the Web of Science Core

Collection (WoSCC, https://webofscience.clarivate.cn/wos/woscc/

advanced-search) to reduce bias caused by potential variations in

research quality. We identified all relevant literature on AI and

ophthalmology from that database. Our search was conducted on

May 30, 2025 (This is to avoid data bias from subsequent literature

updates). Publications containing terms related to ”artificial

intelligence“ and ”ophthalmology“ in their titles, abstracts, or
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TABLE 1 Specific search strategy to obtain data fromWeb of Science

Core Collection.

Order Search

#1 TS=(artificial intelligence∗) OR TS=(deep learning) OR

TS=(machine learning) OR TS=(CNN∗) OR TS=(RNN∗)

OR TS=(AI) OR TS=(network) OR TS=(image cognition)

#2 (TS=(ophthalmology) OR TS=(eye∗)OR TS=(orbit) OR

TS=(conjunctiva) OR TS=(sclera) OR TS=(cornea) OR

TS=(lens) OR TS=(vitreous) OR TS=(uvea) OR

TS=(choroid) OR TS=(retina∗) OR TS=(macula) OR

TS=(optic disk)) OR TS=(eye disease) OR TS=(ocular

disease) OR TS=(Keratoconus) OR TS=(dry eye) OR

TS=(glaucoma) OR TS=(myopia) OR TS=(cataract) OR

TS=(retinopathy) OR TS=(fundus image) OR TS=(eyelid

tumor)

#3 #1 and #2

Document

types

Article and Review Article

Time span From 2020-01-01 to 2024-12-31

Language English

keyword lists were deemed eligible. The specific search strategy

applied can be seen in Table 1. Through this strategy, we

identified 21,990 records from WoSCC. In our study, English-

language publications dominated the retrieval results. In addition,

multilingual articles may lead to inconsistencies due to language

differences and limited software support for non-English texts. The

inclusion of those could affect the accuracy of keyword extraction,

co-word analysis, and topic clustering. Therefore, we excluded

265 non-English articles. Our bibliometric analysis incorporated

21,725 publications, comprising 19,978 articles and 1,747 reviews

(Figure 1). Eligible records were saved and exported as plain text

files that included titles, authors, keywords, institutions, countries,

publication journals, references, and citations.

2.2 Data analysis

2.2.1 VOSviewer
We employed VOSviewer (version 1.6.20), a bibliometric

analysis software, to extract key information from the vast number

of retrieved publications (24, 25). VOSviewer is typically used

to construct networks for collaboration, co-citation, and co-

occurrence (26, 27). In this study, the software facilitated several

analyses, which included the following:

1. Country and Institution Analysis: Identification of countries and

institutions contributing to AI and ophthalmology research.

2. Journal and Co-cited Journal Analysis: Examination of the

publication and the citation landscape to understand the impact

and relevance of different journals.

3. Author and Co-cited Author Analysis: Mapping the influential

researchers and their citation networks.

4. Keyword Co-occurrence Analysis: Identifying prevalent

research themes and trends.

In the network visualizations produced by VOSviewer, each

node represents an item such as a country, research institution,

journal, or author. The size and color of the nodes indicate the

number and category of these items, respectively. The thickness of

the lines connecting nodes reflects the extent of collaboration or

co-citation among them.

2.2.2 CiteSpace
CiteSpace (version 6.4 R1), developed by Professor Chen C.,

was utilized for further bibliometric analysis and visualization

(28–31). This software enabled us to create dual-map overlays of

journals, providing insights into the interdisciplinary nature and

citation patterns of the research (32–35). Additionally, we leveraged

the Citation Burst feature to identify references that have attracted

rapidly increasing attention over specific periods.

2.2.3 Language R
The R package “bibliometrix” (version 4.3.0) (https://www.

bibliometrix.org/home/) was employed to perform thematic

analysis and construct a global distribution network of AI and

ophthalmology-related publications (36–41). Journal rankings and

impact factors were sourced from the Journal Citation Reports

2022. Moreover, Microsoft Office Excel 2019 was used to conduct

a quantitative analysis of the published literature.

VOSviewer is adept at generating network visualizations in a

clear and concise manner, while CiteSpace, in addition to network

mapping, highlights nodes with betweenness centrality. However,

its visualizations tend to be more cluttered, making it a valuable

complement to VOSviewer. Moreover, CiteSpace is better suited for

tasks such as dual-map overlay analysis, time-series clustering, and

burst detection. The R package “bibliometrix,” on the other hand,

focuses more on analyzing the data itself, such as co-occurrence

frequencies, citation counts, and trend patterns. In our study, we

integrated these tools; when multiple tools could perform the same

type of analysis, we carefully weighed their respective strengths and

weaknesses, striving to balance the clarity of the visualizations with

the depth of information provided while minimizing redundancy

and contradictions in the results. For example, when analyzing

journals in a related field, we used VOSviewer to generate

the network map, CiteSpace for dual-map overlay visualization,

and R to analyze co-citation frequencies, among other metrics.

By integrating various analytical tools, our study may offer a

comprehensive understanding of the research landscape in AI and

ophthalmology, identifying key trends, influential contributors,

and collaborative networks.

3 Results

3.1 Analysis of publication and citation

The volume of published and cited literature is indicative of

the speed, quality, innovation, maturity, and contextual factors

surrounding the development of research in a specific field (42).

In this study, we observed a significant upward trend in the

publication of research combining ophthalmology and AI over the

past 5 years, as illustrated in Figure 2A. Although the publication

volume for 2025 is currently low, it can be predicted that it will
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FIGURE 1

The flow chat of literature screening and analysis in the bibliometric study.

surpass the figures for 2024 as research in this year continues

to expand.

Moreover, the citation trend over the past decade (Figure 2B)

can be categorized into three distinct phases: Phase 1 (2015–2018),

Phase 2 (2019–2020), and Phase 3 (2021–2025). During Phase 1,

the annual citation figures rose sharply from 61,311 to 109,462,

nearly doubling. This surge correlates with the establishment of

OpenAI in 2015, reflecting a growing focus among researchers on

AI development and its applications in ophthalmology (43). In

contrast, Phase 2 saw citation counts plateauing at approximately

110,000 annually, likely impacted by the COVID-19 pandemic,

which hampered research activity in this domain (44–46).

Interestingly, Phase 3 showcases a declining citation trend

despite an ongoing increase in publication output. This paradox

may be attributed to the lag characteristic of citation cycles;

following the transformative advent of AI technologies such as

ChatGPT and advanced deep learning techniques since 2021,

earlier AI literature may have become less appealing to researchers,

resulting in decreased citation rates (47–50). Moreover, this

phenomenon may also be attributed to the saturation of AI

applications in disease recognition. For instance, in the diagnosis

of diabetic retinopathy (DR, a complication of diabetes that affects

the blood vessels in the retina, the light-sensitive tissue at the back

of the eye), there has been an exponential increase in AI-related

models and studies in recent years. This surge has resulted in an

accumulation of low-quality and repetitive research, which, in turn,

has diluted the impact of truly valuable contributions and led to a

decline in citation rates. Furthermore, we posit that this trend may

reflect an urgent demand for AI-driven research in ophthalmology,

which has drawn a substantial influx of researchers into the field.

Nonetheless, this decline is likely temporary and is typical in new

or emerging fields, as it often takes time for new literature to gain

traction in subsequent research.

Overall, these findings underscore that the intersection of

AI and ophthalmology is a burgeoning field engaging numerous

researchers, with promising future growth and potential.

3.2 Country and institution analysis

In our analysis of country and institution, we identified a

total of 134 countries and 7,126 institutions contribute to the

publication. Table 2 presents the top 10 countries and institutions

that have made substantial contributions to the literature in

this domain.

The predominant countries contributing to the publications are

primarily located in Asia, North America, and Europe. Notably,

China leads with the highest number of publications (n = 22,561,

27.3%), followed by the United States (n= 15,243, 18.5%), India (n

= 5,250, 6.4%), the United Kingdom (n = 3,997, 4.8%), and South

Korea (n = 2,975, 3.6%). The combined number of publications
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FIGURE 2

Distribution and trend of publications and citations from di�erent years and countries. (A) The report of publication in 5 years. (B) The citation trend

from 2015 to 2025. (C) The visualization of cooperation between countries. (D) The geographical distribution of publication. From CiteSpace 6.4 R1

and R package “Bibliometrix.”

TABLE 2 Top 10 countries and institutions on research of AI and ophthalmology.

Rank Country Counts (%) Institution Counts (%)

1 China (Asia) 22,561 (27.3%) University of California System 1,086 (1.2%)

2 The United States (North American) 15,243 (18.5%) University of London 1,019 (1.1%)

3 India (Asia) 5,250 (6.4%) National University of Singapore 935 (1.0%)

4 United Kindom (Europe) 3,997 (4.8%) Chinese Academy of Sciences 872 (0.9%)

5 South Korea (Asia) 2,975 (3.6%) Harvard University 858 (0.9%)

6 Germany (Europe) 2,765 (3.3%) University College London 772 (0.8%)

7 Italy (Europe) 2,632 (3.2%) Fudan University 665 (0.7%)

8 Japan (Asia) 2,277 (2.8%) Shanghai Jiao Tong University 651 (0.7%)

9 Canada (North American) 2,092 (2.5%) Sun Yat-sen University 638 (0.7%)

10 Australia (Australia) 2,042 (2.5%) Harvard University Medical Affiliates 586 (0.6%)

from China, the United States, and India accounts for more

than half of the total publications (52.2%). We further filtered

our data to visualize 70 countries with the minimum number of

publications equal to 5, constructing collaboration networks based

on their cooperative relationships and citation data, as illustrated

in Figures 2C, D. The results highlight active international

collaborations, such as the strong connections between China and

countries such as the United States, Japan, and Singapore, as well

as interactions between the United States and France, Australia,

and England. Interestingly, despite their relatively low publication

volumes, France has been denoted with purple circles, indicating

higher centrality (an indicator of research impact) in the network.

It suggests that their research remains closely aligned with the core

themes of this field and connects various sections within it.

The majority of the top 10 institutions contributing to this

field are located in China and the United States. The leading

institutions include the following: the University of California

System (n = 1,086, 1.2%), the University of London (n = 1,019,
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FIGURE 3

Distribution of publications and citations from di�erent institutions and journals. Visualization maps of the institution (A), journals (B), and co-cited

journals (C). Institutions or journals with more publications or higher co-citation frequency are symbolized as the larger nodes. (D) The dual-map

overlay of journals reveals the connections between publications and citations, with dots representing citing journals on the left and cited journals on

the right so that the citation relationships are depicted as colored lines from the left to right. From: VOSviewer and CiteSpace 6.4 R1 Advance.

1.1%), the National University of Singapore (n = 935, 1.0%),

the Chinese Academy of Sciences (n = 872, 0.9%), and Harvard

University (n = 858, 0.9%). We visualized collaboration among 58

institutions with a minimum publication volume of 100, depicted

in Figure 3A. The analysis reveals significant collaborations,

such as between Sun Yat-sen University in China and the

Singapore National Eye Centre and Shanghai Jiao Tong University.

Additionally, the National University of Singapore maintains active

ties with Stanford University and Harvard University, with a

notable closeness in collaboration between Stanford and Harvard

as well.

3.3 Journals and co-cited journals

In our study, we identified that a total of 4,076 journals

related to the application of AI in the field of ophthalmology have

been published across various journals. Among these, Scientific
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TABLE 3 Top 10 journals and co-cited journals for research of AI and ophthalmology.

Rank Journal Counts (%) IF Q Co-cited
journal

Citations IF Q

1 Scientific Reports 577 (2.7%) 4.6 2 Proc CVPR IEEE 21,470 Conference Conference

2 IEEE Access 556 (2.6%) 3.9 3 Invest Opth Vis Sci 19,509 Preprint

Server

Preprint Server

3 Translational

Vision Science &

Technology

324 (1.5%) 3.9 3 Ophthalmology 19,441 13.7 1

4 Sensors 316 (1.5%) 3 3 Arxiv 15,246 4.4 2

5 Biomedical Signal

Processing and

Control

266 (1.2%) 5.1 2 PLoS ONE 12,787 2.9 3

6 Applied

Sciences-Basel

248 (1.1%) 3.6 4 Sci Rep 12,723 4.6 2

7 Multimedia Tools

and Applications

243 (1.1%) 2.7 4 Lect Notes Comput

Sc

12,528 Conference Conference

8 Plos One 216 (1.0%) 2.9 3 Am J Ophthalmol 9,867 4.1 1

9 Diagnostics 212 (1.0%) 3.6 3 IEEE Access 9,432 3.9 3

10 American Journal

of Ophthalmology

204 (0.9%) 4.1 1 Neuroimage 9,124 4.7 2

Reports leads with the highest number of related articles (n

= 577, 2.7%). Following closely are IEEE Access (n = 556,

2.6%), Translational Vision Science & Technology (n = 324,

1.5%), and Sensors (n = 316, 1.5%), as illustrated in Table 3.

This distribution of publications across well-known journals

highlights the growing integration of ophthalmology and AI,

particularly where computer science meets medical sciences. To

better understand the interconnectivity of these journals, we filtered

the results based on aminimumpublication threshold of 50 articles,

ultimately analyzing 71 journals for their citation relationships. The

resultant journal network visualization is depicted in Figure 3B,

where it can be observed that Scientific Reports shares significant

citation links with Translational Vision Science & Technology,

IEEE Access, Sensors, and Multimedia Tools AND Applications,

indicating collaborative research trends and thematic similarities

among these publications.

Co-citation analysis further renders insight into the high-

impact journals within this scholarly domain. In Table 2, the top

10 journals listed demonstrate citation counts exceeding 9,000.

Notably, ophthalmology-related journals prominently feature in

this list, while AI and computer science-related research is chiefly

published in prestigious conference proceedings. This emphasizes

both the distinctiveness and convergence of these fields. Among

these journals, “Proc CVPR IEEE” is cited most frequently

(21,470 times), followed by “Invest Opth Vis Sci” (19,509 times),

“Ophthalmology” (19,441 times), and “arXiv” (15,246 times). For

the visualization of the co-citation network, we filtered for a

minimum co-citation count of 1,000, resulting in the analysis

of 157 journals as illustrated in Figure 3C. In this visualization,

the red clusters predominantly represent AI-related publication

venues, while the green clusters are primarily from ophthalmology-

focused journals, suggesting a vital intersection between these

fields. The blue clusters represent the other medical fields related

to ophthalmology where AI has also been applied. It can be

seen that there is a positive co-citation relationship between

ophthalmology journals represented by ophthalmology and AI

journals represented by Proc CVPR IEEE.

It is also important to note that the Impact Factor (IF, a metric

that reflects the average number of citations received per article

published in a journal during the two preceding years) serves as

a widely recognized indicator for assessing the core influence of

journals. Among the 10 journals publishing related articles, the

most influential is Biomedical Signal Proceeding and Control (IF

= 5.1), followed by Scientific Reports (IF = 4.6). Within the co-

citation analysis, “Ophthalmology” stands out as the highest impact

journal (IF = 13.7) in the ophthalmology domain, with “American

Journal of Ophthalmology” (IF = 4.2) ranking second. In contrast,

“Proceedings of CVPR” remains a distinguished top-tier conference

in the AI discipline.

Finally, the dual-map overlay of journals presented in

Figure 3D illustrates the relationships between citing and co-

cited journals. Clusters of citing journals are observed on

the left side, while cited journals are clustered on the right,

with citation relationships depicted via bold-colored lines

emanating from left to right (29, 51). Seven principal lines are

identified: three gray lines from Molecular/Nursing/Education

categories to Neurology/Ophthalmology/Sports/Clinical,

and three red lines from Computer/Molecular/Education to

Mathematics/Systems/Ophthalmology. These pathways emphasize

the intricate relationships among ophthalmology, medicine,

mathematics, and computing, showcasing the interdisciplinary

nature of current research trends. In addition, this analysis

also highlights the application of computer science in basic

medicine such as molecular and genetic study in ophthalmology.

This analysis not only underscores the dynamic collaboration

between ophthalmology and AI but also highlights the emerging
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TABLE 4 Top 10 authors and co-cited authors on reasearch of AI in ophthalmology.

Rank Author Country Counts Co-cited author Country Citation

1 Wang Y China 194 Ting DSW Singapore 1,367

2 Liu Y China 177 Wong TY Singapore 1,314

3 Zhang Y China 175 Keane Pa United Kindom 1,078

4 Zhang J China 151 Zhang XL China 944

5 Wang J China 146 Fu HZ China 900

6 Liu J China 136 Cheung CY China 898

7 Liu Y China 134 Cheng CY Singapore 862

8 Li J China 120 Li F China 760

9 Zhang L China 108 Bogunovic H Austria 739

10 Wang L China 102 Liu Y China 727

FIGURE 4

The visualization of authors (A) and co-cited authors (B) on research of AI in ophthalmology. From: VOSviewer.

trends and impact factors of academic publications in this

evolving domain.

3.4 Authors and co-cited authors

In the field of AI application in ophthalmology, a total of

87,695 authors and 362,508 co-cited authors have made significant

contributions, as presented in Table 4. Similar to the analysis

of leading countries and institutions, the majority of these

contributors hail from China, underscoring their leadership in this

research domain.

The most prolific author is Wang Y, with 194 publications,

followed closely by Liu Y with 177 and Zhang Y with 175. These

authors are affiliated with prominent institutions, including Beijing

Tongren Hospital, Zhongshan Ophthalmic Center, and Zhejiang

University, respectively. Furthermore, we selected 136 authors with

five or more publications to construct a collaboration network

diagram (Figure 4A). Close collaborations among authors—such as

Keane PA with Ting DSW and Lee with Campbell—are evident.

Among the top 10 co-cited authors, three authors have received

over 1,000 citations. The most cited author is Ting DSW with

1,367 citations, followed by Wong TY with 1,314 and Keane

Pa with 1,078. Notably, both Ting DSW and Wong TY are

affiliated with the Singapore National Eye Centre, highlighting

the prominent role of this institution in the integration of AI

in ophthalmology research. Subsequently, we generated a co-

citation network diagram for 136 authors with a minimum co-

citation count of 300 (Figure 4B), revealing strong interconnections

among various authors, such as Ting DSW, Wang TY, He

KM, and Ronneberger O. This comprehensive analysis illustrates

the collaborative nature and the influential authors shaping the

landscape of AI in ophthalmology research.

3.5 Co-occurring keywords and burst terms

Through the co-occurrence analysis of keywords, we were

able to quickly identify research hotspots within the field

of AI applications in ophthalmology (52, 53). Similar or

synonymous terms were merged for calculation (e.g., ”eye tracking“
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TABLE 5 Top 20 keywords on research of AI in ophthalmology.

Rank Keywords Counts Rank Keywords Counts

1 Deep learning 3,321 11 Image

processing

512

2 Machine

learning

2,067 12 Classification 359

3 Artificial

intelligence

1,878 13 Ophthalmology 339

4 Diabetic

retinopathy

1,418 14 Transfer

learning

320

5 Convolutional

neural

network

1,394 15 Segmentation 275

6 Glaucoma 725 16 Computer

vision

273

7 Eye tracking 706 17 EEG 268

8 Feature

extraction

635 18 Training 242

9 Retina 535 19 Visualization 237

10 Optical

coherence

tomography

526 20 Optical

coherence

tomography

angiography

230

and ”eye-tracking,“ ”convolutional neural network,“ ”cnn,“ and

”convolutional neural networks“). Table 5 lists the top 20 high-

frequency keywords associated with AI in ophthalmology, which

are also visually represented in the TreeMap Chart shown in

Figure 5A. From this analysis, we can categorize the keywords into

three main classes:

The first category comprises AI and computer science-related

terms, which dominate the keyword list, including deep learning

(n = 3,321, 20%), machine learning (n = 2,067, 13%), artificial

intelligence (n = 1,878, 12%), convolutional neural network (n

= 1,394, 9%), and computer vision (n = 273, 2%). The second

category includes ophthalmology-related terms, such as diabetic

retinopathy (n = 1,418, 9%), glaucoma (n = 725, 4%), and

ophthalmology (n = 339, 2%). The third category consists of

terms related to ophthalmic diagnostic technologies, such as eye

tracking (n = 706, 4%) and optic coherence tomography (n = 526,

3%). Although this classification occupies a smaller portion of the

keywords, it remains critical for highlighting significant tools and

technologies in the field.

Based on keywords with a co-occurrence frequency of 50

or more, we selected 171 keywords to generate a co-occurrence

network diagram using VOSviewer and CiteSpace, as depicted in

Figures 5B, C. In Figure 5B, the blue and green sections mostly

correspond to AI and computer science-related categories, while

the red sections are mainly aligned with ophthalmology-related

categories. The size of the nodes is positively correlated with their

co-occurrence frequency, and the connecting lines depict their co-

occurrence relationships. Notably, machine learning demonstrates

a close connectionwith fundus, deep learning, diabetes retinopathy,

and glaucoma, while deep learning shows a positive association

with nearly all keywords. Additionally, in Figure 5C, the nodes

for machine learning, deep learning, optic coherence tomography,

and diabetes retinopathy are all annotated with purple rings,

signifying their high centrality and reflecting their status as popular

research keywords in the current landscape of AI applications

in ophthalmology. Trend topic analysis (Figure 5D) indicates

that before 2022, research on AI applications in ophthalmology

primarily focused on mathematic models, angiogenesis, and

blepharospasm to address various ocular diseases. In addition,

the frequency of them is <50. However, post-2022, following the

advent of ChatGPT, the study of AI in ophthalmology surged.

Therefore, research interest has shifted toward more advanced

models such as convolutional neural networks, deep learning, and

machine learning, and researchers try to develop more robust

models with higher accuracy.

Through the analysis, we can identify the main focus of recent

studies, which emphasize the application of AI technologies, such

as deep learning and machine learning, in analyzing the results

of ophthalmic diagnostic techniques, including fundus imaging

and OCT, for diagnosing eye diseases such as DR, glaucoma,

and myopia (54). Numerous cutting-edge studies have emerged

in this field. For instance, Yoo et al. developed a deep learning

model to predict uncorrected refractive errors in OCT images,

preventing clinicians from overlooking refractive error-related

risks duringOCT assessments (55). Additionally, usingOCT retinal

images, Li et al. employed CNN models to identify pathological

high myopia-related fundus lesions, such as macular holes,

myopic choroidal neovascularization, and retinoschisis (56–58).

Furthermore, researchers have utilized deep learning algorithms to

enable AI to detect various characteristics in digital fundus images

associated with DR, such as microaneurysms, hard exudates, and

intra-retinal hemorrhages, achieving sensitivities of up to 50% (59).

Lam et al. applied AlexNet, ResNet, and VGG16 techniques to

identify DR lesions within image blocks, achieving an impressive

accuracy of 98% based on 243 fundus images from EyePACS

(60–62). In the realm of cataracts, Wu et al. collected data from

14,820 participants along with 16,200 fundus images of cataract

and non-cataract cases, which were randomly divided intomutually

exclusive groups for AI model training (development dataset) and

internal testing (validation dataset). Following extensive validation,

their model achieved an area under the curve (AUC, the area under

the receiver operating characteristic curve, which measures the

ability of a binary classifier to distinguish between positive and

negative classes, with values ranging from 0 to 1) value of 99%

during the quality testing phase (63–65). Collectively, these studies

underscore the promising potential of AI applications in the field

of ophthalmology.

3.6 Co-cited references

3.6.1 Top cited references
References provide a substantial knowledge foundation and

theoretical framework for subsequent scientific research. The

citation frequency of references is crucial for any given article,

reflecting its impact and relevance within the academic community.

The underlying premise of co-citation analysis is that if two

references are cited together by a single article, they are identified
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FIGURE 5

The main keywords. (A) The first 20 keywords belong to the publications. (B) Keywords co-occurrence networks. The node size indicates the

frequency of keyword occurrence, and the lines connecting nodes represent the strength of the link between keywords. (C) Keywords distribution of

the publications. Purple rings on the periphery mean a high centrality. (D) The trend topic analysis of keywords. From VOSviewer, CiteSpace 6.4 R1

Advance and R package “Bibliometrix.”
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TABLE 6 Top 10 co-cited references.

Rank Citation Author Reference title Journal Year

1 2,004 He KM Deep residual learning for image recognition Proc CVPR IEEE 2016

2 1,678 Ronneberger O U-net: Convolutional networks for biomedical image

segmentation

Lect Notes Comput Sc 2015

3 1,254 Gulshan V Development and validation of a deep learning algorithm for

detection of diabetic retinopathy in retinal fundus

photographs

JAMA-J AM 2016

4 1,219 Simonyan K Very deep convolutional networks for large-scale image

recognition

Arxiv 2015

5 1,063 Krizhevsky A ImageNet classification with deep convolutional neural

networks

Commun ACM 2017

6 814 Ting DSW Development and validation of a deep learning system for

diabetic retinopathy and related eye diseases using retinal

images from multiethnic populations with diabetes

JAMA-J AM 2017

7 665 Deng J Imagenet: A large-scale hierarchical image database Proc CVPR IEEE 2009

8 601 Huang G Reducing the memory cost of training convolutional neural

networks by CPU Offloading

Proc CVPR IEEE 2017

9 552 Szegedy C Rethinking the inception architecture for computer vision Proc CVPR IEEE 2016

10 542 Staal J Ridge-based vessel segmentation in color images of the

retina

IEEE T Med Imaging 2004

as exhibiting co-citation behavior, suggesting a strong relational

context between the two. Consequently, a higher co-citation

frequency indicates greater importance in the publication and a

stronger guiding position within the field.

Table 6 presents the top 10 most cited references, showcasing

a significant intersection between the domains of AI and

ophthalmology. Notably, a conference publication by He et al.

proposed a residual learning framework aimed at simplifying

network training, subsequently enhancing the visual recognition

capabilities of AI. This advancement is particularly influential

in improving the diagnostic accuracy of diseases within

ophthalmology (66). Furthermore, a prospective cohort study

by Ting et al. primarily described the application of optical

coherence tomography angiography (OCT-A) to quantify the

retinal capillary microcirculatory system in DR patients, aiming

to study diabetes and its complications (67). In the same year and

in the same journal, Ting DSW developed and validated a deep

learning system for DR and associated ocular diseases, showcasing

impressive sensitivity and specificity (68). Additionally, De Fauw

et al. integrated AI into their research, which involved training

on 14,884 scans. Their findings illustrated that the suggestions of

AI for retinal diseases surpassed those of experts across a range

of vision-threatening retinal conditions (69). These references

elucidate why they frequently appear in literature within this field.

Subsequently, we selected 231 references based on a co-citation

frequency of 100 or more, as depicted in Supplementary Figure 1A.

The green and yellow clusters represent references related

to AI and computer science, while the red cluster pertains

to ophthalmology. The visualization clearly identifies the

interconnections between the two disciplines, highlighted by the

close co-citation relationships among the 2016 paper published

in Proc CVPR IEEE by HE, the contribution from the same

year in JAMA by Gulshan, and the 2017 article published in

JAMA by Ting DSW. This interrelationship underscores the

collaborative evolution of AI technologies and their application

in ophthalmological studies, emphasizing the growing synergy

between these two critical areas.

3.6.2 Reference with citation burst
References with citation bursts typically indicate that

specific studies have been frequently cited by scholars within

a defined timeframe. A total of 25 references exhibiting strong

citation bursts were identified by CiteSpace. As shown in

Supplementary Figure 1B, each band represents a specific year,

with the red bands indicating years demonstrating significant

citation burstiness.

Before 2022, the references predominantly focused on

image recognition related to deep learning and retinal diseases,

particularly DR. Among these, the reference with the highest

citation burst strength was the study conducted by Gulshan et al.,

published in 2016 in JAMA-J AM (”Development and validation

of a deep learning algorithm for detection of DR in retinal fundus

photographs“) with a strength of 126.23. In this pivotal study,

the researchers compared the performance of a deep learning

algorithm in identifying DR from retinal fundus photographs with

the manual grading accuracy of ophthalmologists. Using a dataset

of 9,963 images for training and 1,748 images for validation,

they reported a sensitivity of 90.3% and 87.0% and a specificity

of 98.1% and 98.5%, respectively (70). The study emphasized

that although the sensitivity and specificity of the deep learning

algorithm were comparable to those of ophthalmologists, the

technological advantages lay in the speed of diagnosis and the

absence of fatigue associated with long-term assessments. The

second strongest citation burst was from He et al., whose paper

published in 2016 in Proc CVPR IEEE (”Deep Residual Learning
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for Image Recognition“) achieved a strength of 124.54. This

reference introduced new techniques aimed at enhancing the

visual recognition capabilities of AI, underscoring its significant

implications within the field of ophthalmology due to both its high

citation volume and intensity of citation bursts (66).

Post-2022, our observations indicate a shift toward more

complex new technologies built upon deep learning frameworks,

including conditional adversarial networks, pyramid scene

parsing networks, and squeeze-and-excitation networks (71–75).

Additionally, the scope of diseases being addressed expanded

beyond just DR to encompass a wider array of ophthalmic

conditions such as pathological myopia, glaucoma, and cataracts

(76–78). Among these developments, the study of Orlando

et al. published in 2020 in Ophthalmology, titled ”REFUGE

Challenge: A unified framework for evaluating automated methods

for glaucoma assessment from fundus photographs“ garnered

noticeable attention with a citation burst strength of 20.69.

The researchers of this study primarily launched the Retinal

Fundus Glaucoma Challenge and released a large-scale glaucoma-

related database. In addition, the study established a unified

evaluation framework, enabling standardized and fair protocols

for comparing different algorithms. The research found that the

best approach for glaucoma classification combines deep learning

techniques with well-known glaucoma-specific biomarkers, such

as changes in the vertical cup-to-disc ratio or defects in the retinal

nerve fiber layer. Automated methods using fundus imaging

showed promising signs in identifying glaucoma suspects. For the

segmentation task, the best solutions took into account domain

shifts between the training and test sets, aiming to regularize

models to handle image variations. The most challenging cases

involved blurred boundaries between the optic disc and the optic

cup. Further studies are needed to improve outcomes in these

situations (79).

3.6.3 Ten clusters of the co-citation network and
cluster dependencies

The log-likelihood ratio algorithm is a powerful tool for

efficiently processing large-scale datasets and analyzing data

with multiple dimensional features. This algorithm is commonly

applied across various fields for classification and model selection

challenges. In our study, we employed CiteSpace to categorize the

references into distinct clusters, each of which represents a sub-

topic. The definitions of these sub-topics stem from the title terms

of the cited papers within each cluster.

Supplementary Figure 1C illustrates the top 15 clusters

identified in our analysis. The clusters are enumerated as follows:

#0 artificial intelligence, #1 retinal vessel segmentation, #2

3D object detection, #3 ChatGPT, #4 diabetic retinopathy, #5

convolutional neural network, #6 diabetes, #7 classification, #8

retinal vessels, #9 image segmentation #10 glaucoma, #11 retinal

nerve fiber layer, #12 feature extraction, #13 machine learning,

and #14 age-related macular degeneration. Each of these clusters

encompasses a body of reference focused on specific themes

relevant to the application of AI in ophthalmology, thereby

reflecting the current trends and research interests in these areas.

This analytical framework not only elucidates the thematic

structure of literature but also underscores the collaborative nature

of research scholarship in the intersection of ophthalmology and

AI. Thus, the findings contribute to a comprehensive perspective

on the advancements being made within this rapidly evolving field.

3.6.4 Timeline map of clusters
The clustering analysis yields significant insights into the

temporal evolution and development of various research areas

within the field of ophthalmology, illustrated adeptly through a

timeline graph (Supplementary Figure 1D). This graph effectively

transforms the clustering map into a chronological representation,

capturing the emergence of each cluster. As highlighted in previous

discussions of cluster dependencies, the timeline vividly portrays

the interconnections between different clusters and references

over time, with each line connecting every node indicating the

relationships between these clusters.

The earliest clusters identified in our analysis are convolutional

neural network (Cluster #5), retinal vessels (Cluster #8), image

segmentation (Cluster #9), and glaucoma (Cluster #10). These

clusters signify an initial interest in developing efficient AI

methodologies within the ophthalmological domain, laying the

groundwork for later advancements in algorithmic types, such

as retinal vessel segmentation (Cluster #1), 3D object detection

(Cluster #2), and ChatGPT (Cluster #3). Concurrently, two

additional clusters emerged in the same timeframe: diabetic

retinopathy (Cluster #4) and retinal vessel segmentation (Cluster

#1). Although these clusters exhibited limited integration with

AI concepts at that stage, their early attempts to bridge both

fields foreshadowed their subsequent high centrality (denoted by

purple rings) and citation frequency (represented by large nodes)

in future literature.

Despite the profound impact of ChatGPT and its

accompanying large language models on the ophthalmic

landscape, the presence of references pertaining to ChatGPT

is currently minimal, and the inter-cluster relationships appear

less than favorable. We hypothesize that this lagging citation cycle

contributes to the observed pattern. Nonetheless, we predict a

future spike in centrality and citation frequency for this cluster.

Currently, the utilization of AI in ophthalmology predominantly

focuses on retinal imaging, encompassing diabetic retinopathy

(Cluster #4), retinal vessels (Cluster #8), and glaucoma (Cluster

#10), in which AI is used to evaluate the thickness of the retinal

nerve fiber layer (Cluster #11).

3.6.5 Paper with high betweenness centrality
In the timeline visualization, several nodes are highlighted

with purple circles, indicating that these references exhibit high

betweenness centrality. This suggests that such references play a

pivotal role as bridges between various research directions within

the field of ophthalmology and AI. By facilitating the flow of

knowledge, these key references connect otherwise disparate lines

of inquiry.

Among the 15 clusters identified, 38 references were with

notably high betweenness centrality. We summarize the top 10 in

Table 7. Notably, within the cluster about glaucoma (Clusters #10
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TABLE 7 Top 6 highest “betweenness centrality” references among the 10

clusters.

Rank Centrality References Cluster
#

1 0.85 Development and validation of a

deep learning system for diabetic

retinopathy and related eye

diseases using retinal images

from multiethnic populations

with diabetes

13

2 0.78 Development and validation of a

deep learning algorithm for

detection of diabetic retinopathy

in retinal fundus photographs

13

3 0.76 REFUGE challenge: A unified

framework for evaluating

automated methods for

glaucoma assessment from

fundus photographs

10

4 0.75 Efficacy of a deep learning system

for detecting glaucomatous optic

neuropathy based on color

fundus photographs

11

5 0.69 Deep convolution neural

network for accurate diagnosis of

glaucoma using digital fundus

images

11

6 0.69 Performance of deep learning

architectures and transfer

learning for detecting

glaucomatous optic neuropathy

in fundus photographs

10

7 0.68 CNNs for automatic glaucoma

assessment using fundus images:

An extensive validation

10

8 0.67 Automatic glaucoma

classification using color fundus

images based on convolutional

neural networks and transfer

learning

10

9 0.50 DeepVessel: Retinal vessel

segmentation via deep learning

and conditional random field

8

10 0.48 Deep retinal image

understanding

8

and #11), six references marked with purple circles are present.

This underscores the significant role these references play in linking

AI applications to ophthalmology, particularly in the context of

glaucoma research (79–84). Moreover, the #13 cluster (machine

learning) and the #8 cluster (retinal vessels) each feature two

references highlighted with a purple circle, all of which are also

related to retinal conditions (68, 70, 85, 86). This trend may

be attributed to the earlier initiation of research in these areas,

leading to rapid advancements in both ophthalmology and AI.

Consequently, these clusters have stimulated further integration

of AI technology across various subfields of ophthalmology.

Additionally, there are other references with high betweenness

centrality within clusters like artificial intelligence (#0), ChatGPT

(#3), and diabetic retinopathy (#4). This phenomenon suggests that

the interdisciplinary nature of the field has strong generalizability

and has attracted concentrated attention from researchers.

3.6.6 Details of clusters #4 (diabetic retinopathy),
#6 (diabetes), #1 (retinal vessel segmentation), #7
(classification), and #8 (retinal vessels)

In our cluster analysis, we identified the DR-related research

areas: #4 (diabetic retinopathy), #6 (diabetes), #1 (retinal vessel

segmentation), #7 (classification), and #8 (retinal vessels). By

examining the timeline of these clusters, we considered factors such

as betweenness centrality, citation impact, and publication year

to select key references that offer a comprehensive understanding

of the development of AI in the DR domain. The progress

observed within these clusters reflects the gradual integration of

AI technologies in the diagnosis and management of diabetic

retinopathy (Table 8).

Between 2015 and 2019, Abràmoff et al. improved the

automated detection of DR by integrating deep learning, using

a consensus reference standard for referable diabetic retinopathy

(rDR). DR was classified according to the International Clinical

Diabetic Retinopathy Disease Severity Scale into moderate and

severe non-proliferative DR (NPDR), proliferative DR, and/or

macular edema (ME). Notably, the Messidor-2 images and the

three retinal specialists who established the Messidor-2 reference

standard were not involved in the training of the IDx-DR version

X2.1. The study reported a sensitivity of 96.8%, a specificity of

87.0%, and an AUC of 0.98, indicating excellent performance

(87). On the other hand, in 2017, Gargeya et al. built upon this

foundation by training an automated identification model using

75,173 DR fundus images. Their method enabled easy visualization

of abnormal regions through automatically generated heatmaps,

which highlighted subregions of each input fundus image for

further clinical review. This study achieved an AUC of 0.97,

with sensitivity and specificity of 94% and 98%, respectively.

These studies undoubtedly laid the groundwork for future model

development and fostered the integration between the two

fields (88).

Today, we witness remarkable advancements. With the

increasing availability of data, improvements in AI technologies,

and conscious efforts to bridge AI with ophthalmology,

applications of AI have achieved significant improvements.

Current AI systems surpass those of a decade ago in sensitivity,

accuracy, false-positive rates, and even innovative functionality

(89, 90). Moreover, AI’s potential to improve healthcare delivery

in low- and middle-income countries has become increasingly

recognized. In 2022, Huang et al. introduced relational transformer

blocks (RTBs)—composed of cross-attention and self-attention

heads—to explore dependencies between lesions and other

retinal tissues. Combined with a global transformer block, their

method simultaneously segmented four DR lesions. This approach

significantly outperformed methods from a decade ago, ranking

first in AUC_ROC for EX, MA, and SE, and AUC_PR for EX

and SE, and second in AUC_ROC and AUC_PR for HE (91). In

another study, a model for automatic DR severity grading was

developed based on DenseNet, convolutional block attention

modules, and 13,000 annotated images. This method demonstrated
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TABLE 8 The decades development of AI in fundus retinal disease (Clusters #0, #1, #2, #9) reflected in references.

Clusters 2015∼2019 2020∼2024

Author (year), journal, volume Citation Author (year), journal, volume Citation

#4 Diabetic retinopathy

Wang SH (2018), Comput Electr Eng, 72 118 Huang SQ (2022), IEEE T Med Imaging, 41 31

Zhang W (2019), Knowl-Based Syst, 175 88 Farag MM (2022), IEEE Access, 10 27

#6 Diabetes

Abràmoff MD (2016), Invest Ophth Vis Sci, 57 169 Dai L (2021), Nat Commun, 12 108

Gargeya R (2017), Ophthalmology, 124 303

#7 Classification

Qummar S (2019), IEEE Access, 7 164 Hemanth DJ (2020), Neural Comput Appl, 32 87

Zheng XL (2019), IEEE Access, 7 78 Kalyani G (2023), Complex Intell Syst, 9 27

#1 Retinal vessel segmentation

Jin QG (2019), Knowl-Based Syst, 178 191 Chen J (2021), Arxiv, 0 72

Gu ZW (2019), IEEE T Med Imaging, 38 214 Cao Hu (2023), Computer Vision-ECCV, 0 30

#9 Retinal vessels

Liskowski P (2016), IEEE T Med Imaging, 35 88

Li QL (2016), IEEE T Med Imaging, 35 67

robust performance and quality metrics while reducing spatial

and temporal complexity. Additionally, a 2D Gaussian filter

enhanced the quality of the fundus images. Finally, a weighted

loss function using INS was constructed to address the class

imbalance issue, thereby improving predictive performance across

all categories (92).

Interestingly, since 2019, there has been a gap in references

related to retinal vessels. We speculate that this cluster may

have later merged with others, as from an ophthalmological

perspective, it likely represents a subcomponent of broader DR-

related research clusters.

3.6.7 Details of clusters #10 (glaucoma), #11
(retinal nerve fiber layer), and #12 (age-related
macular degeneration)

As shown in Supplementary Figure 1C, in contrast to DR—

which exhibited prominent results in keyword analysis and

reference citation bursts—our analysis of Clusters #10 (glaucoma),

#11 (retinal nerve fiber layer), and #12 (age-related macular

degeneration) revealed that most references with high betweenness

centrality originated from Clusters #10 and #11. This suggests a

strong integration between AI and glaucoma-related research and

indicates that the models developed in this area are also applicable

to other ophthalmic diseases, demonstrating high generalizability.

On the other hand, the research timeline for age-related macular

degeneration (AMD, a progressive eye disease that affects the

macula, the central part of the retina responsible for sharp, central

vision, which typically occurs in older adults and is a leading cause

of vision loss in people aged 50 and older) is relatively short and

includes few references with high betweenness centrality, implying

that the field has not yet reached saturation and holds potential

for further exploration. Similarly, as shown in Table 9, we selected

several representative papers to illustrate the progress in this field.

In the field of glaucoma, biological parameters such as

the retinal nerve fiber layer (RNFL, the innermost layer of

the retina, composed primarily of the unmyelinated axons of

retinal ganglion cells) thickness are key indicators for evaluating

retinal damage. One study developed a deep learning model for

detecting glaucomatous optic neuropathy (GON, a progressive

and characteristic form of optic nerve damage associated with

glaucoma, typically resulting from retinal ganglion cell loss

and corresponding axonal degeneration) based on 48,116 color

fundus photographs. In this study, 21 trained ophthalmologists

classified the images. GON was defined as a vertical cup-to-

disc ratio of 0.7 or greater, along with other characteristic GON

features. The deep learning system achieved an AUC of 0.986,

with sensitivity of 95.6% and specificity of 92.0%. While the

model delivered promising results, certain limitations remained:

notably, false-negative and false-positive rates were still relatively

high. False negatives were primarily due to pathological or high

myopia, diabetic retinopathy, and AMD, while false positives often

stemmed from physiological cupping (93). These shortcomings

were likely due to algorithmic limitations at the time. As

evidence of this hypothesis, Son et al. in 2020 developed a

model capable of not only distinguishing glaucomatous from non-

glaucomatous disc changes but also achieving an even higher

AUC of 99.9% (94). Interestingly, after 2020, there has been

a notable absence of glaucoma-related references. We propose

two possible explanations: First, the field may have approached

saturation; Second, in the integration of AI and ophthalmology,

the research focus has shifted from single diseases to developing

more generalized models applicable across various eye conditions.

This trend is observable not only in glaucoma but also in DR
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TABLE 9 The decades development of semantic segmentation (#5) and oculomics (#8).

Clusters 2015∼2019 2020∼2024

Author (year), journal, volume Citation Author (year), journal, volume Citation

#10 Glaucoma

Raghavendra U (2018), Inform Sciences, 441 125 Orlando JI (2020), Med Image Anal, 59 212

Fu Z (2018), IEEE T Med Imaging, 37 197

Diaz-Pinto A (2019), Biomed Eng Oline, 18 118

#11 Retinal nerve fiber layer

Christopher M (2018), Sci Rep, 8 102 Son J (2020), Ophthalmology, 85 71

Li ZX (2018), Ophthalmology, 125 288

Liu HR (2019), JAMA Ophthalmol, 137 145

#14 Age-related macular degeneration

Burlina PM (2017), JAMA Ophthalmol, 135 157 Khan SM (2021), Lancet Digit Health, 3 63

Kermany DS (2018), Cell, 172 329 Tan TE (2021), Lancet Digit Health, 3 25

and AMD, as evidenced by a decline in citation frequency and

betweenness centrality in recent years. In contrast, Clusters #1,

#7, and #12, though less studied in earlier years, have continued

their timelines into recent years, suggesting growing interest and

potential (95, 96).

In the AMD domain, one of the early influential studies was

published in JAMA Ophthalmology. This research developed a

deep convolutional neural network (DCNN, CNN with multiple

layers of convolutional operations) model for the automated

classification of AMD in color fundus photographs. The study

compared this dedicated DCNN against alternative deep learning

methods using transfer learning and general features, as well as

trained human graders. The task was formulated as a binary

classification problem—differentiating between no/early AMD

and referable intermediate/late AMD. Multiple experiments were

conducted using different data splits, involving over 130,000 de-

identified images from 4,613 patients. The model’s performance

was evaluated against the gold standard from theNIH’s Age-Related

Eye Disease Study dataset, achieving an accuracy of 91.6% and an

AUC of 0.95 (97). Although its performance was not outstanding

compared to later models, it still outperformed contemporaneous

methods using transfer learning, and despite falling short of

expert graders in accuracy, its speed and scalability far exceeded

that of human evaluation. Another landmark study, published in

Cell, adapted the Inception V3 architecture using OCT images

to guide anti-VEGF therapy decisions for AMD patients. The

model demonstrated the ability to identify underlying pathology on

tissue maps, enabling referral decisions and showing performance

comparable to or even surpassing that of human experts. This

supports timely diagnosis of conditions that may lead to irreversible

severe vision loss (98). As the field evolved, Tan et al. developed

a model using 226,686 retinal images to diagnose retinal diseases.

Unlike earlier studies, this study employed a blockchain-based

AI platform and incorporated data from multiple countries to

improve generalizability. The model achieved an impressive AUC

of 97.3%, marking a significant advancement in AI-assisted retinal

diagnostics (99).

3.6.8 Details of clusters #0 (artificial intelligence),
#3 (ChatGPT), #5 (convolutional neural network),
and #13 (machine learning)

The analysis of Clusters #0 (artificial intelligence), #3

(ChatGPT), #5 (convolutional neural network), and #13 (machine

learning) reveals significant developments in the field of AI and

computer science, particularly as they relate to applications in

ophthalmology. By examining the references (Table 10) in the

timelines of these clusters, we can glean insights into the evolution

of these technologies and make predictions regarding the future

trajectory of AI in the field of eye care.

In 2015, computer scientists began to re-evaluate the

foundational architectures of computer vision, resulting in the

introduction of the V3 version of the Inception architecture

based on CNNs. This innovative framework broke down spatial

representation into asymmetric, smaller convolutions, thereby

reducing computational costs and effectively minimizing grid

size. By employing label smoothing for model regularization, the

framework achieved an impressive reduction in error rates for

image recognition tasks, requiring merely 50 billion multiply-

accumulate operations and containing fewer than 25 million

parameters (100). Additionally, during conferences, researchers

introduced the notion of leveraging deep residual learning to

enhance image recognition efficiency (66). They pointed out future

directions for AI development, such as representing feedforward

networks as non-recurrent graphs extending from input layers

to classifiers or regressors, and performing spatial aggregation

within lower-dimensional embeddings (100, 101). At this stage,

the attitude of ophthalmologists toward these AI advancements

remained somewhat ambiguous, leading to a cautious approach to

their application.

Currently, we observe the emergence of more complex and

accurate models whose diagnostic capabilities often surpass those

of clinical practitioners. Researchers have modernized the standard

ResNet, steering it toward designs akin to vision transformers.

Throughout this progression, several key components responsible

for performance discrepancies were identified. A series of pure
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TABLE 10 The decades development of AI in ophthalmology (Clusters #3, #4, #6) reflected in references.

Clusters 2015∼2019 2020∼2024

Author (year), journal, volume Citation Author (year), journal, volume Citation

#0 Artificial intelligence

Abràmoff MD (2018), Npj Digit Med, 1 295 Xie YC (2020), Lancet Digit Health, 2 111

De Fauw J (2018), Nat Med, 24 328 Teo ZL (2021), Ophthalmology, 128 157

Schlegl T (2018), Ophthalmology, 125 150 Ruamviboonsuk P (2022), Lancet Digit Health, 4 56

#3 ChatGPT

Antaki F (2023), Ophthalmol Sci, 3 39

Mihalache A (2023), JAMA Ophthalmol, 141 31

Momenaei B (2023), Ophthalmol Retina, 7 26

#5 Convolutional neural network

He KM (2016), Proc CVPR IEEE, 0 459 Wang QL (2020), Proc CVPR IEEE, 0 33

Huang G (2017), Proc CVPR IEEE, 0 266

Krizhevsky A (2017), Commun Acm, 60 615

# Machine learning

Gulshan V (2016), JAMA-J AMMed Assoc, 316 465 Sabanayagam C (2020), Lancet Digit Health, 2 26

Ting DSW (2017), JAMA-J AMMed Assoc, 318 460 Zhang K (2021), Nat Biomed Eng, 5 24

Krause J (2018), Ophthalmology, 125 142 Cheung CY (2021), Nat Biomed Eng, 5 53

ConvNet models have been proposed, achieving a remarkable

top-1 accuracy of 87.8% on ImageNet and demonstrating

superior performance over Swin Transformers in COCO detection

and ADE20K segmentation tasks, all while preserving the

simplicity and efficiency characteristic of standard ConvNets (95).

DenseNet has also utilized a method based on horizontal and

vertical patch segmentation for preliminary experiments, yielding

outstanding results (102). Zhou et al. introduced RETFound,

a universal foundational model for disease detection from

retinal images. RETFound can learn generalized representations

from unannotated retinal images and provides a basis for

label-efficient model adaptation across various applications.

This approach offers a generalized solution to enhance model

performance while alleviating the annotation workload for

specialists, thereby facilitating widespread clinical AI applications

in retinal imaging (103).

With the emergence of ChatGPT, an increasing number

of researchers have begun to explore its potential integration

into the field of ophthalmology. One notable study evaluated

ChatGPT’s performance on certification practice questions from

the American Board of Ophthalmology. The results showed that

ChatGPT correctly answered 58 out of 125 questions, yielding

an accuracy of 46%. It performed best in the general medicine

category (11/14; 79%) and worst in the retina and vitreous

category (0%). The proportion of questions for which ChatGPT

provided additional explanations was similar between correctly and

incorrectly answered items. Additionally, the average length of both

the questions and the answers was comparable between correct

and incorrect responses. In 44% of the questions, ChatGPT’s

selected answermatched themost chosen option by ophthalmology

residents on OphthoQuestions (n= 106). These results suggest that

ChatGPT’smedical knowledgemay not yet be sufficiently reliable to

support clinical use, and there is insufficient evidence to confirm its

effectiveness in medical decision-making. It also reflects that we are

still far from truly intelligent healthcare systems (104). As the study

was conducted in January 2023, this may be attributed to ChatGPT

being a newly launchedmodel at that time, with limited intelligence

and functionality. Another study reached similar conclusions. It

generated two simulated examinations of 260 questions each, using

the Basic and Clinical Science Course self-assessment program and

the OphthoQuestions online database. These were used to test two

versions of ChatGPT (the January 9 “legacy” model and ChatGPT

Plus). Logistic regression was applied to assess how exam subject,

cognitive level, and difficulty index influenced accuracy. The results

showed that the legacy model achieved 55.8% accuracy on the

BCSC set and 42.7% on the OphthoQuestions set. With ChatGPT

Plus, accuracy improved to 59.4% and 49.2%, respectively. When

controlling for exam section and cognitive level, questions with

lower difficulty were more likely to be answered correctly (105).

This study, proposed in December 2023, shows improved accuracy

compared to the earlier study, suggesting ChatGPT has become

more capable of handling complex ophthalmic clinical questions.

In contrast, the study by Momenaei et al. supports the

clinical use of ChatGPT, although it emphasizes the need to

inform patients, physicians, and laypersons about the limitations

of these tools in ophthalmic and health-related consultations.

The researchers compiled a list of common questions about

retinal detachment (RD, an ophthalmic emergency in which the

neurosensory retina separates from the underlying retinal pigment

epithelium), macular hole (MH, a full-thickness defect in macula,

specifically in the fovea, the area responsible for sharp central

vision), and epiretinal membrane (ERM, a thin, fibrocellular

layer that forms on the inner surface of the retina, particularly

over the macula)—covering definitions, prevalence, visual impact,

diagnostic methods, surgical and non-surgical treatment options,

postoperative care, complications, and prognosis. Each question
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was asked three times on the ChatGPT-4 platform, and two

independent retinal specialists rated the appropriateness of the

responses. The results were promising: for RD, 84.6% (33/39) of

responses were consistently correct, for MH, 92% (23/25) were

consistently correct, and for ERM, 91.7% (22/24) were consistently

correct. However, 5.1% (2/39) of RD, 8% (2/25) of MH, and 8.3%

(2/24) of ERM responses were deemed inappropriate at least once.

The Flesch–Kincaid grade levels and Flesch reading ease scores

were as follows: RD with 14.1 ± 2.6 grade level and 32.3 ± 10.8

reading ease, MH with 14.0 ± 1.3 grade level and 34.4 ± 7.7

reading ease, as well as ERM with 14.8 ± 1.3 grade level and 28.1

± 7.5 reading ease. These scores indicate that the responses were

difficult to very difficult to read for the general public, requiring a

college-level education to understand the content (106).

3.6.9 Details of clusters #2 (3D object detection),
#9 (image segmentation), and #12 (feature
extraction)

The integration of ophthalmology and AI requires not only

comprehensive data from the ophthalmic field and advanced

models from computer science but also continuous improvements

in image-processing technologies. Here, we also choose some

typical references (Table 11) which can represent the advancement

of this field. In 2018, Zhou et al. proposed VoxelNet in Proc. CVPR

IEEE, a model designed for end-to-end 3D object detection based

on point clouds. This model can directly process sparse 3D points

and effectively capture 3D shape information (107). Although this

technology was introduced relatively early, its integration with

ophthalmology has so far been limited, with very few related

publications. However, it still appears in citation clustering analysis,

leading us to speculate that 3D object detection may become an

important direction for future integration between the two fields.

For instance, in cases where nodules or blebs develop following

a trabeculectomy, this technology could potentially be used to

analyze the scleral surface and help determine the underlying

cause. One study proposed a novel method for constructing a 3D

model of the scleral surface using light field image processing.

First, a scleral surface light field imaging setup was developed

using a Lytro Illum camera equipped with lighting. Second, the

depth maps generated from the light field data were equalized

and filtered to enhance grayscale quality. Third, edge detection

information was added to extract texture features. Finally, 3D

image reconstruction was performed. Based on the measurements,

the average resolution of 3D images reconstructed from objects

captured at a focal distance of 17 cm and a focal length of 80mm

was 0.14mm. The study found that compared with other methods,

image reconstruction using 3D object detection had lower error

rates (108). Another study applied volumetric 3D scanning to

detect vascular structures in fundus images. This model introduced

two general-purpose curved object detectors, which can serve as

building blocks for application-specific systems. These detectors

used fuzzy mathematical morphological operators, which are

robust against uncertainty and noise, and offer a balance between

expressive power and computational demand. The extraction of

linear features was based on fuzzy hit-or-miss transformation and

fuzzy top-hat transformation, both of which can be customized

according to the width of the target structures. Compared to

other state-of-the-art general-purpose curved object detectors, this

method was able to successfully locate the objects of interest across

various grayscale images (109).

In the field of image segmentation, Ronneberger proposed

a convolutional network designed for biomedical image

segmentation in 2015. This image-processing strategy relies

on powerful data augmentation techniques to make more efficient

use of the available annotated samples. The proposed network

architecture consists of a contracting path to capture context and

a symmetric expanding path for precise localization. The study

demonstrated that this network could be trained end-to-end

with a very small number of images, and it outperformed the

previous best method (sliding-window convolutional network)

in the ISBI challenge for segmenting neuronal structures

in electron microscopic stacks (110). Chen et al. proposed

DeepLab, which leverages deep learning to address the semantic

image segmentation problem. First, the study highlighted that

convolutions with upsampling filters, or “dilated convolutions,” are

a powerful tool for dense prediction tasks. Dilated convolutions

allow the model to precisely control the resolution at which

feature responses are computed within deep CNNs. They also

expand the receptive field effectively, enabling the model to capture

more context without increasing the number of parameters or

computational cost. Second, the study introduced Atrous Spatial

TABLE 11 The decades development of AI in keratoconus (#7).

Cluster 2015∼2019 2020∼2024

Author (year), journal, volume Citation Author (year), journal, volume Citation

#2 3D object detection

Zhou Y (2018), Proc CVPR IEEE, 0 27 Dosovitskiy A (2021), Arxiv, 0 210

Shi SS (2010), Proc CVPR IEEE, 0 23 Liu Z (2022), Proc CVPR IEEE, 0 45

#9 Image segmentation

Chen LC (2018), IEEE T Pattern Anal, 40 176 Tan MX (2021), Pr Mach Learn Res, 139 28

Chen LCE (2018), Lect Notes Comput Sc, 11211 143

#12 Feature extraction

Gulshan V (2019), JAMA Ophthalmol, 137 26 Bora A (2021), Lancet Digit Health, 3 24

Schmidt-Erfurth U (2018), Prog Retin Eye Res, 67 193 Jin K (2022), Adv Ophthalmol Pract, 2 26
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Pyramid Pooling for robust object segmentation at multiple

scales. ASPP probes the input convolutional feature layer with

filters at multiple sampling rates and effective receptive fields,

enabling the model to capture both multiscale objects and

contextual information within the image. Finally, the study

improved object boundary localization by combining DCNN

with probabilistic graphical models. While the commonly used

max pooling and subsampling in DCNNs achieve invariance,

they reduce localization accuracy. The researchers overcame

this issue by combining the output from the final layer of the

DCNN with a fully connected conditional random field, which

significantly enhanced localization performance both qualitatively

and quantitatively (111).

Finally, in the area of feature extraction, the VGGNet

architecture has been widely used in the computer science

community for extracting features from images, characterized by its

uniform structure. One study utilized 76,370 retinal fundus images

and combined two CNNs—an improved VGGNet architecture and

a residual neural network architecture—to construct a model for

classifying DR. The results showed that the AI system achieved

an AUC of 0.973 (95% CI: 0.969–0.978) for referable diabetic

retinopathy, with a sensitivity of 92.25% (90.10–94.12) and a

specificity of 89.04% (87.85–90.28). The sensitivity for vision-

threatening diabetic retinopathy was 99.42% (99.15–99.68), and for

diabetic macular edema, it was 97.19% (96.61–97.77). The AImodel

showed comparable performance to human graders in detecting

the prevalence of referable diabetic retinopathy and in identifying

associated systemic risk factors. Both the AI model and human

graders identified longer diabetes duration, higher HbA1c levels,

and elevated systolic blood pressure as risk factors for referable

DR (112). Additionally, Sayres et al. investigated the impact of a

deep learning DR algorithm on physicians in a computer-aided

environment. The study trained the model on 1,796 retinal fundus

images from 1,612 diabetic patients and assessed DR severity based

on the International Clinical Diabetic Retinopathy severity scale

under three reading conditions: unaided, grade-only aid, and grade

+ heatmap aid. The grade-only aid condition included a histogram

of DR predictions (grades) generated by the trained deep learning

model. In the grade+ heatmap condition, an explanatory heatmap

was also provided. The results showed that under the grade-only

condition, readers assisted by the model were more accurate than

those without assistance. The addition of the heatmap further

improved accuracy for DR-positive cases but reduced accuracy for

DR-negative cases. Both aid conditions increased the sensitivity

for detecting moderate or worse DR. These findings suggest that

AI-assisted diagnosis improves the accuracy of retinal specialists,

outperforming either unaided readers or the model alone. It also

boosted readers’ confidence and reduced reading time. In most

cases, the grade + heatmap aid was as effective as the grade-only

aid (113).

4 Discussion

4.1 Brief review of other applications of AI
in ophthalmology

In our analysis, we found that the recent applications of

AI in ophthalmology predominantly focus on image recognition,

facilitating the diagnosis of eye diseases primarily related to retinal

conditions such as DR, AMD, retinal vascular diseases, and changes

in retinal nerve fiber layer thickness due to glaucoma. However, it is

essential to recognize that the role of AI in ophthalmology extends

beyond mere diagnostic support.

AI can significantly contribute to surgical assistance, predicting

complications, and prognostication. Additionally, the predictive

capabilities of AI can enhance preoperative assessments by

identifying patients at higher risk for postoperative complications.

Moreover, the potential applications of AI in ophthalmology

are not confined to retinal diseases. Conditions affecting the

anterior segment, such as refractive errors, cataracts, and corneal

diseases, also stand to benefit from these advanced technologies.

However, this area of application did not stand out in our previous

bibliometric analysis. We speculate that this may be due to the

following reasons: First, due to the current limitations of AI,

both patients and clinicians still hold skepticism toward AI-

driven medical decisions, which results in the small sample sizes

in such studies (114–116). Second, these feature-rich AI models

are relatively new developments in recent years, leading to a

limited number of related publications. As a result, they have

not yet been widely cited by other studies—though we believe

this is a temporary phenomenon. As AI continues to evolve, it is

evident that it can play a vital role across various subspecialties

in ophthalmology. Therefore, a comprehensive review of AI

applications in these broad areas is not only relevant but also crucial

for understanding the future landscape of ophthalmic care and

improving patient outcomes.

4.1.1 The application of AI in hyperopia and
astigmatism

Unlike myopia, where the spherical error is a critical predictive

factor, the axial length is an essential parameter in hyperopia.

Although the literature on AI applications specifically in hyperopia

and astigmatism is sparse, we will provide an overview of

notable advancements.

In the realm of hyperopia prediction and screening, a study

developed a Classification and Regression Tree (CART, a type of

decision tree algorithm used for both classification and regression

tasks in machine learning) model to predict axial length based on

spherical equivalent in hyperopia, for use when AL measurements

are not available. The study divided hyperopic children into three

age groups, measured and calculated the necessary parameters, and

then used the CART model for analysis and prediction, comparing

the results with a linear regression model. The study revealed

that the CART model had an average absolute error of 0.60 when

predicting AL across the three age groups, which was lower than

that of the linear regression model (0.76) (117). Another notable

study by Piotr et al. utilized a CNN to assess fundus images in

hyperopic eyes. The performance of the model, when compared to

two experienced ophthalmologists, achieved an accuracy of 93.3%,

demonstrating high effectiveness. In intraoperative applications,

Gupta et al. modeled the prediction of uncorrected visual acuity

post-LASIK surgery for hyperopia. Their model successfully

achieved a root mean square error (RMSE, a statistical measure

used to evaluate the accuracy of a model’s predictions) of 0.074

1 month postoperation, indicating robust predictive capability
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(118, 119). For prognostic purposes, Raychoudhury employed deep

learning to develop a sensor-enhanced eyeglass named Activisee

to detect discrete and continuous activities in presbyopic patients.

This AI-driven device collects data for further intervention and

effectively mitigates depth perception issues caused by multifocal

lenses, thereby improving the safety and quality of life for

presbyopic patients (120).

In astigmatism, the irregular curvature of the surface of the

eye causes light rays to focus at multiple points, leading to

blurred vision. The primary corrective approach for astigmatism

is the use of rigid gas-permeable contact lenses. Hashemi et al.

conducted a study to fit RGP lenses based on multi-view deep

learning of Pentacam images. Utilizing CNN architectures such

as AlexNet, GoogleNet, and ResNet, they identified features and

performed transfer learning on 247 Pentacam refractive maps.

Their results showed that the multi-view CNN achieved an R-

squared value of approximately 0.83, indicating that this approach

could expedite RGP lens fitting and enhance patient satisfaction

(121). Another study used supervised image processing to classify

Pentacam refractive maps and determine the base curve of RGP

lenses for irregular astigmatism cases. By combining radial sector

segmentation and deep CNN, the study succeeded in obtaining

an R-squared value of 0.9642 and an RMSE of 0.0089. This

technology significantly reduced trial-and-error during lens fitting

and minimized patient visits (122). Wallerstein et al. applied

deep learning to optimize intraocular lens (IOL, an artificial lens

implanted inside the eye to replace the natural lens) calculators by

predicting total corneal astigmatism (TCA, the amount of refractive

error caused by the irregular curvature of the cornea) based on

Pentacam tomographic data. Testing various regression learners,

they found DNN most effective, significantly outperforming

traditional methods in TCA magnitude prediction (R2 = 0.9740,

RMSE = 0.0963 D, mean residual error = 0.0733 D) and reducing

axis prediction error by an average of 8.1◦. This advancement

enables more precise TCA calculation and better IOL selection,

potentially improving surgical outcomes (123).

In summary, while AI applications in hyperopia and

astigmatism are still emerging, existing studies demonstrate

promising results in prediction, screening, intraoperative support,

and prognostic interventions. The integration of AI techniques

such as CART, CNN, and DNN into ophthalmology offers

significant potential for enhancing diagnostic accuracy, treatment

precision, and patient outcomes.

4.1.2 The application of AI in cataract
Cataracts, characterized by the clouding of the lens, are

the leading cause of visual impairment globally. This condition

accounts for approximately 51% of all blindness cases worldwide,

with the majority found in developing countries (124, 125). The

advent of AI holds significant promise in addressing and potentially

mitigating this extensive public health issue.

Fan and colleagues undertook a pivotal study, amassing

647 high-quality images of cataracts spanning four stages. They

employed a stratified random allocation method, dividing the data

into a training set and a testing set at an 8:2 ratio to develop

a classification model, and created both automatic and manual

deep transfer learning (DTL, a machine learning technique that

leverages the knowledge gained from a pre-trained deep neural

network on one task and applies it to improve the performance

of another related task) platforms. The results indicated that

the automatic segmentation DTL platform achieved accuracies of

94.59% and 84.50% on the training and testing sets, respectively.

In contrast, the manual segmentation DTL platform demonstrated

accuracies of 97.48% and 90%. These findings suggest that

automatic segmentation allows for quicker staging of cataracts,

whereas manual segmentation offers higher accuracy. However,

both models exhibited lower recognition rates for mature-stage

images, often misidentifying them as overmature stages (54, 62).

In terms of risk assessment, AI can be particularly useful in

congenital cataracts by leveraging extensive genetic databases in

conjunction with family history and lifestyle data—factors that

traditional screening methods might overlook. This approach

enables the prediction of cataract development in infants, allowing

for continual monitoring and early intervention in high-risk

populations (126). Furthermore, AI can analyze EHR to effectively

identify at-risk patients in primary care settings, facilitating timely

referrals to ophthalmic specialists (127).

AI has also been instrumental in enhancing the efficacy

of cataract surgeries. Mohammadi and colleagues developed a

prototype artificial neural network to accurately predict the

posterior capsule status, thereby forecasting the occurrence of

posterior capsule opacification post-phacoemulsification surgery.

Utilizing the QUEST algorithm to construct decision trees, they

developed three back-propagation artificial neural networks with

4, 20, and 40 neurons in two hidden layers, employing the

same transfer functions (log-sigmoid and linear transfer) and

training protocol. The optimal artificial neural network achieved

an accuracy of 87%, compared to 80% for logistic regression (128,

129). Additionally, Kim et al. applied reinforcement learning to

predict the relative location of the retinal surface to the current

tool tip position, enhancing precision during ophthalmic surgeries.

This method aids in reducing physiological tremors and providing

accurate guidance for surgical maneuvers, particularly during

intricate procedures like anterior capsulorhexis (116, 130).

In the aspect of following up, Edward and colleagues evaluated

the accuracy and safety of a telemedicine call system, Dora R1,

in detecting cataract surgery patients requiring further follow-

up. The study involved 225 participants who received follow-

up calls approximately 3 weeks post-surgery, supervised in real

time by an ophthalmologist. The primary analysis compared

the clinical significance of decisions made by Dora R1 and the

supervising ophthalmologist concerning five distinct symptoms

and the necessity for further examination. A secondary analysis

used mixed methods to assess usability, acceptability, and cost

impact relative to standard care of Dora R1. Dora R1 demonstrated

94% sensitivity and 86% specificity, showing moderate to high

agreement with clinicians across all parameters. Additional studies

on Dora corroborated these promising findings (131, 132).

The integration of AI and diagnosis, management, and

postoperative care of cataracts presents a transformative potential

in enhancing both the efficiency and accuracy of clinical

practices. From improving diagnostic accuracy and risk assessment

to optimizing surgical outcomes and facilitating postoperative
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follow-up, AI technologies are poised to significantly impact the

global burden of cataracts, especially in resource-limited settings.

4.1.3 The applications of AI in keratoconus
The integration of AI in the field of ophthalmology—

particularly in the analysis and diagnosis of retinal diseases—is

becoming increasingly prominent. Notably, although keratoconus

did not stand out compared to other ophthalmic diseases in our

previous bibliometric analysis, it is still reported in numerous

research publications. This emerging trend suggests that AI is

gradually expanding its application scope from retinal pathology to

the anterior segment of the eye, thereby penetrating broader areas

of ophthalmology.

In a highly significant study, researchers utilized tomographic

data to enhance the sensitivity of detecting corneal ectasia. By

generating an AI model based on Pentacam HR (Oculus, Wetzlar,

Germany) parameters, they aimed to assess and detect corneal

ectasia and keratoconus. The study conducted a comparative

analysis of preoperative data from three patient groups: stable

LASIK cases (2,980 patients with a minimum follow-up of 7 years),

ectasia-susceptible cases (71 eyes from 45 patients who developed

post-LASIK ectasia [PLE]), and clinically diagnosed keratoconus

(182 patients). The model’s accuracy was independently tested on

another group of stable LASIK patients (298 patients, minimum

4-year follow-up) and 188 patients with very asymmetric ectasia—

where one eye had a normal corneal topography, and the other

had a clinical diagnosis of ectasia. The results showed that the

Random Forest model achieved the highest accuracy. For clinically

evident ectasia, it had a sensitivity of 100%, and across all cases,

the AUC was 0.992 (sensitivity 94.2%, specificity 98.8%, cutoff

0.216). This performance was statistically superior to that of

the Belin/Ambrósio deviation index (AUC = 0.960, sensitivity

87.3%, specificity 97.5%), indicating that the AI model significantly

enhances the diagnosis of corneal ectasia. However, evaluating

the risk of ectasia still requires integrating corneal biomechanical

parameters and understanding the impact of laser vision correction

procedures on corneal stability (133). In addition, Ghosh et al.

conducted a study applying deep learning algorithms to rapidly

differentiate between fungal keratitis (FK) and bacterial keratitis

(BK). The study utilized a total of 2,167 anterior segment images

from 194 patients, of which 128 had BK (1,388 images, 64.1%) and

66 had FK (779 images, 35.9%). The images were randomly divided

into training, validation, and test sets, following two conditions: (1)

The distribution of BK and FK was similar across all three datasets.

(2) Each patient was assigned to only one dataset (no overlap).

This resulted in a final split ratio of 85:5:10 for training, validation,

and test sets, respectively. Three CNNs—VGG19, ResNet50, and

DenseNet121—were trained to classify the images. The results

showed the following classification performance: VGG19 reached

an F1 score of 0.78, DenseNet121 of 0.71, and ResNet50 of 0.68.

In terms of AUC: VGG19 achieved the highest AUPRC at 0.86,

followed by ResNet50 at 0.73, and DenseNet121 at 0.60. Ensemble

learning further improved performance, with a sensitivity of 0.77,

an F1 score of 0.83, and an AUC of 0.904. These findings

indicate that ensemble CNNs outperform individual models in

distinguishing FK from BK, and the developed model holds

promise as a supportive tool for rapid provisional diagnosis in

patients with microbial keratitis (134–136).

Overall, the data substantiates the promising role of AI in

advancing diagnostic accuracy for both anterior and posterior

segment diseases in ophthalmology, paving the way for future

innovations within this specialized domain.

4.1.4 The applications of AI in other fields related
to ophthalmology

Currently, the advantage of AI lies in its ability to handle

large-scale data and provide more advanced and less error-prone

statistical methods. Therefore, beyond improving classification

accuracy and adding various functionalities in the field of image

recognition through the use of multimodal data, AI advancements

in ophthalmology are also actively transitioning into basic medical

research and clinical applications.

In basic medical science, AI is often used to identify therapeutic

targets for diseases. For example, Velez et al. used antibody

microarray technology to analyze vitreous biopsy samples from

patients with neovascular inflammatory vitreoretinopathy (NIV),

detecting the expression of 200 cytokine signaling proteins.

They compared the NIV samples at various stages of disease

progression to those from non-NIV controls. Using simple

unsupervised AI techniques such as hierarchical clustering and

pathway analysis, they identified patterns in the data. Subjects

treated with repositioning therapy were followed longitudinally.

The model revealed key molecular pathways involved in NIV

pathology, such as persistently elevated VEGF levels in mid-

stage NIV patients, which correlated with disease progression—

suggesting that anti-VEGF injections could alleviate vitreous

hemorrhage without requiring vitrectomy. The study also identified

mTOR and PI3K signaling pathways related to T-cell fate, implying

that methotrexate could reduce NIV-specific T-cell inflammation

without the side effects of corticosteroids. In addition, targeting

IL-6 may help prevent recurrent fibrosis and retinal detachment

(137). AI-driven models used for target identification share

a data-driven learning foundation similar to those in drug

development, leveraging diverse datasets to generate insights and

predictions. Deep learning techniques such as DNNs and CNNs

are commonly used in these models to capture complex patterns

and relationships within the data. Tian et al. emphasized the

importance of allosteric regulation in controlling protein activity,

a critical aspect of drug development. Understanding allosteric

mechanisms—especially the identification of allosteric sites—is a

prerequisite for drug discovery and design. They proposed an

ensemble learning approach that combines XGBoost and Graph

convolutional neural networks to learn the physical properties

and topology of protein binding pockets without prior knowledge.

This method, embedded in tools like PASSer and CLI, aids in

exploring protein allostery and drug development (138). Moreover,

the integration of AI in ophthalmology-related bioinformatics is

also gaining momentum. In combination with proteomics and

metabolomics, one studymeasured 60 plasma cytokines in an initial

cohort. In the validation cohort, ELISA kits were used to confirm

six biomarkers: angiopoietin-1, CXCL16, platelet-derived growth

factor-BB, TIMP-1, TIMP-2, and VEGF receptor 2. A machine
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learning algorithm was developed to build a predictive model for

non-proliferative diabetic retinopathy. The results showed that

plasma Ang-1, PDGF-BB, and VEGF-R2 were associated with the

presence of NPDR, suggesting that these may serve as valuable

biomarkers playing an important role in the pathophysiology of

diabetic retinopathy (139).

In the area of AI-assisted clinical trials, Christopher et al.

designed a deep learning–based model to improve the prediction

of retinal structures and assist in glaucoma neuroprotection trials.

The study included 3,327 paired GCIPL/RNFL scans from the

macular posterior pole and ONH ring of 1,096 eyes from 550

patients, acquired using Spectralis. Participants were randomly

assigned to training/validation datasets (90%) and a test dataset

(10%). The network was given access to the GCIPL and RNFL

data of the probed side of the retina, as well as all retinal

data from the fellow eye. The model was trained to predict the

contralateral GCIPL or RNFL thickness in the probed eye. The

results showed the model could accurately predict superior and

inferior GCIPL thickness, with global R² values of 0.90 and 0.86,

average R² values of 0.90 and 0.86, and mean absolute errors

(MAEs, a statistical measure used to evaluate the accuracy of

a model’s predictions) of 3.72µm and 4.2µm, respectively. For

RNFL thickness prediction, the performance was slightly lower:

global R² values were 0.75 and 0.84, average R² values were 0.81

and 0.82, and MAEs were 9.31µm and 8.57µm. When predicting

GCIPL and RNFL in more advanced diseases, model performance

declined only slightly. Using personalized hemiretina predictions

to account for inter-patient variability, researchers estimated that

a clinical trial could detect a 25% treatment effect over 24 months

with 11 times fewer patients than traditional trials. This indicates

the deep learning model can accurately estimate macular GCIPL

and ONH RNFL hemi-retinal thickness, and model-based internal

controls may help reduce sample size requirements, facilitating

research into new glaucoma neuroprotective therapies (140).

Another study explored the role of AI in clinical trial recruitment

for geographic atrophy (GA, a specific type of degenerative change

in the retina, particularly associated with AMD). Using OCT

scan data, a deep learning model was trained to generate retinal

tissue segmentation maps, identifying patients potentially eligible

for GA trials. The effectiveness of this approach was compared

to traditional keyword-based EHR searches. AI predictions were

validated clinically using fundus autofluorescence (FAF, a non-

invasive imaging technique used in ophthalmology to visualize the

natural fluorescence emitted by certain structures within the retina)

imaging and expert evaluation to calculate positive predictive value

(PPV). The results showed that compared with the EHR search

alone (PPV: 40%), the AI system achieved higher precision, with

a PPV of 63% in identifying eligible patients. The combined AI-

EHR method identified 604 eligible patients with a PPV of 86%.

Among cases that met trial eligibility, the intraclass correlation

between FAF-segmented GA areas and AI-segmented OCT areas

was 0.77. The AI system also adapted to different imaging

criteria across multiple trials, generating customized candidate lists

ranging from 438 to 1,817 patients. This study demonstrated AI’s

potential to automate prescreening for GA clinical trials, including

site feasibility assessment, data-driven protocol design, and cost

reduction. Once therapies become available, similar AI systems

may also be used to identify individuals likely to benefit from

treatment (141).

AI also plays a significant role in Oculomics, a newly emerging

multidisciplinary research field in ophthalmology. Oculomics

involves analyzing ocular images and biomarkers to extract

information about an individual’s overall health and risk of systemic

diseases. Poplin et al. used data from the UK Biobank and

EyePACS databases, collecting retinal fundus images from over

280,000 patients to predict cardiovascular disease (CVD) risk

factors. The model accurately predicted factors such as age and

systolic blood pressure, with MAE of 3.26 years and 11.23 mmHg,

respectively. It also achieved AUCs of 0.97 and 0.71 for predicting

sex and smoking status, respectively. Furthermore, by directly

associating retinal images with CVD events, the model predicted

the risk of major adverse cardiovascular events (MACE) with an

AUC of 0.70, comparable to the European SCORE risk calculator

(AUC = 0.72) (142). Unlike Poplin’s study, which was limited

to cardiovascular risk factors, another research project developed

deep learning algorithms to predict systemic biomarkers from

retinal photographs. This study utilized 236,257 retinal images from

seven different Asian and European cohorts, assessing the ability

of 47 deep learning algorithms to predict 47 systemic biomarkers

as outcome variables. These biomarkers included demographics

(age and sex), body composition measurements, blood pressure,

hematologic parameters, lipid profiles, biochemical indicators,

and biomarkers related to liver function, thyroid function, renal

function, inflammation, and diabetes. The results showed that the

model could quantify body composition indicators (such as muscle

mass, height, and weight) and creatinine from retinal photos. In

the internal test set, the R² for predicting muscle mass was 0.52,

and in an external test set with actual muscle mass measurements,

the R² was 0.33. The R² values for predicting height, weight,

and creatinine in the internal test set were 0.42, 0.36, and 0.38,

respectively. However, performance in external test sets, especially

European cohorts, was considerably lower: R² values for height

ranged from 0.08 to 0.28, weight from 0.04 to 0.19, and creatinine

from 0.01 to 0.26. Out of the 47 systemic biomarkers, 37 could not

be well predicted from retinal images using deep learning (143).

These studies exemplify the use of AI to explore the relationship

between ophthalmology and systemic diseases, representing one of

the promising directions for future development.

4.2 The challenges in the application of AI
in ophthalmology

AI holds immense potential in the field of ophthalmology,

but along with this promise come several pressing challenges. To

achieve a successful transition and widespread adoption, we must

address the obstacles that hinder its development.

4.2.1 Data privacy and ethical issues
First and foremost is the issue of data privacy and ethics.

With the extensive use of big data in the medical field, the

importance of data privacy and ethical considerations has never
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been greater. To widely implement AI in ophthalmology, a vast

amount of data from diverse patients across multiple regions

is required for training. However, this kind of data sharing

often involves sensitive information, which can violate regulations

such as the General Data Protection Regulation in Europe and

the Health Insurance Portability and Accountability Act in the

United States (144). Additionally, data security, a critical aspect

of data privacy, poses significant challenges. The aggregation of

large amounts of sensitive data could become a single point of

failure. Furthermore, healthcare data remains a frequent target for

cyberattacks, particularly in Europe and the United States, where

the healthcare sector continues to incur the highest average breach

costs, exceeding $7 million (145, 146). Adversarial attacks can also

exploit AI models by injecting compromised data during training

(data poisoning) or altering input images, leading to widespread

misclassification by the AI models (147, 148).

This issue has seen partial solutions, such as the adoption

of federated learning, which allows researchers to train AI

across institutions or borders without data sharing. Federated

learning is a privacy-preserving technique exposing models to

heterogeneous, non-independent, and identically distributed data

(149). An extension called swarm learning can further decentralize

AI model parameters, aiding in the development of generalizable

models (150). Additionally, Generative Adversarial Networks can

enhance these datasets, especially for rare diseases like congenital

cataracts (151).

4.2.2 Transparency and explainability of AI
algorithms

The second challenge we face is the transparency and

interpretability of AI algorithms. From a computational

perspective, AI suffers from a ”black box“ phenomenon, where the

decision-making processes are opaque and complicated (152–154).

This lack of transparency and complexity makes AI tools difficult

to manage and monitor, particularly in terms of accountability.

Consequently, this contributes to patients’ distrust toward AI in

the ophthalmology field. Patients are less likely to opt for AI-based

diagnostics if they are unsure about responsibility, diagnostic

safety, and data privacy. On the other hand, doctors’ empathetic

abilities, which involve responding to patients’ emotions, make

patients more inclined to choose human doctors over AI (155, 156).

To address these concerns before integrating AI into clinical

environments, future development should focus on enhancing

policies that govern AI to clarify accountability and usage

responsibilities. Technologically, solving the ”black box“ issue

to improve transparency is crucial. Moreover, training should

emphasize providing necessary humanistic care to patients (155).

4.2.3 The accuracy of AI in ophthalmology
The third challenge is accuracy. Although many studies have

highly praised AI in disease diagnosis, most of these were

conducted on small sample sizes. Overfitting is a common

issue resulting from the inherent problems in algorithm design.

Overfitting occurs when artificial neural networks have too few

samples or too many nodes, causing the model to learn random

noise in the training data as concepts (155, 157). These concepts

do not generalize to new validation data because they are highly

tailored to the training data. Overfitting inflates accuracy and

overestimates the clinical performance of the model. Accuracy can

significantly drop when patient data, such as ethnicity or regional

origin, is heterogeneous (153, 158, 159). This issue hinders AI

deployment, suggesting that a crucial development direction is to

expand datasets and use a more diverse population for AI training

to improve generalizability. However, this also raises other ethical

and privacy concerns (144, 160–162).

In conclusion, while AI holds tremendous promise in

ophthalmology, addressing challenges related to data privacy and

ethics, algorithm transparency and interpretability, and accuracy

is vital for its successful integration and widespread adoption.

Robust regulatory frameworks, technological advancements, and

an emphasis on humanistic care will be essential in overcoming

these obstacles.

4.3 Future prospects

At present, the integration of AI and ophthalmology is

becoming increasingly close. However, as previously discussed,

most existing studies are still focused on the classification and

recognition of retina-related diseases. Although some research has

attempted to apply AI to anterior segment areas of the eye, this

field remains far from saturated. Future studies could incorporate

more anterior segment data—such as slit-lamp examination,

anterior segment OCT, and corneal topography—to explore

ocular surface diseases, including eyelid-related disorders and

corneoscleral diseases.

In addition, although AI has already made significant

achievements in drug development and target identification, its

application in ophthalmology remains limited. We speculate that

this is partly because, compared to easily accessible ophthalmic

imaging, obtaining drug- and protein-related data involves a

longer cycle. On the other hand, computer science researchers and

ocular basic science researchers may still lack awareness of the

importance of interdisciplinary collaboration. Therefore, this area

holds considerable potential for future exploration.

Finally, in terms of ethical AI deployment, it is essential

not only to develop policies to protect data ethics and privacy

but also to create more advanced encryption technologies to

ensure data security during transmission and storage. In addition,

continuous algorithm monitoring is needed. Developers should

actively disclose algorithmic design approaches, training data, and

testing results to enable external review and oversight. For instance,

releasing white papers or technical reports can demonstrate

algorithm transparency to users and regulators. To further promote

AI deployment in ophthalmology, another crucial future direction

is to define a clear responsibility framework and establish a liability

insurance mechanism.

4.4 Advantages and shortcomings

This research possesses several unique advantages. First, we

conducted a bibliometric analysis of the application of AI in the
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field of ophthalmology over recent years, particularly in the post-

pandemic era and during the rapid development spurred by the

advent of ChatGPT. A study conducted by Monson et al. lacks

the use of CiteSpace. Therefore, they lack a deeper analysis such

as burst citation analysis, cluster analysis, and timeline analysis,

which results in that they only emphasize the application of AI

in DR, while in our timeline analysis, we think glaucoma is also

significant in this field (20). Tan et al. focus more on COVID-

19-related telemedicine, as the time span of their analysis is from

2017 to 2021, which overlooks the application of large language

models like ChatGPT in ophthalmology (21). Deng et al. also

conducted a similar analysis. However, their study also lacks the

analysis of cluster and timeline and therefore lacks the finding

of other ophthalmic diseases and ChatGPT (18). Instead, our

analysis provides amore comprehensive understanding for scholars

focusing on this field, which previous studies may lack. Second,

we utilized three bibliometric tools in our investigation, including

VOSviewer and CiteSpace, which are widely used in the field of

bibliometrics, thus ensuring the objectivity of our research. Finally,

compared to traditional reviews, bibliometric analysis offers a more

comprehensive view of the hotspots and frontiers in the field.

However, this study also has some shortcomings. First, as

a consistent and standardized database, WoSCC ensures the

feasibility of our research and the representativeness and high

quality of our literature samples. In addition, due to the limitations

of the tools we use, our data are sourced solely from WoSCC.

Additionally, literature published after December 2024 was not

included in this study, which is unavoidable, but we remain eager

to observe the future integration of AI and ophthalmology.

5 Conclusion

In conclusion, AI holds significant research value and

application prospects in ophthalmology. The rapid increase in

publications indicates growing global interest, with China and the

United States leading the way, while nations such as Singapore,

India, and various European countries also make substantial

contributions. However, enhanced collaboration among these

countries and institutions is necessary. Articles and conferences

in ophthalmology and computer vision are most prominent,

showcasing the unique combination of these fields. Research

on AI and retinal diseases remains a hotspot, likely making

retinal applications the first AI integration in ophthalmology.

Concurrently, the role of AI in anterior segment diseases

such as refractive errors and cataracts is inevitable. Beyond

diagnostics, AI will impact surgery planning, intraoperative

assistance, and postoperative follow-up, simplifying data collection.

Nonetheless, attention must be given to ethical and privacy

concerns, and technical challenges must be addressed to accelerate

clinical translation.
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