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Background: Biological barriers are essential for maintaining integrity and
function and preventing microbial invasion. Maternal barrier dysfunction may
play a role in preterm birth (PTB). However, the link between maternal barrier
function and PTB is still unknown. This study aims to identify genetic evidence
supporting the role of maternal barrier genes in PTB risk.

Methods: We examined 201 barrier-related genes to assess their association
with PTB susceptibility. We utilized the FinnGen study, published literature’s
whole-genome sequencing (WGS) summary statistics and Early GrowthGenetics
(EGG) meta-analysis to identify the maternal barrier gene associated with PTB.

Results: Findings from the analysis of the maternal genome highlighted several
barrier genes (NOTCH1, LAMA4, F11R, MAGI1, MAGI2, TJP1, PARD3, CLDN10,
CLDN14, CLDN15, GRHL3, CGNL1, LAMB2, RHOA, and LRP5) associated
with PTB. Notably, NOTCH1 was supported by at least two independent
genomic datasets.

Conclusion: The established roles of NOTCH1 in vascular barrier function,
angiogenesis, decidualization, intestinal epithelial barrier, and inflammation
support its mechanistic involvement. Our research enhances our understanding
of maternal barrier genes linked to PTB, providing valuable insights for future
prevention and intervention strategies.
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1 Introduction

Preterm birth (PTB) refers to the birth of a baby before completing 37 weeks of
gestation (1). Epidemiological evidence indicates that PTB occurred in ∼9.9% of all live
births worldwide in 2020 (1). Unfortunately,∼70% of PTBs are spontaneous PTBs (sPTBs;
including preterm prelabor rupture of membranes and idiopathic PTB), and remain
poorly understood, with limited tools available for early identification or prevention
(2). The degree of prematurity is directly proportional to the risks of mortality and
morbidity (1). Moreover, PTB is associated with increased risks of long-term health and
neurodevelopmental problems (3). The etiology of PTB is intricate and remains to be
further explored. Cumulative evidence indicates that maternal medical disorders, antenatal
risk factors, inflammatory diseases, genetic predispositions, socioeconomic factors, and
environmental factors are associated with the risk of PTB (2, 4).

Biological barriers are crucial for maintaining their integrity and function, as well as
preventing microbial invasion (5). Various organs possess different biological barriers,
such as the skin, the intestine, the reproductive system, the lung, the central nervous
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system, the placental villi, and the cervix (5, 6). Several
inflammatory disorders are linked to barrier dysfunction, including
inflammatory bowel diseases (IBD) (7), allergic diseases (8),
atopic dermatitis (9), central nervous system disorders (10), and
infections. Inflammatory processes are hypothesized to play an
important role in PTB, and the origin of inflammation may be
due to infection or sterile inflammation (7). Approximately 60%
of PTBs could be ascribed to sterile inflammation (7). Emerging
evidence has linked maternal IBD (8), allergic diseases (asthma,
allergic rhinitis, allergic conjunctivitis, food allergy, drug allergy,
and contact dermatitis) (9), systemic maternal infections, and
bacterial vaginosis (10) with risks for PTB. Barrier-related genes
are those that regulate the structural and functional integrity
of biological barriers. Most of these genes encode junctional or
structural proteins (e.g.,CLDN andTJP1), while others are involved
in signaling pathways (e.g., the Wnt signaling pathway) or tissue-
specific functions (e.g., mucins in the intestine and galectins in
the reproductive tract). However, whether barrier dysfunction
plays a role in preterm is still unknown. Thus, investigating
the correlation between maternal barrier function and PTB is
particularly interesting in light of these findings.

It is crucial to note that women with a history of PTB in
the past are at high risk for recurrent PTB (11). These findings
provide evidence of genetic predisposition to PTB. Based on
epidemiological research, sPTB is influenced by both maternal and
fetal genomes, but predominantly by the maternal genome (12–
14). Genome-wide association studies (GWAS) (15–19), whole-
exome sequencing (20), and whole-genome sequencing (WGS) (21)
studies have indicated that genetic variants in maternal genomes
contribute to the risk of PTB. Previous studies have identified over
750 single-nucleotide polymorphisms (SNPs) in more than 240
genes in thematernal and fetal genomes thatmay be associated with
PTB or gestational duration at birth (2, 22). These genes involved in
tissue remodeling, vascular, endothelial, metabolic, inflammatory,
and immune processes are implicated (2, 22). Together, these
genetic approaches can be used to confirm known associations of
genetic variants and/or discover novel genetic variants.

In the present study, we hypothesized that impaired maternal
barrier function may contribute to PTB. To this end, we
utilized available data sources, including the FinnGen study, WGS
summary statistics from published literature, and the EGG meta-
analysis, to identify evidence for the involvement of maternal
barrier genes in susceptibility to PTB.

2 Materials and methods

2.1 The study design

The goal of this study was to identify genetic evidence of
maternal barrier genes that could affect the risk for PTB. The
analysis workflow was briefly described as follows (Figure 1), and
the details were shown in respective sections. First, we collected a
list of barrier genes from the literature search. Second, we surveyed
and collected public maternal GWAS summary statistics in PTB,
and functionally annotated the variants using computational tools.
Third, we searched for SNPs at barrier genes that were associated
with PTB. Fourth, we explored the mechanisms of those SNPs at
barrier genes that are associated with PTB.

FIGURE 1

The design and workflow of this study.

2.2 Barrier genes

We collected 201 barrier-related genes from the literature
(Supplementary Table S1). Of these, 22 genes associated
with epidermal malignancy were categorized into structural
components, microenvironmental factors, and differentiation-
related groups (23). A total of 146 genes related to intestinal
epithelial barrier dysfunction were identified, including those
involved in the mucus layer, tight junctions, adherens junctions,
desmosomes, hemidesmosomes, cytoskeleton, extracellular matrix,
and regulatory proteins (24). A total of 12 genes associated with
the blood–brain barrier were classified as central nervous system
endothelial cell genes involved in angiogenesis and barriergenesis
(25). In total, 19 genes encoding galectins were included based on
their role in the vaginal microenvironment as a defense barrier
(26), along with two additional barrier-related genes (27, 28).

2.3 Datasets

We surveyed three existing maternal GWAS studies in PTB.
The first study was the PTB GWAS results in FinnGen (29).
FinnGen is a research project that combines genotype data from
Finnish biobanks and digital health record data from Finnish health
registries (https://www.finngen.fi/en) to provide new insights into
disease genetics, and it has conducted a GWAS of 1,932 diseases
in its 224,737 participants. We downloaded the PTB GWAS results
from FinnGen release 8, which included 20,153,666 variants and a
sample size of 7,678 cases and 148,153 controls. It was a maternal
GWAS study, where the cases were females with a history of PTB,
and the controls were females without a history of PTB. The second
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study aimed to identify molecular characteristics of PTB using
multi-omic data (21). It used a cohort of 791 family trios from
various ancestries, of which 270 had PTB. The study integrated
WGS data from the fathers, mothers, and newborns in these
family trios and RNA-seq gene expression and DNA methylation
data from maternal blood samples and gathered comprehensive
clinical information concerning pregnancy, delivery, and newborn
health. We downloaded their released maternal GWAS results,
which included the variants showing FDR < 0.1. The third study
was a meta-analysis of results from multiple PTB GWASs (19),
with a total sample size of 15,419 cases and 217,871 controls. The
summary statistics were derived from maternal GWASs, where
the cases consisted of females with a history of PTB, and the
controls were females without a history of PTB. The data were
downloaded from the website of the Early Growth Genetics (EGG)
Consortium (http://egg-consortium.org).

2.4 Variant functional annotation of GWAS
summary statistics

We searched for SNPs at barrier genes that are associated
with PTB. For studies that released full GWAS summary statistics
(i.e., the FinnGen and EGG datasets), the variant annotation was
applied by the Functional Mapping and Annotation (FUMA) of the
GWASs web application (30), where the SNPs showing p-value < 1
× 10−5 could be lead SNPs for further analysis. The obtained data
of the published literature’s WGS summary statistics were not full
GWAS summary statistics and included only the variants showing
FDR < 0.1, so we used the threshold of FDR-adjusted p-value <0.1
for this dataset. We used a less stringent threshold of p-values,
often termed “suggestive threshold,” to increase discovery power
(31, 32) for understanding what possible mechanisms behind the
associations between the variants and PTB. Existing studies have
used the suggestive threshold in the GWAS and found valuable
insights (33–35). A SNP was mapped to a gene when at least one
of the following conditions was met. First, the SNP was located
on the gene body or up to 10 kb apart from the gene. Second,
the SNP was an eQTL of a gene in at least one available tissue
type of GTEx v8. Third, the SNP was located at least one of
the known chromatin interaction regions in FUMA. A detailed
setup for FUMA annotations is shown in Table 1. The regional
association plot was generated by R.

2.5 Ethical statement

The Institutional Review Board of the E-DA Hospital approved
the study (EMRP-113-099).

3 Results

3.1 NOTCH1 and other barrier genes
exhibit suggestive associations with PTB in
maternal GWAS datasets

There are several types of barrier genes, such as the epidermal
barrier, intestinal barrier, blood–brain barrier, and galectin genes.

We thoroughly investigated all 201 barrier genes to explore
their role in susceptibility to PTB (Supplementary Table S1). A
comprehensive screening of various PTB datasets, such as GWAS
and WGS, was conducted to identify associations with barrier
genes. First, the FinnGen study was used to conduct maternal
GWAS analysis on 7,678 PTB and 148,153 term cases. Genetic
variants at 4 loci were associated with PTB at suggestive significance
(Figure 2, upper panel, and Table 1). Two barrier genes (NOTCH1
and CLDN10) showed potential links to PTB in the FinnGen
dataset among the maternal genome. Second, a maternal GWAS
analysis was performed on 270 PTB and 521 term cases using the
published literature’sWGS summary statistics of maternal genomes
(21). Genetic variants at 35 loci were associated with PTB at
suggestive significance (Figure 2, middle panel, and Table 1). Ten
barrier genes (NOTCH1, LAMA4, F11R, MAGI1, MAGI2, TJP1,

PARD3, CLDN14, GRHL3, and CGNL1) showed potential links
to PTB in the published literature’s dataset among the maternal
genome. Notably, the F11R, NOTCH1, GRHL3, and CLDN14 genes
were associated with preeclampsia-associated PTB. Third, the EGG
meta-analysis was used to conduct maternal GWAS analysis on
15,419 PTB and 217,871 term cases. Genetic variants at 10 loci were
associated with PTB or gestational duration at birth at suggestive
significance (Supplementary Figure S1 and Table 1). Four barrier
genes (CLDN10, LAMB2, RHOA, and LRP5) showed potential links
to PTB in the EGG meta-analysis among the maternal genome
(Table 1). Maternal NOTCH1 was associated with PTB in the
FinnGen dataset, which overlapped with findings in the published
literature’s WGS data. Unfortunately, we found no significant
association for NOTCH1 in the EGG meta-analysis.

3.2 Functional annotation of the NOTCH1
SNPs

Functional annotation of the significant SNPs from 15 imputed
genes was displayed in Table 1. Four maternal SNPs (rs184109994,
rs550621781, rs572341085, and rs73568519) at the NOTCH1

locus were associated with PTB. We highlight a genomic region
spanning 136–137Mb (rs184109994, rs550621781, rs572341085,
and rs73568519) on chromosome 9 in Figure 2, lower panel. The
alleles linked to PTB have not been previously reported. We
mapped the associated variants through 3-D chromatin interaction.
The circos plot clearly illustrates numerous chromatin interactions
between the genomic risk locus and NOTCH1 (Figure 3). Maternal
SNPs (rs184109994) lie within the enhancer region of NOTCH1.
The mapped placenta is functionally involved in providing
nutrients to the fetus, and therefore has implications for its
association with the etiology of PTB (Supplementary Table S3).
However, according to the GTEx database, whether the four
SNPs on NOTCH1 can impact the messenger RNA expression
is uncertain.

4 Discussion

GWAS has provided valuable insights into genetic risk factors
and associated genomic regions for PTB. This is the first
GWAS report on identifying maternal barrier genes associated
with PTB. Analysis of the maternal genome’s GWAS and
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TABLE 1 The barrier genes that overlapped with significantly suggestive variants of GWAS results in PTB.

Study Gene_name Category_barrier Subgroup (in the
PNAS_Maternal
study)

Associated_variant Variant_
chromosome

Variant_position Variant_type p-value Adj-p-
value

FINNGEN NOTCH1 Epidermal rs184109994 9 136598990 intergenic_variant 2.66E-06

FINNGEN NOTCH1 Epidermal rs550621781 9 136760614 intergenic_variant 5.05E-06

FINNGEN NOTCH1 Epidermal rs572341085 9 137059748 intergenic_variant 2.58E-06

FINNGEN CLDN10 Intestinal rs2042214250 13 95431086 upstream_gene_
variant

4.07E-06

PNAS_Maternal F11R Intestinal preeclampsia rs140103079 1 161029167 intergenic_variant 3.88E-05 9.83E-02

PNAS_Maternal F11R Intestinal preeclampsia rs79287702 1 161028641 intergenic_variant 4.08E-05 9.89E-02

PNAS_Maternal F11R Intestinal preeclampsia rs113645076 1 161004237 intron_variant 4.16E-05 9.89E-02

PNAS_Maternal MAGI1 Intestinal uterine_related rs112342007 3 65964722 intron_variant 9.02E-08 1.66E-02

PNAS_Maternal MAGI2 Intestinal uterine_related rs118052567 7 78965551 intron_variant 4.61E-08 1.04E-02

PNAS_Maternal MAGI2 Intestinal uterine_related rs117037980 7 78944071 intron_variant 9.39E-06 6.83E-02

PNAS_Maternal MAGI2 Intestinal uterine_related rs112447832 7 79418529 intron_variant 9.47E-06 6.85E-02

PNAS_Maternal MAGI2 Intestinal uterine_related rs111472497 7 79362461 intron_variant 1.00E-05 7.00E-02

PNAS_Maternal MAGI2 Intestinal uterine_related rs118052567 7 78965551 intron_variant 4.61E-08 1.04E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs73369322 7 79087974 intron_variant 4.28E-06 3.28E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs10235466 7 79360737 intron_variant 1.36E-05 3.87E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs111438787 7 79068804 intron_variant 1.80E-05 6.63E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs73369451 7 78826768 intron_variant 1.84E-05 4.36E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs9918566 7 79377518 intron_variant 2.25E-05 7.66E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs10244234 7 79377972 intron_variant 2.25E-05 7.66E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs66961385 7 79380342 intron_variant 2.25E-05 7.66E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs58310347 7 79383216 intron_variant 3.88E-05 9.50E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs17152233 7 79317828 intron_variant 4.24E-05 9.87E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs116162854 7 79315900 intron_variant 8.49E-05 8.66E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs7787005 7 79344136 intron_variant 8.49E-05 8.66E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs77476937 7 79345313 intron_variant 8.49E-05 8.66E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs7811812 7 79346772 intron_variant 8.75E-05 8.78E-02

PNAS_Maternal MAGI2 Intestinal very_early_preterm rs78254548 7 79380919 intron_variant 1.02E-04 9.22E-02

(Continued)
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TABLE 1 (Continued)

Study Gene_name Category_barrier Subgroup (in the
PNAS_Maternal
study)

Associated_variant Variant_
chromosome

Variant_position Variant_type p-value Adj-p-
value

PNAS_Maternal PARD3 Intestinal very_early_preterm rs74131628 10 34152922 intron_variant 2.03E-07 7.10E-03

PNAS_Maternal PARD3 Intestinal very_early_preterm rs12415515 10 34602685 intron_variant 3.19E-05 9.00E-02

PNAS_Maternal PARD3 Intestinal very_early_preterm rs7914275 10 34149821 intron_variant 4.11E-05 9.38E-02

PNAS_Maternal PARD3 Intestinal very_early_preterm rs60181617 10 34121086 intron_variant 5.35E-05 7.06E-02

PNAS_Maternal PARD3 Intestinal very_early_preterm rs73269421 10 34642009 intron_variant 7.48E-05 8.24E-02

PNAS_Maternal LAMA4 Intestinal cervix_related rs12198087 6 112213659 3′UTR_variant 1.22E-07 1.69E-02

PNAS_Maternal NOTCH1 Epidermal preeclampsia rs73568519 9 136493735 downstream_
gene_variant

1.74E-05 6.72E-02

PNAS_Maternal GRHL3 Epidermal preeclampsia rs114663417 1 24341917 intron_variant 2.88E-06 2.93E-02

PNAS_Maternal GRHL3 Epidermal very_early_preterm rs11799686 1 24349688 intron_variant 1.63E-08 2.68E-03

PNAS_Maternal CLDN14 Intestinal preeclampsia rs116414717 21 36458083 downstream_
gene_variant

1.83E-05 6.84E-02

PNAS_Maternal CGNL1 Intestinal uterine_related rs74797124 15 57491621 intron_variant 7.72E-06 9.05E-02

PNAS_Maternal TJP1 Intestinal very_early_preterm rs45608037 15 29707168 intron_variant 2.03E-05 7.01E-02

EGG_ptb LRP5 BBB rs312778 11 68340864 intron_variant 4.77E-07

EGG_ptb LRP5 BBB rs312777 11 68339796 intron_variant 4.04E-09

EGG_ptb LRP5 BBB rs4930590 11 68654399 intergenic_variant 4.95E-07

EGG_duration CLDN15 Intestinal rs365397 7 102069176 intergenic_variant 4.39E-06

EGG_duration CLDN15 Intestinal rs202162 7 101991968 intergenic_variant 9.91E-06

EGG_duration RHOA Intestinal rs11710434 3 49308697 intergenic_variant 2.26E-06

EGG_duration RHOA Intestinal rs6446284 3 49579564 intergenic_variant 9.84E-06

EGG_duration RHOA Intestinal rs62260755 3 49860885 intergenic_variant 7.61E-06

EGG_duration LAMB2 Intestinal rs11710434 3 49308697 intergenic_variant 2.26E-06

EGG_duration LAMB2 Intestinal rs62260755 3 49860885 intergenic_variant 7.61E-06

A variant was mapped to a gene by FUMA, and its variant type was annotated by Ensembl Variant Effect Predictor (VEP). The p-values and FDR adjusted-p-values were obtained from the respective studies.
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FIGURE 2

Published GWAS results in PTB and suggestive association at NOTCH1. The upper panel showed the Manhattan plot of Finngen GWAS in PTB when
the p-value < 1 × 10−5. The middle panel showed the Manhattan plot of the maternal GWAS results in PTB with preeclampsia when FDR < 0.1. The
lower panel showed a focal region in chromosome 9 where significant variants were found in both GWAS results.

EGG meta-analysis revealed several barrier genes (NOTCH1,
LAMA4, F11R,MAGI1,MAGI2, TJP1, PARD3, CLDN10, CLDN14,
CLDN15,GRHL3, CGNL1, LAMB2, RHOA, and LRP5) associations
with PTB. At least two genomic datasets revealed associations
of NOTCH1.

NOTCH1 was found to be expressed widely but with different
tissue distributions (36). High expression was detected in the
intermediate suprabasal layers, whereas low to intermediate
expression was detected in lymphocytes in peripheral lymphoid
tissues (36). The NOTCH1 signaling pathway in preterm
has potential molecular functions, including vascular barrier
function, angiogenesis, blood–brain barrier, decidualization,
intestinal epithelial barrier, and inflammation (Table 2). First,
NOTCH1 signaling is crucial in maintaining vascular stability
(Supplementary Figure S2). Upon binding to Delta-like ligand
4, NOTCH1 releases the Notch intracellular domain (NICD),
which translocates to the nucleus to induce anti-inflammation and
pro-angiogenesis while suppressing endothelial cell proliferation.
The non-canonical pathway involves the activation of NOTCH1
to release the transmembrane domain, which forms a complex
with VE-cadherin to promote endothelial junction formation
(37). Second, NOTCH1 signaling is crucial for decidualization
progression (38). The decidua acts as a barrier during pregnancy
by regulating trophoblast invasion and the immune response. A
previous study indicated that PTB-associated genes RPBJ interact
with NOTCH1 according to the STRING tool (21). The NICD
regulates the expression of target genes with the DNA-binding
protein RBPJ (39). NOTCH1 signaling via RBPJ regulates the

expression of ovarian steroid receptor PGR and glucose transporter
SLC2A1 during decidualization (40). Decidualization defects
result in recurrent pregnancy loss, preeclampsia, preterm labor,
and intrauterine growth restriction (40). Third, a previous study
indicated that NOTCH1 regulates intestinal epithelial barrier
function via balanced tight junction protein complexes and plays
a vital role in the mucosal immune response (41). NOTCH1 is
essential in early pregnancy, particularly during implantation and
placentation. It enables interactions between the endometrium
and trophectoderm, regulates extravillous trophoblast invasion,
and aids spiral artery remodeling (38, 42). Additionally, it plays
a role in placental angiogenesis by guiding vascular branching
and maturation (38, 42). Disruption of NOTCH1 signaling has
been linked to complications such as preeclampsia, intrauterine
growth restriction, polycystic ovary syndrome, endometriosis,
adenomyosis, infertility, and endometrial cancer (38, 42).
Together, NOTCH1 is crucial for regulating vascular barrier
function, angiogenesis, decidualization, intestinal epithelial barrier
function, and inflammation during pregnancy, and is critical in
preterm delivery (43–45).

The tight junction genes, which include F11R, MAGI1,
MAGI2, and TJP1, encode proteins that interact with each
other according to the STRING tool (46). Tight junction barrier
disruption can increase paracellular permeability, allowing luminal
pro-inflammatory molecules to activate the mucosal immune
system, causing inflammation and tissue damage (47). F11R,
which encodes the F11 receptor, is a tight junction protein that
connects neighboring epithelial or endothelial cells (48). F11R
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FIGURE 3

GWAS significant SNPs at NOTCH1 in Finngen overlapped a known chromatin interaction region. The circos plot on the lower-right side showed the
chromatin interaction mapping results of chromosome 9, and the zoom-in on the NOTCH1 region was on the upper-left side. In the circos plot, the
Manhattan plot on the most outer layer showed the significance of the SNPs with p-value < 0.05, and the SNPs colored in red were in strong LD
(i.e., r2 > 0.8) to one of the independent significant SNPs in the locus. The second and third layers showed the chromosomal locations, and the
genomic risk loci were highlighted in blue. The gene(s) being mapped by chromatin interaction were shown within the two layers, and were colored
in orange. The links colored orange in the innermost region were chromatin interactions. Further details of the plot were shown in FUMA
(https://fuma.ctglab.nl).

is associated with microscopic colitis (49). In addition, F11R,
E-cadherin, occludin, claudin-1, and ZO-1 are abundant in the
human endocervix (50). A lack of tight junctions in the lower
female reproductive tract allows pathogens and immune cells to
move between epithelial cells (51). Furthermore, previous findings
indicated that F11R is one of the candidate genes for preeclampsia
(48, 52). TJP1 encodes tight junction protein 1, also known
as Zonula occludens-1 (ZO-1). TJP1 is a tight junction protein
that connects neighboring epithelial cells and provides cellular
integrity (53). TJP1 downregulation in IBD impairs mucosal repair
and promotes progression (54). In human placental development,
TJP1 also plays a crucial role in trophoblast cell-cell fusion and
differentiation (55). In addition, a previous study has shown that

the downregulation of TJP1 due to inflammation may be a critical
factor in the development of PROM (56). MAGI1 (MAGUK
with inverted domain structure-1) is a tight junction protein
that connects neighboring epithelial cells or vascular endothelial
cells (57, 58). MAGI-1 and its interacting proteins localize to the
tight junctions of epithelial cells, resulting in enhanced epithelial
integrity (57). MAGI-1 is associated with Crohn’s disease (CD)
and microscopic colitis (49, 59). In addition, MAGI1 is crucial for
adherens junction maturation and cell-cell adhesion mediated by
VE-cadherin (58). It regulates vascular functions like permeability,
NO production, and angiogenesis (57). MAGI2 (MAGUK with
inverted domain structure-2) plays a crucial role in maintaining the
barrier function of the kidney (60). In addition, previous studies
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TABLE 2 The potential molecular function of Notch1 signaling pathways

in preterm.

Mechanisms References

Role of Notch1 signaling pathways in vascular barrier
function

(37, 108, 109)

Role of Notch1 signaling pathways in blood-brain barrier (110, 111)

Role of Notch1 signaling pathways in angiogenesis (112, 113)

Role of Notch1 signaling pathways in inflammation (114–118)

Role of Notch1 signaling pathways in decidualization (38)

Role of Notch1 signaling pathway intestinal epithelial
barrier

(41)

indicated that significant associations were found between MAGI2

and celiac disease, IBD, CD, as well as ulcerative colitis (UC)
(46, 61–63).

The FinnGen, EGG, and WGS data from published literature
indicate that the maternal CLDN gene family (CLDN10, CLDN14,
and CLDN15) was associated with PTB. Claudins in paracellular
channels have three types of selectivity: anion, cation, and water
(64). CLDN10, CLDN14, and CLDN15 are members of the claudin
family associated with tight junctions (65). CLDN proteins are
associated with regulating the differentiation of the intestinal
epithelium (66). CLDN10 is associated with HELIX syndrome
(67). CLDN14 acts as a barrier to cations in epithelial cells and
is associated with non-syndromic hearing loss and hypercalciuric
nephrolithiasis (68–71). The formation of CLDN15-based tight
junctions plays a pivotal role in regulating the microenvironment
of the small intestine, particularly in controlling ion conductance
and ensuring normal-sized morphogenesis (72).

Our data indicate that the maternal laminin family (LAMA4

and LAMB2) was associated with PTB. LAMA4, which encodes
the laminin subunit alpha 4, is vital in promoting cell migration,
proliferation, apoptosis, angiogenesis in trophoblast cells,
microvessel maturation, and maintaining endothelial cell tightness
(73–75). LAMA4 is one of the isoforms of laminin that regulates the
maturation and function of the blood-brain barrier (76). Previous
studies have shown that LAMA4 is implicated in regulating the
onset and progression of preeclampsia (73, 77, 78). LAMA4 is a
critical factor in the differentiation and invasion of trophoblasts
(78). Laminin β2 (LAMB2) is a crucial component present in
the intestine, glomerular basement membrane, neuromuscular
junctions, and various ocular structures, and it is associated with
Pierson syndrome (79).

Additionally, some genes related to cell junctions (PARD3 and
CGNL1) have been identified, and some genes associated with
barrier functions (RHOA, GRHL3, and LRP5) have also been linked
to PTB. PARD3 (Par-3 Family Cell Polarity Regulator, also known
as PAR-3) is a regulator of cell polarity in tight junctions of
epithelial cells. Previous studies suggest that PARD3 is linked to
IBD, celiac disease, CD, and UC (63). CGNL1 (cingulin-like 1)
co-localizes with actin filament bundles, suggesting it could be
a key modulator linking intercellular junction assembly to actin
cytoskeleton-regulated morphogenesis in angiogenesis (80). RHOA
is essential for endothelial barrier function (81). RhoA regulates
signal transduction, actomyosin dynamics, cell shape, adhesion,
division, migration, trafficking, and proliferation (81). A previous

study revealed a significant increase in GTP-bound RHOA in the
myometrium of women undergoing spontaneous preterm labor
(82). Grainyhead-like 3 (GRHL3) is essential for maintaining skin
barrier function and epidermal proliferation (83). GRHL3 is linked
to Van der Woude Syndrome and Neural tube defects (84–87).
Low-density lipoprotein-related receptors 5 (LRP5) is a co-receptor
of Wnt/β-catenin signaling and plays a significant role in retinal
vasculature development (88). A previous study indicated that
intronic variants of the LRP5 gene may be associated with obesity
due to their impact on the WNT signaling pathway or lipid
metabolism (89).

4.1 Clinical and research implications

The microbiome is a multifaceted characteristic influenced by
various factors, such as host genetics and the environment (90).
Given the mechanistic link between barrier defects, dysbiosis, and
inflammation, it is tempting to speculate that barrier dysfunction
leads to microbiota dysbiosis, with resultant inflammation and
PTB. For instance, dysregulation of the barrier results inmicrobiota
dysbiosis. The current gut–placenta axis hypothesis indicates that
microbiota-derived metabolites or pathogenic microorganisms
may pass from mother to fetus through the placenta and harm
the fetus (91). Additionally, intrauterine infection leading to PTB
is a result of pathogens ascending from the vagina (92). Finally,
vaginal dysbiosis is linked to bacterial vaginosis, PTB, premature
membrane rupture, and chorioamnionitis (93, 94). Although our
current study does not include microbiome analysis, given these
facts, it is worthwhile to investigate the relationship between tight
junction genes (F11R, MAGI1, MAGI2, and TJP1), dysbiosis, and
PTB in future studies.

Ambient air pollution, including PM2.5, nitrogen dioxide
(NO2), and O3, is associated with adverse perinatal outcomes,
including PTB (95–97), which may be attributed to inflammation
(98), placental inflammation, and reduced blood flow (99, 100).
Additionally, air pollutants can disrupt the epithelial barrier,
contributing to respiratory diseases such as asthma and chronic
obstructive pulmonary disease (101). These findings parallel our
observations of barrier-gene dysregulation in PTB, suggesting that
genetic susceptibility in barrier-related pathways may exacerbate
the inflammatory effects of environmental exposures. Such
dysfunction of the barriers could make the maternal–fetal interface
more susceptible to inflammation caused by pollutants, thereby
increasing the risk of PTB. This underscores a potential interaction
between genetic factors and environmental influences in PTB.

Preeclampsia and PTB may be linked to maternal barrier
defects, indicating that they may share similar mechanisms (21).
For example, endothelial dysfunction is prevalent in preeclampsia,
characterized by barrier disruption and reduced vasodilatory
capacity, which can lead to PTB (102). VE-cadherin is a key
protein in endothelial cells that regulates vascular permeability
and cell–cell contacts. If it is disrupted, the endothelial barrier
function may be compromised, causing inflammation and other
cellular dysfunctions (103, 104). Our findings indicate a correlation
between these genes and PE, as well as VE-cadherin, such
as NOTCH1, LAMA4, MAGI1, and F11R. Unfortunately, we
could not find variants at the NOTCH1, LAMA4, MAGI1,
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and F11R loci associated with PE in the FinnGen database
(Supplementary Table S2).

4.2 Strengths and limitations

The major strength of the study is its examination of the
potential association between maternal barrier genes and PTB. We
identified several maternal barrier genes in different datasets. Our
study has provided new insights into the dysfunction of the barrier,
which can disrupt microbial homeostasis, leading to inflammation
and PTB.

We have identified certain limitations in our study. First, our
data were unable to differentiate between medically indicated PTB
and spontaneous PTB (preterm pre-labor rupture of membranes
and idiopathic PTB). Second, we did not observe a significant
association for NOTCH1 in the EGG meta-analysis. This could
be explained by the large sample sizes, which have resulted in
modest discoveries for PTB due to small effect sizes (2, 105). In
addition, concerns have been raised about the suitability of meta-
analysis methodologies in GWAS due to preterm heterogeneity
observed among studies investigating the same trait (2, 105).
The factors contributing to variability among studies can differ
significantly due to variations in measurement techniques and
research methodologies, the incorporation of diverse ethnic
populations, exposure to varied environmental influences, and the
use of different genotyping platforms (2, 105, 106). Third, the three
significant NOTCH1 variants are located in UTR regions and have
no direct effects attributed to these SNPs.

5 Conclusion

Early detection of the risk of PTB can reduce the global burden
of adverse neonatal outcomes (107). This study confirms that
genomic constitutions may contribute to the risk of PTB in women
before or during pregnancy. Our findings, based onGWAS, provide
novel insights into maternal barrier function and PTB. Further
investigations are warranted to replicate the association between
barrier genes and PTB and to explore the mechanisms of barrier
defects in the pathogenesis of PTB.
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