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Introduction: Accurate segmentation of knee MRI images is crucial for the

diagnosis and treatment of degenerative knee disease and sports injuries.

However, many existing methods are hindered by class imbalance and fail to

capture the features of small structures, leading to suboptimal segmentation

performance.

Methods: This study applies hybrid attention and multi-scale feature extraction

methods to the problem of multi-class segmentation of knee MRI images and

innovates the classic U-Net architecture. Firstly, we propose a Hierarchical

Feature Enhancement Fusion (HFEF) module, which is integrated into both the

skip connections and the bottleneck layer. This module captures channel and

spatial information at multiple levels, enabling the model to e�ciently combine

local and global features. Secondly, we introduce the Atrous Squeeze Attention

(ASA) module, which enables the model to focus on multi-scale features

and capture long-range dependencies, thereby improving the segmentation

accuracy of complex multi-class structures. Lastly, the loss function is optimized

to address the challenges of class imbalance and limited data. The improved loss

function enhances the model’s ability to learn underrepresented classes, thus

enhancing the overall segmentation performance.

Results: We evaluated the proposed method on a knee MRI dataset and

compared it with U-Net. HASA-ResUNet achieved a 12.12% improvement in

Intersection over Union (IoU) for the low-frequency and small-sized class, the

anterior cruciate ligament, and a 3.32% improvement in mean Intersection over

Union (mIoU) across all classes.

Conclusion: These results demonstrate that the proposed hybrid attention and

multi-scale strategy can e�ectively address the challenges of class imbalance in

knee MRI images, improving the model’s overall segmentation performance.
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1 Introduction

Osteoarthritis (OA) is the dominant form of degenerative musculoskeletal disease,

impacting approximately 5% of the worldwide population (1). The knee is the most

frequently invaded site of OA (2). The prevalence of knee osteoarthritis (KOA) is especially

high among the elderly, leading to severe pain, functional impairment, and limited

mobility, which significantly reduce patients’ quality of life (3–5). With further research,

KOA has been recognized as a chronic joint disease involving structures such as articular

cartilage, subchondral bone, and surrounding soft tissues, all of which directly affect knee

joint mobility (6). Therefore, achieving early diagnosis and accurate assessment of KOA is

of crucial importance.

There are numerous types of osteoarticular diseases, and more than 70% of diagnoses

require medical imaging examinations. X-Ray and Computed Tomography have received

broad attention from doctors because of low cost and high efficiency. However, they rely
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heavily on density differences to form images, making them

less effective at discriminating soft tissues. In comparison, MRI

provides comprehensive imaging of various structures and is widely

used in the diagnosis and evaluation of KOA. Furthermore, it is

considered the most effective non-invasive method for quantitative

morphological assessment of knee cartilage due to its high accuracy

(7).

Segmenting knee joint structures is essential for measuring the

desired functional parameters in MRI images, and it has received

considerable attention. In practice, it is time-consuming and

labor-intensive to segment the anatomical structures of the knee

manually, so automatic segmentation of knee images has a strong

practical demand in the clinic. Notably, Convolutional Neural

Networks (CNN) have demonstrated remarkable capabilities in

feature extraction and information representation, and have

become a hot research topic in the field of medical image

segmentation. In 2013, Prasoon et al. (8) proposed using deep

learning to segment tibial cartilage and utilized a triplanar

convolutional neural network by combining three 2D CNNs.

Although only 2D features were used, the three-plane CNN still

outperformed a state-of-the-art method based on 3D features in

segmentation accuracy. Liu et al. (9) developed and evaluated

a new musculoskeletal segmentation algorithm that combined

SegNet with 3D simplex deformable modeling to refine the

segmentation results, preserving the anatomical structures’ shape

while smoothing tissue boundaries. The UNet-CGAN model (10)

employed adversarial training and incorporated Dice and cross

entropy losses into the loss function, effectively guiding the

training process of the generator. The model achieved a Dice

Similarity Coefficient (DSC) of 0.87 and 0.89 for the medial and

lateral meniscus, respectively, and an average DSC of 0.88 for

cartilages. Chen et al. (11) proposed a network structure similar

to pix2pix, which consists of a generator for generating masks

and a discriminator for distinguishing the produced masks from

the true labels. Furthermore, by introducing adversarial loss, this

method significantly improved the segmentation performance of

knee bone and cartilage, with a validation score exceeding 76 on

the SKI10 dataset (12). Woo et al. (13) developed a multi-step

method for the initial detection of abnormalities in the distal femur,

proximal tibia, and patella in individuals with varying degrees of

KOA. Subsequently, the extracted data were used for downstream

segmentation tasks. The anomaly-aware network demonstrated

higher sensitivity and specificity. However, research on full knee

joint structures segmentation is still very limited due to the scarcity

of medical annotation data. Based on 3D fast spin-echo (FSE)

sequence images, Zhou et al. (14) effectively achieved accurate

segmentation of 12 types of knee joint structures by integrating

CNN, 3D fully connected conditional random field (CRF), and

3D simplex deformable modeling. Although this study exhibited

good performance on 3D-FSE images with good tissue contrast, it

remains necessary to explore the clinical potential and applicability

of 2D-FSE images.

To date, automatic segmentation of knee MRI images remains

challenging, primarily due to three reasons, as shown in Figure 1.

Challenge 1: Pixel imbalance. In knee MRI images, certain small

structures (e.g., the meniscus) occupy significantly fewer pixels

compared to larger structures like bones, as illustrated in Figure 1a.

When neural networks are trained on class imbalance datasets, they

are prone to overfitting the training samples of underrepresented

classes, which may result in poor generalization during testing (15).

Challenge 2: Blurred boundaries. The complexity and low contrast

of the anatomywithin the joint cavitymake it challenging to achieve

accurate localization and segmentation, which can easily lead to

false positives or false negatives, as depicted in Figure 1b. Challenge

3: Shape diversity. The knee contains multiple types of tissues

(e.g., meniscus, ligaments, bones, etc.), which exhibit significant

variations in shape, size, and position across different layers, as

shown in Figure 1c. Therefore, achieving optimal performance on

both large and small anatomical structures is a challenging task.

In this paper, we propose HASA-ResUNet, a novel network

designed to address challenges in multi-class anatomical

segmentation of the knee joint, which comprises two key modules:

a Hierarchical Feature Enhancement Fusion (HFEF) module with

hybrid attention, and an Atrous Squeeze Attention (ASA) module.

HFEF is introduced between the low-level and high-level stages

of the model. It extracts rich contextual features by leveraging

channel and spatial attention mechanisms, embedding them into

high-level representations to enhance feature fusion. The ASA is

located in the final layer of the decoder, where it comprehensively

captures and integrates multi-scale features in the image, thereby

improving the quality of output details. Consequently, in terms of

the average DSC across all structures, our model outperforms other

U-Net variants. Specifically, our contributions are as follows:

• To address the challenge of effectively capturing small

structures with the network, we employ the HFEF

module, which enhances the fusion of high-resolution

spatial information from shallow layers and rich semantic

information from deep layers. This approach effectively

preserves fine structural details and improves the model’s

ability to distinguish the boundaries of small anatomical

structures.

• To tackle the difficulty of segmenting knee joint tissues with

diverse shapes, sizes, and complex boundary relationships, we

introduce the ASA module. By introducing atrous pyramid

convolution, this module enables the model to focus on

multi-scale feature representations and capture long-range

dependencies, thereby strengthening its ability to perceive

features at different scales and significantly improving the

segmentation accuracy of multi-class tissues.

• Considering the class imbalance in multi-class segmentation

tasks, we introduce a hybrid loss function to enhance the

network’s learning ability for under-represented classes and

improve the robustness of the training process.

In our experiments, we evaluated the performance of HASA-

ResUNet in segmenting knee joint structures in MRI images. The

results demonstrated that HASA-ResUNet improved the accuracy

of knee segmentation, especially on small structures.

2 Materials and methods

2.1 Dataset

The image dataset consists of 163 sagittal T1-weighted FSE knee

cases, with approximately 15–25 images per sequence, resulting in

a total of 2,910 slices. These images were acquired at 1.5T and 3.0T
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FIGURE 1

(a) Pixel imbalance. (b) Blurred boundaries. (c) Shape diversity.

using scanners from all major MR vendors. The data was randomly

divided into training, validation, and test sets in a ratio of 8:1:1.

A multi-class mask was developed for every image, containing the

following value mappings: 0 = background, 1 = skin, 2 = femur, 3

= tibia, 4 = lateral meniscus, 5 = medial meniscus, 6 = patella, 7 =

patellar ligament, 8 = fibula, 9 = posterior cruciate ligament, and

10 = anterior cruciate ligament. The annotations were performed

manually by three radiologists, with special attention paid to the

accuracy of the target structures and surrounding tissue boundaries

during the annotation process. In the training process, we applied

online data augmentation techniques, including random rotation,

Gaussian noise, elastic deformation, and brightness augmentation.

These techniques introduced random perturbations to the original

data to generate new training samples, thereby increasing the

diversity of the dataset. However, intensity non-uniformity can

arise from variations in acquisition sources, imaging devices,

and scanning parameters, which may significantly impact the

consistency and reliability of image analysis across scans. Therefore,

we standardized the raw image intensities prior to analysis.

Specifically, we applied z-score normalization, adjusting each image

to have a mean intensity of 0 and a standard deviation of 1.

This transformation ensured consistency in image processing and

minimized intensity variations between patient scans, improving

the robustness of subsequent analysis.

2.2 The network architecture of
HASA-ResUNet

The overall architecture of our proposed segmentation model

is shown in Figure 2. It is a U-shaped encoder-decoder network.

The model consists of three core components: the encoder, the

decoder, and the skip connections. Based on ResNet (16), we

proposed using residual blocks to replace the original convolutional

layers in U-Net. Residual units enable the construction of deeper

neural networks by effectively mitigating the vanishing gradient

problem. In contrast, the decoder still uses the traditional

convolutional layers. After each upsampling operation, feature

maps of the same scale from the corresponding feature extraction

part are concatenated along the channel dimension. However,

the shallow network features primarily describe structural details,

which differ from the high-level semantic features in the

upsampling path. Direct concatenation may negatively impact

subsequent processing. To address this, we designed a novel

bridging structure using the HFEF module, which significantly

improves segmentation accuracy and feature fusion by suppressing

redundant information and alleviating semantic mismatches.

Additionally, before generating the final segmentation results, we

introduced the ASA module to enhance the model’s ability to

capture multi-scale features and long-distance dependencies, thus

improving the segmentation accuracy of multi-class structures.

2.3 Hierarchical feature enhancement
fusion

It is challenging to accurately identify the boundaries of small

structures, such as the meniscus and ligaments. These structures

often exhibit low contrast and irregular shapes, making it difficult

for models to effectively capture spatial details. To address this

problem, we introduced the Hierarchical Feature Enhancement

Fusion (HFEF) module, strategically placed between the encoder

and decoder stages of the network. As shown in Figure 3, the core

architecture of the HFEF module consists of three components:

the Channel Attention Block (CAB), the Channel Shuffle (CS),

and the Spatial Attention Block (SAB). The CAB and SAB serve

as complementary attention mechanisms to capture inter-channel

dependencies and spatial relationships, respectively. This design
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FIGURE 2

The structure of the HASA-ResUNet. Residual connections are added in encoding blocks.

adaptively recalibrates the feature maps and highlights important

task-relevant information to enhance segmentation performance

for small and complex anatomical structures.

The CAB recalibrates channel-wise features by modeling inter-

channel dependencies. Let the input feature map be denoted as X ∈

R
C×H×W , where C, H, and W represent the number of channels,

height, and width, respectively. The process can be formalized as

follows:

1. Permutation: Reorganize the input feature map from

X ∈ R
C×H×W to Xp ∈ R

H×W×C to facilitate channel-wise

operations.

2. Channel compression and expansion:

• Apply a linear layer to reduce the channel dimension:

Z1 = W1Xp + b1, Z1 ∈ R
H×W× C

4

where W1 ∈ R
C
4 ×C and b1 ∈ R

C
4 are the weights and bias,

respectively.

• Introduce nonlinearity with ReLU:

Z2 = ReLU(Z1)

• Restore the original channel dimension with a second

linear layer:

Z3 = W2Z2 + b2, Z3 ∈ R
H×W×C

whereW2 ∈ R
C× C

4 and b2 ∈ R
C .

3. Permutation back: Reshape Z3 back to Z4 ∈ R
C×H×W .

4. Channel attention map: Apply a sigmoid activation to

generate attention weights:

Mc = σ (Z4), Mc ∈ R
C×H×W

where σ denotes the sigmoid function.

5. Feature recalibration: Element-wise multiplication with the

input:

Xc = Mc ⊙ X

where⊙ denotes element-wise multiplication.

To further mix and share information, a channel shuffle

operation is subsequently applied. The enhanced feature maps are

divided into four groups, each containing C/4 channels. Then, a

transpose operation is performed on the grouped feature maps to

shuffle the channel order within each group. Afterward, the shuffled

feature maps are restored to their original shape (C×H×W). This

approach enhances the interaction between channels, balances the

feature representation, and effectively integrates global and local

features. Given Xc ∈ R
C×H×W , The process can be formalized as

follows:

1. Group division: Split Xc into S = 4 groups along the channel

dimension:

Xc = [G1,G2,G3,G4], Gi ∈ R
C
4 ×H×W
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FIGURE 3

The structure of the HFEF. The components from left to right are CAB, CS, and SAB. HFEF1, HFEF2, HFEF3, and HFEF4 represent di�erent hierarchical

levels of the HFEF structure.

2. Transpose and shuffle: Rearrange the channels within and

across groups. This can bemodeled as a permutation function π :

Xs = π(Xc), Xs ∈ R
C×H×W

where π interleaves channels from different groups (e.g., taking

one channel from each group cyclically).

Successful segmentation relies on the effective combination

of local and global contextual information. Low-level features

contain rich spatial details, while high-level features provide

advanced semantic information (17). Given the importance of

low-level features for small targets, small convolutional kernels

are used in the lower layers to better extract fine-grained

details. Simultaneously, larger convolutional kernels are used

for high-level semantic information to capture global contextual

information. Specifically, the four hierarchical levels of the SAB

employ convolutional kernels of sizes 3×3, 5×5, 7×7, and 9×9,

respectively, to capture spatial dependencies at different scales. This

enables the extraction of rich and effective feature combinations,

thereby helping the model to accurately locate and segment target

structures. Given Xs ∈ R
C×H×W , the SAB process can be

represented by the following equations:

1.Multi-scale convolution:Apply convolutional kernels of sizes

3×3, 5×5, 7×7, 9×9 at different hierarchical levels (e.g., HFEF1

uses 3× 3). For a kernel size k× k (e.g., k = 3):

• Reduce channels:

F1 = Convk×k(Xs,Wk,1), F1 ∈ R
C
4 ×H×W

whereWk,1 ∈ R
C
4 ×C×k×k.

• Apply Batch Normalization (BN) and ReLU:

F2 = ReLU(BN(F1))

• Restore channels:

F3 = Convk×k(F2,Wk,2), F3 ∈ R
C×H×W

whereWk,2 ∈ R
C× C

4 ×k×k.

• Apply BN:

F4 = BN(F3)

2. Spatial attention map: generate weights with a sigmoid:

Ms = σ (F4), Ms ∈ R
C×H×W

3. Feature recalibration: apply the spatial attention:

XHFEF = Ms ⊙ Xs

The final output XHFEF combines channel and spatial attention,

enhancing feature fusion across scales.
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FIGURE 4

The structure of the ASA.

2.4 Atrous squeeze attention

In traditional U-Net, successive convolution and max-pooling

operations often lead to the neglect of small structures in multi-

class segmentation tasks. To effectively capture spatial information

at various scales, a multi-scale feature extraction method is adopted

to enhance the model’s perceptual capability. Specifically, the

Atrous Squeeze Attention (ASA) module integrates pyramid atrous

convolutions and a channel attention mechanism, as shown in

Figure 4.

The original Squeeze Pyramid Concat (SPC) (18) module can

generate feature representations with different spatial resolutions

and depths through the use of multi-scale pyramid convolution

kernels. However, as the convolution kernel size increases, the

number of parameters also grows significantly. Inspired by Atrous

Spatial Pyramid Pooling (ASPP) (19), we improved the original

SPC module into Atrous Pyramid Concat (APC) as shown in

Figure 5. We adopted a parallel atrous convolution method to

extract multi-scale information, which not only maintains a larger

receptive field but also reduces computational load, making it more

efficient. The input channel dimension is C. By compressing the

channel dimension of the input tensor, each set of feature maps

Fi is assigned a uniform channel dimension C′ = C
S (S represents

the number of groups, and here S=4), enabling efficient extraction

of spatial information across different scales. All preprocessed

feature maps are spliced in a concatenation way, where F denotes

the resulting multi-scale feature maps. Then, channel attention

weights are computed to emphasize informative features across

different scales. The ASA module is mainly implemented in four

steps. First, APC is used to extract spatial information at different

scales from each channel-wise feature map. Second, the Squeeze-

and-Excitation (SE) module is utilized to capture inter-channel

correlations by adaptively adjusting the channel weights. Third,

softmax is applied to recalibrate the attention vector. Finally,

the recalibrated weights are applied to the corresponding feature

maps through element-wise multiplication, resulting in attention-

enhanced multi-scale feature representations.The ASA module

enhances multi-scale feature extraction using atrous convolutions

and channel attention. It is placed in the decoder’s final layer. Let

the input feature map be X ∈ R
C×H×W . The APC module consists

of the following components.

1. Channel compression: Split X into S = 4 groups:

X = [F0, F1, F2, F3], Fi ∈ R
C
4 ×H×W

2. Atrous convolution: Apply atrous convolutions with

different dilation rates r (e.g., r = 1, 6, 12, 18) to each group:

F′i = AtrousConv3×3(Fi,Wi, ri), F′i ∈ R
C
4 ×H×W

whereWi ∈ R
C
4 ×

C
4 ×3×3 and ri is the dilation rate for group i.

3. Concatenation: Combine the multi-scale features:

F = Concat(F′0, F
′
1, F

′
2, F

′
3), F ∈ R

C×H×W

The SE mechanism recalibrates channel weights as follows:

1. Global average pooling: Compress spatial dimensions:

z =
1

H ×W

H
∑

h=1

W
∑

w=1

F(:, h,w), z ∈ R
C

2. Channel excitation:

• Reduce dimensionality:

z1 = W1z + b1, z1 ∈ R
C
4

• ReLU:

z2 = ReLU(z1)

• Restore dimensionality:

z3 = W2z2 + b2, z3 ∈ R
C

3. Attention weights: Apply softmax to normalize weights:

Ma = Softmax(z3), Ma ∈ R
C
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FIGURE 5

The structure of the proposed Atrous Pyramid Concat (APC) module.

4. Feature recalibration: Scale the feature map:

XASA = Ma · F

whereMa is broadcasted across spatial dimensions.

2.5 Loss function

The loss function plays a critical role in the training process

by guiding the model’s learning, optimizing the parameters,

and ultimately influencing its performance. Most loss functions

in image segmentation tasks are based on cross-entropy or

coincidence measures. Traditional CE loss treats all classes

equally. Specifically, the CE loss evaluates the divergence between

the predicted probability distribution and the ground truth,

demonstrating strong performance when class distributions are

balanced. However, class imbalance remains a persistent challenge

in semantic segmentation, particularly in medical imaging

applications. Relying solely on CE loss during training can result

in a model that is disproportionately biased toward the majority

class. Dice loss was introduced in V-Net (20), which penalizes the

spatial overlap difference between predicted and true annotations.

This encourages the model to focus more on small classes, making

it particularly effective for imbalanced datasets. We used a hybrid

loss function that combines CE loss and Dice loss to address the

challenge of unbalanced training data in multi-class segmentation

of the knee. CE loss considers each pixel as an independent sample,

while Dice loss evaluates the final prediction output in a more

holistic way. The loss function is expressed as follows:

CE Loss = −
1

N

N
∑

i=1

[

yi log(ŷi)+ (1− yi) log(1− ŷi)
]

(1)

where N is the total number of samples, yi is the true label of

sample i, and ŷi is the predicted probability that sample i belongs

to foreground.

Dice Loss = 1−
2
∑N

i=1 yiŷi
∑N

i=1 yi +
∑N

i=1 ŷi
(2)

The Dice loss is defined as one minus the Dice score. The Dice

score, a widely used metric for pixel-wise segmentation, is adapted

in this manner to serve as a loss function.

Loss = w1 × CE Loss+ w2 × Dice Loss (3)

where w1 and w2 are adjustable parameters used to balance the

values of the two loss functions. In the experiment, w1 and w2 are

set to 0.5.

3 Experiment and results

3.1 Implementation details

All experiments were conducted using the PyTorch 2.0.0

framework and were run on a single NVIDIA GeForce RTX 4090

GPU. The model was trained with an image resolution of 512×512.

In the training process, the learning rate was set to 1 × 10−4,

and the model was trained over 100 epochs with a batch size of 6

and optimized using Adam. To prevent overfitting and improve

training efficiency, early stopping was employed during model

training. Training was stopped if the DSC on the validation set did

not improve for 5 consecutive epochs. Figures 6a, b depict the loss

curves and the validation DSC curve, respectively.
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FIGURE 6

(a) Train and validation loss curves. (b) Validation DSC curve.

TABLE 1 Metrics of our model compared with DeepLabv3+, ResUNet++, U-Net, HRNet, UNet-VGG16, and UNet-ResNet50 models on the knee joint

dataset.

Methods DSC IoU Precision Recall Trainable params(M) Inference time(s)

DeepLabv3+ 0.8423 0.7632 0.8666 0.8394 39.63 0.65

ResUNet++ 0.8534 0.7760 0.8683 0.8538 4.06 0.27

U-Net 0.8745 0.7985 0.8987 0.8667 31.04 0.63

HRNet 0.8589 0.7842 0.8769 0.8508 28.54 0.25

UNet-VGG16 0.8780 0.8080 0.8994 0.8677 24.89 0.66

UNet-ResNet50 0.8549 0.7801 0.8824 0.8449 43.93 0.29

Ours 0.8991 0.8317 0.9133 0.8925 32.98 0.89

Bold values indicates the highest metric values.

3.2 Evaluation metrics

Taking the segmentation of the femur as an example, a pixel

is called true positive (TP) if it is correctly assigned to the femur

and is defined as false negative (FN) if it is misclassified to some

other category. A background pixel is called true negative (TN)

if it is correctly categorized and is defined as false positive (FP)

if it is misclassified as a femur pixel. Four image segmentation

evaluation metrics were utilized in this study, including Dice

Similarity Coefficient (DSC), Intersection over Union (IoU),

precision, and recall.

DSC is the most commonly used metric in image segmentation

tasks, especially for measuring the overlap between two sets, such as

predicted and ground truth segmentations. The DSC is defined as:

DSC =
2× TP

2× TP + FP + FN
(4)

To calculate the IoU score for each class, divide the intersection

between the ground truth and the predicted segmentation by the

union of the ground truth mask and the predicted segmentation

mask. The IoU is calculated as follows:

IoU =
TP

TP + FP + FN
(5)

Precision measures how many of the samples predicted as

positive belong to the positive class. It is the ratio of the number of

correctly predicted positive samples to the total number of samples

predicted as positive.

Precision =
TP

TP + FP
(6)

Recall measures how many of the actual positive samples are

correctly predicted as positive. It is the ratio of the number of

correctly predicted positive samples to the total number of actual

positive samples.

Recall =
TP

TP + FN
(7)
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FIGURE 7

Visual segmentation results of the knee joint generated by the models. Four groups of images (a–d) were randomly selected from the test set to

compare the segmentation performance of the proposed model with other models.

3.3 Comparative experiments

We used DeepLabv3+ (21), ResUNet++ (22), U-Net (23),

HRNet (24), UNet-VGG16 (25), and UNet-ResNet50 (26) to

validate the performance on the knee dataset and compared

the results with our model. Our model achieved the best

performance, significantly outperforming the U-Net and its

representative variants. Compared to U-Net, our model improved

DSC, IoU, precision, and recall by 2.46%, 3.32%, 1.46%, and

2.58%, respectively. Table 1 shows the final results of different

models on the test set. Our model not only outperforms other

models across various metrics, but the visualization results
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FIGURE 8

The comparison of HASA-ResUNet with U-Net on di�erent anatomical structures.

highlight its exceptional overall performance in the multi-class

segmentation task.

To provide a visual evaluation and comparison of each model’s

performance on the knee joint segmentation task, we randomly

selected four images from the test set, as shown in Figure 7. On

the whole, most models achieved relatively accurate segmentation

for larger structures, such as the skin and tibia. However,

significant differences were observed in the segmentation of

smaller anatomical structures and regions with blurred boundaries.

Notably, HASA-ResUNet demonstrated superior results compared

to other models. As depicted in Figure 7a, the other four

models (ResUNet++, U-Net, UNet-VGG16, and UNet-ResNet50)

exhibited evident under-segmentation for the blurred boundary

between the femur and the surrounding background, and U-Net

also showed discontinuous segmentation. In contrast, our model

excelled in defining the boundary with greater precision. Moreover,

in Figure 7c, our model achieved almost perfect segmentation of

the two medial menisci, outperforming other models. In Figure 7d,

ResUNet++, UNet-VGG16, and UNet-ResNet50 failed to segment

the lateral meniscus. Although U-Net was able to segment the

lateral meniscus, its performance was suboptimal, with inaccurate

segmentation of the boundary between the femur and the anterior

cruciate ligament. Compared to other models, HASA-ResUNet

achieved significantly higher segmentation accuracy, particularly

in areas with ambiguous boundaries across various structures. In

conclusion, the segmentation results indicate that HASA-ResUNet

effectively distinguishes boundaries and mitigates interference,

capturing fine details that U-Net and other U-Net variants fail to

identify.

Statistics were performed on all categories, as shown in

Figure 8. Both models performed best on the bones, with accuracy

above 93%. It is worth noting that our model outperforms U-Net

in almost all categories, particularly in small structures such as the

meniscus and low-frequency categories like the anterior cruciate

ligament and the posterior cruciate ligament.

3.4 Ablation studies

The ablation experiments aim to explore the efficacy of

HFEF and ASA in knee joint segmentation. To this end, we

conducted a series of experiments using ResUNet as the baseline

model and analyzed the contributions of HFEF and ASA in

improving segmentation accuracy. As shown in Table 2. The results
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demonstrate that the advantages brought by the HFEF and ASA

modules are equally important. Compared to ResUNet, the HFEF

module improves DSC, IoU, and recall by 1.00%, 1.29%, and

1.42%, respectively. The ASA module further increases DSC,

IoU, precision, and recall by 1.07%, 1.41%, 0.13%, and 1.42%,

respectively. The integration of the HFEF and ASA modules

further enhances DSC, IoU, and recall by 1.55%, 2.07%, and 2.65%.

The precision remains roughly at the same level. These results

suggest that both HFEF and ASA are effective in improving the

performance of knee segmentation.

4 Discussion

The main work of this study is to design and integrate the

HFEF and ASA modules into a modified ResUNet, and then to

visualize and quantitatively evaluate their performance in a multi-

class segmentation task of knee MRI images. Currently, several

models have been developed for accurately segmenting knee bones

and cartilage (27–29). However, to the best of our knowledge, fewer

studies have been conducted on total knee segmentation. KOA

is a chronic disease that involves multiple structures of the knee

joint, therefore, accurate segmentation of the total knee joint is

one of the key steps in the intelligent diagnosis and treatment

of KOA. The blurred boundaries and severe class imbalance

inherent in the complex knee joint structure present significant

challenges in segmentation. We used U-Net as the foundation

and combined it with ResNet’s residual connections to enhance

information flow, effectively mitigating the gradient vanishing and

information loss problems in deeper U-Net networks. In recent

years, integrating attention modules into various networks has

become increasingly common. By assigning different weights to

different regions, attention mechanisms help the network focus

on important areas while suppressing irrelevant or redundant

information. In (30), the self-attention mechanism was applied

to a computer vision task to capture long-range dependencies,

called non-local attention. However, this approach suffers from

a problem of low efficiency when the input feature map is very

large. Researchers improved the non-local method to enhance

efficiency while retaining important information. Fu et al. (31)

proposed a Dual Attention Network (DANet), which simulates the

semantic interdependence relationships in both spatial and channel

dimensions, achieving rich context dependency to perform the

scene segmentation task. Inspired by these studies, we introduced

two attention modules, HFEF and ASA, to address the limitations

of ResUNet in capturing detailed information. By expanding

the attention range, our method enhances the model’s ability to

integrate anatomical structures at different scales, thus enabling it

to tackle the complex multi-class segmentation task better.

We compared our method with several state-of-the-art

approaches, including the original U-Net model and several

modified versions, such as ResUNet++, UNet-VGG16, and UNet-

ResNet50. The results, as shown in Table 1, indicate that the best

performance is achieved by our proposed HASA-ResUNet method.

Despite strong performance on average metrics, we observed that

even the best-performing model still exhibited low accuracy in

certain structures, such as the menisci and ligaments. This may be

due to the small sample size of our dataset, as deep learning models

require sufficiently diverse training and validation datasets to

TABLE 2 Ablation experiment results.

Methods DSC IoU Precision Recall

ResUNet 0.8836 0.8110 0.9150 0.8660

ResUNet+HFEF 0.8936 0.8239 0.9147 0.8801

ResUNet+ASA 0.8943 0.8251 0.9163 0.8802

ResUNet+HFEF+ASA 0.8991 0.8317 0.9133 0.8925

Bold values indicates the highest metric values.

capture the features of different structures. Another possible reason

is that these structures have unclear boundaries compared to bones,

so the manual labeling results may have introduced reader bias.

Although the HASA-ResUNet segmentation method has many

advantages, there are still some limitations. Our dataset covers the

key structures of the knee joint, but it does not include muscles.

Furthermore, our method is currently limited to processing normal

knee cases and has not been trained with knees with disease. Future

work involving training and validation with larger datasets could

further improve the model’s performance.

5 Conclusions

In conclusion, to address the class imbalance and feature

extraction challenges in our knee joint dataset, we developed a

segmentation network HASA-ResUNet based on hybrid attention

mechanism. This model effectively captures details and integrates

multi-scale information, improving both small structure accuracy

and overall segmentation performance. It enables doctors to

segment knee joint structures more accurately and efficiently,

providing valuable support for the diagnosis and treatment of

KOA. In the future, we aim to conduct further research and collect

extensive data to establish a standardizedmulti-sequence knee joint

dataset, benefiting more patients and orthopedic surgeons.
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