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Machine learning-based 
prognostic prediction model of 
pneumonia-associated acute 
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Objective: This study aimed to construct a machine learning predictive model 
for prognostic analysis of patients with p- ARDS.

Methods: In this single-center retrospective study, 230 patients with p- ARDS 
admitted to the RICU of the second affiliated hospital of Chongqing Medical 
University from January 2020 to November 2024 were included. Patients were 
divided into survival group and death group according to the 28-day prognosis 
results. All patients’ clinical data were first results within 24 h of admission. 20% 
of the total samples were randomly selected as the test set, and the remaining 
samples were used as the training set for crossvalidation, and six different models 
were constructed, including Logistic Regression, Random Forest, NaiveBayes, 
SVM, XGBoost and Adaboost. The AUC value, AP value, accuracy, sensitivity, 
specificity, Brier score, and F 1 score were used to evaluate the performance of 
the models and pick the optimal model. Finally, the SHAP feature importance 
map was drawn to explain the optimal model.

Results: 10 key variables, namely LAR, Lac, pH, age, PO2/FiO2, ALB, BMI, TP, 
PT, DBIL were screened using the filtration method. The importance ranking of 
the variables showed that age was the most important variable. Among the six 
algorithms, the performance of the SVM algorithm is significantly better than 
that of other algorithms. The AUC, AP, Accuracy, Sensitivity, Specificity, Brier 
Score, and F1 Scores in the test set were 0.77, 0.67, 0.74, 0.60, 0.81, 0.19, and 
0.60, respectively. This indicates the potential value of machine learning models 
in predicting the prognosis of patients with p- ARDS.

Conclusion: This study developed and visualized a machine learning model 
constructed based on 10 common clinical features for predicting 28-
day mortality in patients with p- ARDS. The model shows good predictive 
performance and achieves explanatory analysis in combination with SHAP and 
LIME methods, providing a reliable mortality risk assessment tool for p- ARDS.
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1 Background

Acute respiratory distress syndrome (ARDS) is a severe lung disease characterized by acute 
respiratory failure caused by diffuse pulmonary inflammation and edema. It is induced by various 
pathogenic factors in and out of the lung. The main clinical manifestations included progressive 
dyspnea, refractory hypoxemia, and diffuse infiltration of the lungs on chest imaging. Studies have 
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shown that 10% of intensive care unit admissions and 23% of 
mechanically ventilated patients die from ARDS; the mortality rate is 
35% and can be as high as 46% in severe ARDS (1). Various predisposing 
factors, both infectious and noninfectious, can cause direct lung injury 
through local or systemic inflammation (2). Pneumonia is the leading 
cause of ARDS (50–80% of all ARDS) (3), poses a major challenge to 
global health, and ranks among the top 10 causes of death globally (4). 
Studies have shown significant differences in clinical characteristics and 
28-day mortality between patients with direct and indirect ARDS, with 
a higher mortality rate in patients with direct ARDS (5, 6). Given the 
high morbidity and mortality of pneumonia-associated ARDS (p- 
ARDS), it is important to identify in advance which category of p- ARDS 
patients have a poor prognosis. Early risk stratification provides an 
important basis for individualized intervention and treatment, helping 
to reduce mortality in p- ARDS. Widely used scoring systems in the 
intensive care unit (ICU), such as Acute Physiology and Chronic Health 
Assessment II (APACHE II) and Sequential Organ Failure Assessment 
(SOFA) can be used to predict the prognosis of patients with ARDS, but 
with low specificity (7). Berlin staging had limited predictive power for 
mortality in ARDS, with an area under the receiver operating 
characteristic (ROC) curve (AUC) of 0.60 (8). Therefore, the 
development of novel p- ARDS prediction models is of great clinical 
value for risk assessment and clinical management optimization. 
Artificial intelligence machine learning technology has made significant 
progress in the medical field in recent years. Studies have shown that 
machine learning has better prediction than traditional statistical analysis 
(9), and it plays an important role in the diagnosis, risk assessment, 
mortality prediction, and prognosis analysis of ARDS (10–12). For 
example, Wu et al. (13), using data from 4,738 patients extracted from 
the eICU database, constructed a machine model that predicted patients 
with severe ARDS with an accuracy and AUC of 0.9110, 0.8745, 
respectively. However, so far there is no machine learning prediction 
model developed specifically for p- ARDS. Therefore, the clinical risk 
classification of these patients is not clearly defined, which may make 
treatment somewhat more challenging. Our study aimed to construct a 
machine learning prediction model for p- ARDS based on the baseline 
clinical data of p- ARDS patients and to evaluate the patient 
characteristics by interpreting the best model to predict the prognosis of 
p- ARDS patients at an early stage, and to improve the accuracy of the 
prediction model, to guide clinical decision making.

2 Method

2.1 Research subjects

In this single-center regression study, 230 patients with p- ARDS 
admitted to the RICU the second affiliated hospital of Chongqing 
Medical University from January 2020 to November 2024 were included. 
The inclusion criteria were as follows: (1) fulfillment of the diagnostic 
criteria for ARDS in the 2012 Berlin definition (14). (2) Pneumonia is 
the cause of ARDS. The pneumonia was defined as a new pulmonary 
infiltrate on chest X-ray or computed tomography and at least one of the 
following acute lower respiratory infection symptoms: fever, productive 
cough, purulent expectoration, dyspnea, pleuritic chest pain or focal 
chest signs on auscultation or abnormal peripheral white cell counts. 
And it was based on ICD-10 codes J13–J18, which is listed as the primary 
diagnosis or as comorbidities at admission (15). Exclusion criteria are as 
follows: (1) Other direct or indirect causes of ARDS, e.g., aspiration of 

gastric contents, lung contusion, pancreatitis, non-pulmonary sepsis, 
trauma, burns, and poisoning, etc. (2) under 18 years old, (3) pregnancy, 
(4) multi-organ failure, (5) failure to obtain informed consent, (6) 
discharge within 24 h of admission, (7) having incomplete data. Patients 
were divided into two groups according to their 28-day outcomes, the 
survival group and the death group.

A total of 230 patients met the inclusion criteria and all the patients 
were diagnosed with p- ARDS and managed according to international 
guidelines. They are treated by the same group of doctors, the same 
group of first-line doctors have roughly the same level, so most patients 
receive treatment almost the same, which will not have a big difference 
in the results. All included patients were supported by non-invasive 
ventilation at the time of RICU admission, the parameters of mechanical 
ventilation were set to maintain a minimal SPO2 of 93%, a tidal volume 
around 6 mL/Kg and a respiratory rate lower than 30 per minutes. If 
these requirements cannot be  maintained through non-invasive 
ventilation, the patient will be intubated and supported with IMV. The 
IMV was performed with the same target as the non-invasive ventilation. 
Other adjunctive therapies of ARDS (e.g., Corticosteroid, antibiotic 
therapy, ECMO, prone positioning, recruitment maneuvers, maintaining 
of fluid balance, administration of appropriate antimicrobial medications 
and vasopressors, etc.) were performed at the discretion of the physician 
in charge (15, 16).

2.2 Data

Extract and collect data recorded in the electronic medical record 
system. Includes patients: (1) demographic characteristics; (2) clinical 
characteristics (etiology, history of smoking and drinking, past 
medical history, admission/discharge diagnosis, course of disease, 
surgery/consultation records, etc.); (3) complications; (4) laboratory 
indicators (blood gas analysis, procalcitonin (PCT), C-reactive protein 
(CRP), myocardial injury markers, liver and kidney function, 
electrolytes, blood routine, coagulation routine) and other variables. 
The key features were selected from 37 variables by filtering method. 
All clinical data were first results within 24 h of admission.

2.3 Design

In this study, we first use a variety of machine learning algorithms 
for data classification. These algorithms include: Logistic Regression, 
Random Forest, NaiveBayes, SVM, XGBoost, and Adaboost. In each 
training, 80% of the total samples are selected for training, and the 
remaining samples are verified to ensure that the training samples 
selected for multiple model algorithms are consistent, thus better 
comparing multiple models. The optimal hyperparameters of the six 
ML models were determined by 5-fold cross-validation. When 
evaluating the performance of the model, receiver operating 
characteristics (ROC) area under curve (AUC), precision-recall (PR) 
area under curve (AP), accuracy, sensitivity, specificity, Brier score and 
F1 score were used. By comparing the AUC, AP, and Brier scores of 
each model, the model with the highest prediction performance was 
determined. To facilitate clinical interpretation and application, the 
SHAP package treats all functions as “contributors” and generates 
SHAP values, using SHAP values to determine the contribution of 
each input variable to the model output (17, 18), and SHAP feature 
importance maps are drawn to interpret the model. In addition, the 
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LIME (Local interpretable model-agnostic explanations) plots were 
drawn to interpret the prediction results of a single sample and judge 
the reliability of the model.

2.4 Statistical analysis

Patients were divided into two groups based on outcome: those 
who survived and those who died. Continuous data following a 
normal distribution are presented as mean ± standard deviations (SD), 
whereas non-normal data are presented as median and interquartile 
range. Statistical analyses were performed using SPSS Software 
(version 27.0, IBM, USA), with chi-square tests and Mann–whitney 
U tests for categorical and quantitative variables, respectively. Student 
t test was used for normally distributed continuous variables, and 
Mann–whitney U test was used for skewed distributed continuous 
variables. Categorical variables were expressed as percentages or 
frequencies and compared using the chi-square test. p < 0.05 was 
defined as statistically significant. Variables that were statistically 
significant (p < 0.05) between the survival group and the death group 
were included in the multivariate logistic regression analysis to 
identify independent predictors of 28-day mortality. Predictive models 
were constructed using 6 ML algorithms. All analyses and calculations 
were performed using Python V3.8.0.

2.5 Medical ethics approval

This study was approved by the Ethical Committee of the Second 
Affiliated Hospital of Chongqing Medical University (No.2022-729). 
Because of the retrospective nature of this study, the requirement for 
informed consent was waived by the ethics committee. To ensure 
confidentiality, all patient information was anonymously recorded.

3 Results

3.1 Baseline characteristics

A total of 230 patients with p- ARDS were included in the study, 
with 184 patients in the training set and 46 patients in the validation 
set during the multi-model comparison. Baseline characteristics of the 
population are summarized in Table 1.

The results showed that compared with the survival group, the death 
group was older (p < 0.001) and more likely to have comorbid CHD 
(p = 0.026). Procalcitonin (PCT, p < 0.001), troponin I (CTnI, p < 0.001), 
pro-b-type natriuretic peptide (Pro- BNP, p < 0.001), D-dimer (D-dimer, 
p = 0.004), aspartate transaminase (AST, p = 0.049), direct bilirubin 
(DBIL, p = 0.009), urea nitrogen (BUN, p = 0.002), creatinine (CR, 
p = 0.007), prothrombin time (p = 0.002), lactate (Lac, p < 0.001), and 
lactatealbumin ratio (LAR, p < 0.001) were higher in the death group; 
BMI value (p = 0.004), lymphocyte number (Lym, p = 0.008), 
hemoglobin content (HB, p = 0.012), hematocrit (HCT%, p = 0.018), 
platelet number (PLT, p = 0.011), total protein (TP, p = 0.007), albumin 
(ALB, p = 0.003), PH (p < 0.001), Oxygenation Index (PO2/FiO2, 
p = 0.002), bicarbonate ion (HCO3-, p = 0.009) were lower. Variables 
with statistical significance (p < 0.05) between the survival group and the 
death group were included in the multivariate logistic regression analysis. 
The results showed that age (OR = 1.041, p = 0.002), PH (OR = 0.015, 

p = 0.043), PO2/FiO2 (OR = 0.994, p = 0.030), LAR (OR = 2.706, 
p = 0.002), HB (OR = 0.982, p = 0.007) were independent predictors of 
28-day mortality.

3.2 Variable selection

Ten key variables were selected using the filtering method: ‘LAR’, 
‘Lac’, ‘pH’, ‘age’, ‘PO2/FiO2’, ‘ALB’, ‘BMI’, ‘TP’, ‘PT’, ‘DBIL’.

3.3 Comparison of multi-algorithm models

We developed six ML models: Logistic Regression, Random 
Forest, NaiveBayes, SVM, XGBoost, and Adaboost, designed to 
predict 28-day mortality in patients with p- ARDS. After adjusting the 
hyperparameters, these ML models were trained using the training 
set, and the performance of these models was evaluated using the test 
set. The ROC and PR curves for the six models are shown in 
Figures 1A,B, respectively. In the test set, the AUC values for the 
Logistic Regression, Random Forest, NaiveBayes, SVM, XGBoost, and 
Adaboost models were 0.75, 0.67, 0.72, 0.77, 0.65, and 0.69, 
respectively (Figure 1A), and the AP values were 0.64, 0.46, 0.64, 0.67, 
0.54, and 0.69, respectively (Figure 1B). To comprehensively evaluate 
the performance of the models, the accuracy, sensitivity, specificity, 
Brier Score, and f1-Score of each model were calculated separately 
(Table 2). The AUC value and AP value of SVM in the test set are the 
highest, and the Brier Score is the lowest, which indicates that the 
model has high discrimination and calibration, so it is the optimal 
model. The calibration curve for SVM models was illustrated in 
Figure  2, which demonstrated favorable consistency between 
predicted probabilities and observed outcomes. The clinical decision 
curve (DCA) (Figure 3) indicates that the model shows robust net 
benefits across a wide range of threshold probabilities, suggesting that 
the model can effectively guide clinical decision-making, help identify 
the patient groups most in need of intervention, and demonstrate 
potential clinical benefits.

3.4 Model interpretability

Shapley additive explanations (SHAP) is a method of explaining 
machine learning predictive models. The SHAP value provides the 
contribution of each characteristic variable to the results of the 
prediction model, which helps to understand the decision-making 
process of the model. To better understand the relationship between 
the model and the data, we gave a more intuitive interpretation of the 
best-performing SVM model using SHAP to show how these variables 
affect 28-day mortality in the model. The bee colony plot in Figure 4A 
shows the 10 risk factors assessed by SHAP values. Each dot in a row 
represents a patient, and its color indicates the eigenvalue size-red 
indicates high values and blue low values. The more right the point is, 
the greater the positive effect of the feature on the model output is; the 
more left the point is, the greater the negative effect is. The more 
scattered the points of the graph, the greater the influence of the 
variables on the model. Figure 4B shows the important features in this 
model, where the ranking of the features on the Y-axis indicates the 
importance of the prediction model. Studies have shown a high 
correlation between age, Oxygenation Index, body mass index and 

https://doi.org/10.3389/fmed.2025.1582426
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Lv et al. 10.3389/fmed.2025.1582426

Frontiers in Medicine 04 frontiersin.org

28-day mortality in patients with p- ARDS. Among them, age is the 
most important characteristic variable. Furthermore, we provided 
typical examples of predicted survival and predicted death in 
Supplementary Figures S1, S2. Interpretation of single-sample 
predicted outcomes and model reliability judgments were performed 
using LIME plots (Figure 4C).

4 Discussion

Pneumonia is the main cause of ARDS, and p- ARDS has the 
characteristics of high prevalence and high mortality. It is still 

challenging to predict its prognosis quickly and accurately in clinical 
practice. There is an urgent need for an evaluation method with high 
clinical applicability and universality. Early screening of high-risk 
patients facilitates the decision-making process of patient management 
and may improve prognosis. This study is the first attempt to use 
machine learning methods to construct a clinical predictive model of 
28-day mortality in patients with p- ARDS by collecting clinical data. 
In this retrospective cohort study, we  compared the baseline 
characteristics of the survival group and the death group, and analyzed 
the differences between the survival group and the death group, 
multivariate logistic regression analysis showed that age, PH, PO2/
FIO2, LAR, and HB were independent predictors of 28-day mortality. 

TABLE 1 Baseline characteristics.

Characteristics Total (N = 230) Survival group 
(N = 135)

Death group 
(N = 95)

p-value

Sex, n (%) 0.236

  Male 180.00 (78.26) 102.00 (75.55) 78.00 (82.10)

  Female 50.00 (21.74) 33.00 (24.44) 17.00 (17.89)

Age (years) 68.00 (57.00–76.00) 66.00 (55.00–73.00) 72.00 (61.00–79.00) <0.001

BMI (Kg/㎡) 23.19 ± 4.04 23.83 ± 3.90 22.28 ± 4.08 0.004

Comorbidities, n (%)

  COPD, n (%) 9.00 (3.91) 4.00 (2.96) 5.00 (5.26) 0.375

  CHD, n (%) 30.00 (13.91) 12.00 (8.89) 18.00 (18.95) 0.026

  Hypertension, n (%) 78.00 (33.91) 42.00 (31.11) 36.00 (37.89) 0.285

  Diabetes, n (%) 52.00 (22.61) 27.00 (20.00) 25.00 (26.32) 0.260

Laboratory indicators

  WBC (×109/L) 8.89 (6.09–14.13) 9.09 (6.58–14.52) 8.69 (5.09–13.86) 0.077

  Lym (×109/L) 0.59 (0.36–0.91) 0.64 (0.43–0.97) 0.47 (0.27–0.83) 0.008

  Hb (g/L) 120.00 (101.00–135.00) 123.00 (106.00–138.00) 115.00 (96.00–127.00) 0.012

  HCT (%) 35.77 ± 7.02 36.69 ± 90 34.47 ± 7.01 0.018

  PLT (×109/L) 176.50 (114.00–257.25) 181.00 (137.00–257.00) 140.00 (82.00–259.00) 0.011

  PCT (mg/ml) 0.53 (0.16–2.07) 0.40 (0.14–1.12) 1.06 (0.24–3.85) <0.001

  CTnI (umol/L) 0.02 (0.01–0.05) 0.02 (0.01–0.02) 0.03 (0.02–0.12) <0.001

  Pro-BNP (pg/ml) 767.00 (204.03–2138.01) 442.80 (139.00–1275.80) 1454.40 (628.30–2818.00) <0.001

  D-dimer (ng/ml) 1052.80 (549.30–2865.72) 859.10 (481.70–2490.50) 1553.10 (717.60–4982.70) 0.004

  AST (IU/L) 44.50 (26.00–77.50) 43.00 (24.00–67.00) 53.00 (28.00–107.00) 0.049

  DBIL (umol/L) 5.80 (3.80–10.90) 5.20 (3.50–8.90) 6.90 (4.30–13.00) 0.009

  TP (g/L) 58.32 ± 7.76 59.48 ± 7.70 56.69 ± 7.58 0.007

  ALB (g/L) 31.46 ± 4.97 32.28 ± 4.92 30.28 ± 4.84 0.003

  BUN (mmol/L) 7.45 (5.23–11.35) 6.67 (4.93–10.49) 8.61 (6.31–12.28) 0.002

  Cr (umol/L) 76.25 (57.52–100.32) 72.80 (55.10–87.10) 81.50 (62.60–114.30) 0.007

  PT (s) 14.35 (13.30–15.40) 14.00 (13.20–14.90) 14.70 (13.40–16.10) 0.002

  pH 7.45 (7.40–7.48) 7.46 (7.42–7.48) 7.42 (7.36–7.47) <0.001

  PO2 /FiO2 (mmHg) 168.50 (122.00–217.00) 180.00 (136.00–224.00) 146.00 (100.00–202.50) 0.002

  HCO3
− (mmol/L) 23.60 (20.90–26.00) 24.10 (21.70–26.10) 22.80 (19.70–25.30) 0.009

  Lac (mmol/L) 1.70 (1.10–2.50) 1.50 (1.10–2.10) 2.00 (1.30–3.40) <0.001

  LAR 0.52 (0.36–83) 0.47 (0.34–0.68) 0.67 (0.41–1.22) <0.001

COPD, Chronic obstructive pulmonary disease; CHD, coronary heart disease; BMI, body mass index; WBC, white blood cell count; Lym, lymphocyte count; Hb, hemoglobin concentration; 
HCT, hematocrit; PLT, platelet count; PCT, procalcitonin; CTnI, troponin I; Pro-BNP, Pro-Brain Natriuretic Peptide; AST, aspartate aminotransferase; DBIL, direct bilirubin; TP, total protein; 
ALB, albumin; BUN, blood urea nitrogen; Cr, creatinine; PT, prothrombin time; HCO3

−, bicarbonate; Lac, lactic acid; LAR, Lactate albumin ratio.
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And 10 key clinical variables were identified by the filtering method 
to establish 6 prediction models for mortality in p- ARDS, including 
Logistic Regression, Random Forest, NaiveBayes, SVM, XGBoost, and 
AdaBoost. Among them, the SVM model performs the best, with 
AUC value of 0.77 and the lowest Brier Score, indicating that the 
model has high discrimination and calibration. The DCA curve shows 
that the SVM prediction model also has good clinical practicability.

The superior performance of the SVM model in this study may 
be attributed to the following factors: (1) Its ability to handle high-
dimensional spaces: This study involved multiple clinical variables, 
resulting in a high-dimensional data space. SVM excels at finding the 
optimal separating hyperplane in high-dimensional spaces, enabling 
effective data classification. Unlike Logistic Regression, which may 
be limited when dealing with complex feature correlations, SVM is 
better suited to handling these high-dimensional clinical data, 
identifying the boundary that distinguishes related patterns. (2) 
Adaptability to small sample sizes: This study had a relatively small 
sample size of only 230 cases. SVM typically performs well in scenarios 
with small sample sizes. Unlike algorithms such as Random Forest, 
which may face higher risks of overfitting when sample sizes are small, 
SVM can identify optimal decision boundaries based on limited 
samples, thereby performing well in predicting the prognosis of p- 
ARDS in this study. (3) Advantages in handling nonlinear data: SVM 
can map low-dimensional nonlinear data to high-dimensional linearly 
separable spaces using kernel functions (such as radial basis 
functions), thereby effectively handling such nonlinear relationships. 

In contrast, linear algorithms like Logistic Regression struggle to 
handle complex nonlinear relationships (19, 20).

Some important features have been identified in previous studies 
on the prognosis of p- ARDS. In a risk prediction model that included 
75 patients with p- ARDS, the researchers constructed a risk 
prediction model based on age, Apache II score on Days 3 and 7, 
CD8 + T cell count, and length of ICU stay with an AUC value of 
0.928 (21). Another study included 632 p-ARDS patients admitted to 
ICU and developed a nomogram containing age, chronic 
cardiovascular disease, chronic respiratory disease, lymphocyte, ALB, 
creatinine, D-dimer, and PCT to predict mortality (AUC = 0.808) 
(22). Consistent with previous findings, the mean age of patients in 
the p- ARDS death group in this study was 72 years, which was 
significantly older than that in the survival group. This prognostic 
difference may be explained by the presence of multiple comorbidities 
and poor functional status in older patients (23). In the SVM model, 
age is also the most important feature variable. Notably, several 
variables in this study were not noticed in previous models, namely 
BMI, Lar, PH. BMI is a measure of body fatness and nutritional status 
indicators. Previous studies have suggested a U-shaped or j-shaped 
association between BMI and mortality in the general population, 
whereby overweight and obesity are associated with increased risk of 
all-cause mortality and cardiovascular mortality (24). However, in 
recent years, researchers have found the ‘obesity paradox’ in patients 
with heart failure, myocardial infarction, acute coronary syndrome, 
and chronic obstructive pulmonary disease. In a study of 

FIGURE 1

Model comparison chart. (A) ROC curves for 6 machine learning models. (B) PR curves for 6 machine learning models.

TABLE 2 Comparison of model metrics.

Model AUC AP Accuracy Sensitivity Specificity Brier Score F1 Score

Random Forest 0.67 0.46 0.72 0.60 0.77 0.21 0.58

SVM 0.77 0.67 0.74 0.60 0.81 0.19 0.60

XGBoost 0.65 0.54 0.65 0.33 0.81 0.21 0.38

Logistic 0.75 0.64 0.76 0.73 0.77 0.20 0.67

NaiveBayes 0.72 0.64 0.76 0.53 0.87 0.21 0.59

AdaBoost 0.69 0.55 0.70 0.47 0.81 0.23 0.50
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FIGURE 2

Calibration curve for SVM model.

FIGURE 3

DCA curves of the models.
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ultra-advanced age (≥80 years) populations, there was an inverse 
association between BMI and mortality, presenting an inverse 
j-shaped curve (25). Similarly, the ‘obesity paradox’ phenomenon has 
been observed in studies of 1-year survival in adult patients with 
sepsis (26). A similar conclusion was reached in this study, that the 
BMI value of the survival group was greater than that of the death 
group (p  = 0.004), and BMI was also included as an important 
characteristic variable in the model construction. This may be related 
to the higher energy reserves, higher tolerance to treatment and better 
nutritional and immune status of obese patients. This suggests that an 
active nutrition and conditioning program may be  beneficial for 
patients who anticipate major surgery and may be admitted to the 
ICU, and that this preparation may enhance their adaptive capacity, as 
well as their ability to cope with life-threatening conditions, and 
improve prognosis in the face of critical illness, including ARDS and 
sepsis. Lactate-to-albumin ratio (LAR) is a new indicator that 
comprehensively considers individual tissue perfusion metabolism 
and nutrition, which is mainly suitable for the study of prognosis of 
critically ill patients. Studies have shown that LAR was an independent 
predictor of 28-day mortality in patients with ARDS (HR 1.11, 95% 
CI: 1.06–1.16, p < 0.001). The area under the curve (AUC) of LAR in 
ROC was 70.34% (95% CI: 66.53–74.15%), which provided higher 

discrimination when compared to lactic acid (AUC = 68.00%, 
p = 0.0007) or albumin (AUC = 63.17%, p = 0.002). Kaplan - meier 
survival analysis showed that 28-day overall mortality (p < 0.001) and 
in-hospital mortality (p < 0.001) were significantly higher in patients 
with ARDS with a high LAR (> cutoff 0.9055) (27). This study also 
reached similar conclusions that LAR was an independent predictor 
of 28-day mortality in patients with p- ARDS (OR = 2.706, p = 0.002), 
with higher levels of LAR associated with higher 28-day mortality. 
Sepsis, kidney failure and impaired respiratory function all disrupt the 
body’s ability to regulate pH and maintain homeostasis. Studies have 
shown that increased mortality in intensive care patients is associated 
with changes in blood pH (28). Meta-analysis of predictors of 
mortality in severe pneumonia showed that arterial blood PH was 
associated with severe pneumonia prognosis (29). This study also 
showed that PH was a risk factor for death in patients with p- ARDS 
and included PH as a key variable in the prediction model. In addition, 
another major strength of this study is that fewer clinical indicators 
are required in the model construction process and are easily available, 
which means that the medical costs of patients can be  saved to a 
large extent.

This study also enhanced model transparency by combining 
SHAP and LIME methods to explain the model. SHAP quantifies 

FIGURE 4

Interpretation of the model. (A) SHAP plot of 10 key variables. (B) Importance ranking chart of 10 key variables. (C) LIME plot of a single sample.
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feature contributions, while LIME provides local explanations of 
predictive logic. Clinicians can use SHAP values and local explanations 
of LIME to understand which clinical variables have a greater impact 
on p- ARDS predictions. By comparing SHAP values across different 
patients, key factors influencing individual disease severity can also 
be  analyzed. By analyzing patient risk from a pathophysiological 
perspective using this information, clinicians can assist in assessing 
disease severity and developing personalized treatment plans. In 
summary, this model may play an important role in clinical practice. 
First, in terms of risk stratification, the model can assess patient risk, 
distinguishing between high-, medium-, and low-risk groups, 
potentially identifying patients with high mortality risk. This enables 
healthcare providers to conduct risk communication and provide 
closer monitoring and early intervention. Second, the model can 
predict the efficacy of different treatment modalities based on patient 
characteristics, assisting clinicians in developing personalized 
treatment plans. Finally, the model can be used to assess patient risk, 
allocate medical resources reasonably, and improve resource 
utilization efficiency. However, in clinical practice, model predictions 
should be  combined with clinical judgment. Model predictions 
provide data support, while clinicians make comprehensive judgments 
based on their own experience, patient preferences, and other factors 
to make the best clinical decisions.

Although this study developed and validated an early dynamic 
prediction model for 28-day mortality in p- ARDS, providing some 
support for early clinical intervention in high-risk patients, there 
are still some limitations and more work needs to be done. First, 
this study is a single-center retrospective analysis with a limited 
number of patients. Although we grouped the study subjects to 
assess the stability of the predictive model, the model has not been 
externally validated. Future studies should validate the model on 
larger external datasets and evaluate its performance in multicenter 
prospective studies to demonstrate its generalizability. Second, this 
study focused on predicting p- ARDS mortality based on initial 
conditions at admission, when treatment had not yet been fully 
initiated. Initial clinical variables better reflect the natural course 
of the disease. To avoid confounding bias introduced by treatment 
interventions, treatment variables were not included. However, this 
may have overlooked the potential impact of treatment on 
outcomes, leading to some bias in the model. Future studies should 
consider refining the inclusion of treatment variables to assess 
their corrective effect on model predictions. Additionally, the type 
and cause of pneumonia may lead to different outcomes for ARDS 
patients. However, due to insufficient data, we  were unable to 
conduct further subgroup analyses. Fourth, our model uses easily 
accessible clinical variables, enhancing its practicality. However, in 
different healthcare settings, factors such as differences in 
equipment and resources, staff expertise and operational standards, 
and patient cooperation may pose challenges to the continuous 
collection of these variables. Therefore, future studies should 
investigate the data collection capabilities of healthcare facilities at 
different levels, propose standardized data collection processes or 
alternative indicator schemes, and ensure the model’s applicability 
across different scenarios. Finally, imaging data were not collected. 
Simple laboratory test results are less detailed than comprehensive 
imaging studies and laboratory data. However, using only these 
data can help patients save on prediction costs and medical 
expenses, and integrate more measures into the diagnostic system 
to achieve personalized treatment.

5 Conclusion

In conclusion, this study developed and visualized a convenient 
and economical prediction model for predicting 28-day mortality in 
patients with p- ARDS. The machine learning prediction model 
consisting of 10 common clinical features had satisfactory prediction 
performance, which indicates the potential value of machine learning 
models in predicting the prognosis of patients with p- ARDS, may 
enable clinicians to better predict mortality risk. This study combines 
machine learning with SHAP and LIME to explain the model in depth 
while also facilitating the optimization of the model. The model can 
also be applied to risk prediction of other diseases and provide better 
interpretation. Future multicenter prospective studies with larger 
sample sizes are needed to confirm our results and validate or improve 
our predictive models.
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