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Introduction:Oral squamous cell carcinoma (OSCC) is a significant global health

burden, where timely and accurate diagnosis is essential for improved patient

outcomes. Conventional diagnosis relies on manual evaluation of hematoxylin

and eosin (H&E)-stained slides, a time-consuming process requiring specialized

expertise and prone to variability. While deep learning methods, especially

convolutional neural networks (CNNs), have advanced automated analysis of

histopathological images for cancerous tissues in various body parts, OSCC

presents unique challenges. Its infiltrative growth patterns and poorly defined

boundaries, coupled with the complex architecture of the oral cavity, make

accurate segmentation particularly di�cult. Traditional CNNs which sturggle

to capture critical global contextual information often fail to distinguish the

complex tissue structures in OSCC images.

Methods: To address these challenges, we propose a novel architecture

called gamUnet, which integrates the Global Attention Mechanism (GAM) to

enhance the model’s ability to capture global cross-modal information. This

allows the model to focus on key diagnostic regions while retaining detailed

spatial information. Additionally, we introduce an extended model, gamResNet,

to further improve OSCC detection performance. Both architectures show

significant improvements in handling the unique challenges of oral cancer

images.

Results: Extensive experiments on public datasets show that our GAM-enhanced

architecture significantly outperforms conventional models, achieving superior

accuracy, robustness, and e�ciency in OSCC diagnosis.

Discussion: Our approach provides an e�ective tool for clinicians in diagnosing

OSCC, reducing diagnostic variability, and ultimately contributing to improved

patient care and treatment planning.
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oral squamous cell carcinoma (OSCC), segmentation, image processing, image
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1 Introduction

Oral squamous cell carcinoma (OSCC) is an aggressive
malignancy characterized by high global incidence and mortality
(1, 2). OSCC arises from abnormal cellular proliferation within
the oral epithelium and represents a significant global health
burden, accounting for over 90% of oral malignancies (3–5).
Annually, more than 657,000 new OSCC cases are diagnosed,
resulting in ∼330,000 deaths (6). Timely and accurate diagnosis
is critical, as survival rates drastically decrease from 80% in
early-stage cases to 20%–30% in advanced stages (7). Currently,
OSCC diagnosis primarily relies on microscopic examination of
hematoxylin and eosin (H&E)-stained tissue slides (8). However,
this manual process is highly labor-intensive, time-consuming
and subject to inter-observer variability, which underscores the
necessity for automated solutions to improve diagnostic accuracy
and consistency.

Deep learning, particularly convolutional neural networks
(CNNs), has emerged as a powerful tool for medical image analysis.
For instance, U-Net (9) and its variants have achieved notable
success in segmenting medical images across modalities such as CT,
MRI, and histopathology (10–13). Similarly, ResNet (14) is widely
applied for classification tasks, effectively identifying diseases
including colorectal cancer, brain tumors, and glioma subtypes
(15–17). Building on these successes, CNNs hold promise for
OSCC image analysis, potentially enhancing diagnostic efficiency.
Previous studies on OSCC segmentation have predominantly
utilized variants of U-Net or other CNN-based models, achieving
promising results through enhanced architectures, multi-stage
approaches, and feature extraction techniques (18–21). For OSCC
classification, architectures and transfer learning strategies have
been employed (22–27), reporting high accuracy but often facing
limited sensitivity, robustness, and generalizability due to small
datasets or inconsistent preprocessing. Overall, despite these
advances, existing methods for OSCC still encounter significant
challenges in effectively balancing accuracy, computational
efficiency, and robustness in clinical settings.

The complexity of oral cavity tissue structures introduces
unique challenges to OSCC imaging analysis, differentiating it from
other cancers characterized by more homogeneous tissues (28).
OSCC typically exhibits invasive growth patterns with ill-defined
boundaries (29, 30), frequently infiltrating adjacent complex
tissues including mucous membranes, bone, and soft tissues
(31–33). This invasive behavior complicates tumor boundary
delineation, as critical pathological features may span multiple
image regions, making it particularly challenging to delineate
the exact borders of the tumor. Traditional CNN approaches,
like U-Net, ResNet, and exisiting OSCC methods building upon
them, relying heavily on localized convolutional operations, often
fall short in effectively capturing the global context and long-
range dependencies critical for accurately segmenting OSCC. As
a result, current automated solutions for OSCC segmentation and
classification remain suboptimal

A possible solution is utilizing the attention mechanism.
Recently, research has explored incorporating attention
mechanisms to enhance CNN performance in image tasks.
SENet (34) used channel attention but lacked spatial awareness.

CBAM (35) and BAM (36) incorporated spatial attention but
couldn’t fully capture interactions across all dimensions, and
TAM (37) improved this by addressing two dimensions at a time.
GAM (38) further advanced this by simultaneously capturing
cross-dimensional interactions, making it ideal for handling
complex medical images.

However, the application of attention mechanisms,
including GAM, to OSCC H&E-stained histopathological
image segmentation and classification remains underexplored.
Existing research primarily focuses on refining CNN architectures
or applying transfer learning without fully addressing the inherent
challenges in OSCC imaging, as analyzed aforementioned.

To address these challenges, we propose a novel approach
designed specifically for OSCC. We introduce gamUnet, an
innovative model integrating the Global Attention Mechanism
into the U-Net architecture to enhance the capture of global
context and cross-dimensional interactions, crucial for delineating
complex OSCC tissue structures. Furthermore, we propose
gamResNet, extending our approach by incorporating residual
networks enhanced by GAM to improve OSCC detection.
Our proposed models effectively address existing limitations,
significantly improving the segmentation and classification
accuracy and robustness for OSCC.

Our key contributions are as follows:

• We propose gamUnet and gamResNet, two novel
architectures integrating GAM for improved OSCC
segmentation and detection.

• We demonstrate the advantage of global attention mechanism
in capturing complex tissue structures and delineating tumor
regions, providing insight into the benefits of GAM inmedical
image analysis.

• Our experimental results validate that our models significantly
outperform traditional CNN approaches, offering a promising
tool for clinical application in OSCC diagnosis.

2 Related work

2.1 Deep learning for OSCC analysis

Past studies have examined various deep learning architectures
for OSCC segmentation. Martino et al. (18), for instance,
introduced the Oral Cancer Annotated (ORCA) dataset and
evaluated multiple CNN-based architectures on the dataset,
including SegNet, U-Net, and U-Net variants with VGG-
16 and ResNet50 encoders, which showed promising results.
Dos et al. (19) incorporated color space features into a U-
Net-based model for better tumor region identification and
background removal, and achieved an impressive accuracy of
97.6% on the Oral Cavity-Derived Cancer(OCDC) dataset.
Pennisi et al. (20) designed a Multi-encoder U-Net where
input images were divided into tiles and processed by separate
encoders before merging, allowing multi-region feature fusion.
Musulin et al. (21) proposed a two-stage system for diagnosing
OSCC, demonstrating effectiveness in multiclass grading and
segmentation. Beyond segmentation, classification of OSCC
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using deep learning has also seen notable developments. Wang
et al. (1) introduced a semi-supervised boundary-aware U-
Net with transformation consistency and contrastive learning,
outperforming fully-supervised models on the OCDC dataset in
low-label regimes. Ünsal et al. (39) applied a U2-Net encoder-
decoder architecture on private OSCC datasets and reported
robust performance with a Dice coefficient of 0.86. Shah et al.
(40) proposed OCANet, which incorporates both local and global
attention branches to enrich contextual understanding, achieving
86.1% Dice and 77.1% mIoU on ORCA. A range of CNN
architectures has been applied to H&E-stained histopathological
images for oral cancer detection (22–27), leveraging transfer
learning and hybrid models to improve accuracy.

Despite these advancements, OSCC segmentation remains
challenging due to the inherent complex anatomical structure
of the oral cavity, invasive tumor growth, and ill-defined
tumor margins (28–30). While existing OSCC-specific
methods have demonstrated promising results, they are often
not explicitly designed to address these unique challenges,
lacking mechanisms to effectively capture global contextual
information, resulting in suboptimal performance. In contrast,
our work specifically addresses this challenge utilizing the Global
Attention Mechanism.

2.2 Attention mechanism in CNNs

In recent years, attention mechanism has garnered significant
interest in enhancing CNN-based models to improve the
performance of image classification and segmentation tasks, by
allowing them to focus on relevant features within an image.
Early examples include SENet (34), which pioneered this field
by using the channel attention to highlight significant features
while suppressing irrelevant ones. However, its primary focus
on channel attention restricted its capacity to address spatial
information effectively. More recent approaches, such as CBAM
(35) and BAM (36), have introduced spatial attention alongside
channel attention. Their designed Convolutional Block Attention
Module (CBAM) and Bottleneck Attention Module (BAM) have
improvedmodel performance in a variety of applications. However,
these models still fall short in capturing interactions between
channel, spatial width, and spatial height, which are critical
for understanding complex medical images. Recognizing the
importance of cross-dimension interactions, Misra et al. (37)
introduced the triplet attention module (TAM), which considered
the relationships between channel, spatial width, and spatial height.
Although TAM improved efficiency, it still applied attention to
only two dimensions at a time, limiting its ability to fully capture
interactions across all three dimensions. Addressing this, Liu
et al. (38) introduced the Global Attention Mechanism (GAM)
to enhance feature extraction by capturing cross-dimensional
interactions across the channel, spatial width, and spatial height
simultaneously, making it particularly suited for complex medical
imaging tasks that demand comprehensive feature representation.
Recently, attention modules have been directly embedded into
OSCC segmentation architectures. OCANet (40), for instance,
utilizes a dual-branch attention mechanism to integrate local fine-
grained detail with global structural awareness.

Still, the potential of attentionmechanisms in enhancing OSCC
imaging analysis remains underexplored. Many of these models
either employ decoupled attention paths or require extensive
network modifications, leading to increased computational cost.
In contrast, our proposed architecture utilizing GAM offers a
lightweight yet expressive approach that integrates seamlessly with
CNNs, enabling effective cross-dimensional feature fusion for
OSCC segmentation and classification.

2.3 Comparative summary of related
methods

To provide a clearer understanding of the landscape of OSCC
analysis and attention mechanisms in convolutional networks, we
summarize representative studies in Table 1. The table categorizes
prior works based on dataset, model architecture, core strengths,
and limitations. Notably, many OSCC-specific segmentation
models leverage U-Net variants, often falling short in capturing
comprehensive global context, which is critical for handling
the anatomical complexity of OSCC. In parallel, the adoption
of advanced attention modules like GAM remains limited in
OSCC-focused studies. By proposing a new model architecture
integrating GAM, we aim to address this gap and enhance both
segmentation accuracy and contextual awareness with minimal
architectural overhead.

3 Methods

In this study, we introduce a novel model architecture
gamUnet, and an extended model gamResNet, which integrate a
Global Attention Mechanism into U-Net and ResNet architectures,
respectively. These models specifically target the challenges posed
by tumor infiltration and poorly defined lesion boundaries in
OSCC histopathological image analysis. Unlike traditional CNN
architectures, which excel at capturing local features but fail in
modeling global context, the proposed GAM significantly enhances
global contextual awareness and captures long-range dependencies.

3.1 Base architecture

We adopt U-Net as the base architecture for image
segmentation and ResNet-18 for image classification, both of
which have demonstrated strong performance in medical image
analysis.U-Net is selected as the base architecture for segmentation
due to its robust performance in medical imaging segmentation.
The U-Net architecture employs an encoder-decoder structure,
where the encoder progressively reduces the spatial resolution of
the input image, capturing abstract features, while the decoder
upscales these features to create high-resolution segmentation
masks. Skip connections between corresponding layers of the
encoder and decoder preserve fine-grained spatial details during
the upsampling process. For classification, ResNet-18 (14) is
adopted. Despite having fewer layers compared to deeper ResNet
variants, ResNet-18 provides a balanced trade-off between
computational efficiency and predictive performance, essential
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TABLE 1 Comparison of related OSCC segmentation and attention-based methods.

Study Dataset Method Strengths Limitations

Dos et al. (19) OCDC U-Net+ color space High accuracy Dataset-specific tuning

Pennisi et al. (20) Private, TCGA, ORCA Multi-encoder U-Net Multi-region fusion Limited global semantics

Musulin et al. (21) Private Two-stage pipeline Handles grading and segmentation Complex pipeline

Wang et al. (1) OCDC Semi-supervised U-Net Label-efficient contrastive learning Requires transformation consistency

Ünsal et al. (39) Private U2-Net High Dice score No explicit attention mechanism

Shah et al. (40) ORCA, OCDC, DigestPath Dual-branch OCANet Local-global attention fusion Complex dual-branch structure

SENet (34) Generic Channel attention Lightweight and modular Ignores spatial features

CBAM (35) Generic Channel+ spatial attention Better generalization Incomplete cross-dimension fusion

BAM (36) Generic Channel+ spatial attention Improved feature selection Lacks full dimension interaction

TAM (37) Generic Triplet attention Captures more dimensions Still partial fusion

GAM (38) Generic Global attention Full cross-dimension modeling Not applied to OSCC yet

for deployment in clinical settings. ResNet-18, reduces the spatial
resolution of the input through convolution and pooling layers,
capturing high-level features. A key feature of ResNet-18 is the use
of residual (skip) connections, which allow for the efficient training
of deeper networks by bypassing certain layers, thereby addressing
the vanishing gradient problem. In classification tasks, ResNet-18
outputs class probabilities after reducing the feature map through
a fully connected layer.

3.2 Global attention mechanism

While both U-Net and ResNet-18 excel in capturing local
features, they struggle with modeling global dependencies, a crucial
aspect in tasks involving complex medical images in OSCC. To
address their limitations in global context modeling, we integrate
GAM into both architectures. GAM computes attention across
channel and spatial dimensions, significantly enhancing feature
representation.

Given a feature map F ∈ RC×H×W , GAM calculates channel
attentionMc and spatial attentionMs as:

Mc(F) = σ (MLP(AvgPool(F))+MLP(MaxPool(F))) (1)

Ms(F) = σ (Conv7×7([AvgPool(F);MaxPool(F)])) (2)

Here, σ denotes the sigmoid activation, AvgPool and MaxPool
represent global average and max pooling operations, respectively,
and MLP denotes a multilayer perceptron for channel-wise
computations. For an input feature map F1, GAM computes the
intermediate feature map F2 and the final output F3 as follows:

F2 = Mc(F1)⊗ F1 (3)

F3 = Ms(F2)⊗ F2 (4)

where⊗ represents element-wise multiplication.
The channel attention module captures relationships between

channels, enhancing important features, while the spatial attention

module emphasizes crucial spatial regions. GAM enables the model
to focus on regions that are critical for diagnosis, thus enhancing
performance, especially in tasks with complex tissue structures
like OSCC.

3.3 Model variants

We propose two key model variants: gamUnet for
segmentation tasks and gamResNet for classification tasks.
These models incorporate the GAM module at different points in
their architecture to enhance their ability to capture global context
while preserving local feature details.

3.3.1 gamUnet
For segmentation, the GAM module is incorporated into each

convolutional block of the U-Net encoder (Figure 1). Each encoder
block comprises the following steps: First perform convolution
Conv3×3 to obtain preliminary feature maps. Then, apply GAM to
these feature maps to compute attention weights. Finally, multiply
the attention-weighted features to refine and amplify significant
regions. Refined features are passed through skip connections to
the decoder, preserving both global context and local spatial details
for accurate segmentation.

3.3.2 gamResNet
For gamResNet, GAMmodules replace the second convolution

within each residual block of ResNet-18 (Figure 2). Specifically:
First perform initial convolution Conv3×3 to extract preliminary
features. Then replace second convolution with GAM, refining
features by computing global attention weights. Finally, utilize the
residual connection to combine GAM-enhanced features with the
initial block input.

Through these explicit technical refinements, our gamUnet

and gamResNet architectures robustly address the complex and
heterogeneous nature of OSCC histopathological images for
enhanced segmentation and classification, significantly surpassing
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FIGURE 1

gamUnet.

FIGURE 2

gamResNet.

traditional CNN methods by effectively capturing critical local and
global contextual information.

4 Experiments

In this section, we first describe in detail the datasets, training
procedures, experimental setup and evaluation metrics, providing
a clear explanation of how our models are trained and evaluated,

TABLE 2 Dataset statistics for segmentation.

Dataset Image
size

#Train
images

#Test
images

Magnification

OCDC
(19)

640× 640 840
patches

180
patches

20×

ORCA
(18)

4,500×
4,500

100 core
images

100 core
images

40×

including critical steps involved in data preparation and model
training, including image pre-processing, feature extraction, and
model optimization. We then present the main experimental
results, and the ablation studies conducted to rigorously assess
the effectiveness of our proposed gamUnet and gamResNet
architectures for OSCC segmentation and classification tasks.

4.1 Datasets

4.1.1 Segmentation datasets
Table 2 presents the statistics of datasets utilized for

segmentation task, Figure 3 presents the image examples.

4.1.1.1 OCDC dataset

The OCDC dataset consists of 15 H&E-stained whole slide
images (WSIs) derived from human patients diagnosed withOSCC.
A total of 1,020 annotated image patches, each measuring 640 ×

640 pixels, were extracted from these WSIs, with tumor regions
manually marked by a pathologist. This dataset is specifically
designed for the automated detection and segmentation of OSCC,
featuring a training set of 840 image patches and a test set of 180
patches, all digitized at a 20×magnification.
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FIGURE 3

Image examples of OCDC and ORCA datasets.

4.1.1.2 ORCA dataset

The ORCA dataset includes 200 H&E-stained WSIs sourced
from the Cancer Genome Atlas (TCGA) and manually annotated
by expert pathologists. Each WSI is composed of one or two cores
with a size of 4,500 × 4,500 pixels, containing ground-truth data
for tumor pixels. The dataset is split into two subsets: a validation
set and a test set, each consisting of 100 core images. In this
study, the validation set was utilized for training purposes. Because
the original core images only the middle round part is a valid
image, so we cut the original image into 1,200*1,200 patches in
preprocessing. Then, in order to filter out the low-quality images
located at the edges, we removed the patches whose corresponding
mask black part of the larger than 80% of the patches, resulting
in 728 training images and 796 validation images. The ORCA
dataset presents a higher level of complexity due to its larger size
and greater complexity, making it suitable for evaluating advanced
segmentation models.

4.1.2 Classification datasets
Table 3 presents the statistics of the datasets utilized

for classification, Figure 4 presents the image examples.
This dataset (41) comprises a total of 1,224 histopathological

images, divided into two distinct sets with varying resolutions.
The first set contains 89 images of normal oral epithelium and
439 images of OSCC, all captured at 100× magnification. The
second set includes 201 images of normal oral epithelium and 495
OSCC images, captured at 400× magnification. All images were
acquired using a Leica ICC50 HD microscope from H&E stained
tissue slides. These slides were collected, prepared, and cataloged
by medical professionals from 230 patients.

4.2 Evaluation metrics

We adopt standard evaluation metrics for both segmentation
and classification tasks. Accuracy reflects the overall proportion of
correctly classified instances and is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity (also referred to as recall in classification) quantifies
the ability to correctly identify positive samples:

Sensitivity/recall =
TP

TP + FN

Specificity measures the proportion of actual negatives
correctly identified:

Specificity =
TN

TN + FP

Precision evaluates the proportion of predicted positives that
are truly positive:

Precision =
TP

TP + FP

The F1 score, commonly used in classification, is the harmonic
mean of precision and sensitivity:

F1 score =
2× precision× sensitivity

precision+ sensitivity

For segmentation tasks, we also report the Dice coefficient,
which shares the same formula as the F1 score:

Dice =
2TP

2TP + FP + FN

The Jaccard Index or Intersection over Union (IoU) assesses the
overlap between predicted and ground truth regions:

IoU =
TP

TP + FP + FN

For classification, we further report the Area Under the
Receiver Operating Characteristic Curve (AUROC), which
reflects the model’s ability to distinguish between classes by
summarizing the trade-off between sensitivity and false positive
rate across thresholds.

4.3 Baselines

Below are brief descriptions of the baseline algorithms. For
image segmentation:
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TABLE 3 Dataset statistics for classification.

Magnification Number of
normal
images

Number of
OSCC
images

Total

100× 89 439 528

400× 201 495 696

Total images 290 934 1,224

• U-Net (9): an established encoder-decoder CNN architecture
widely employed in medical image segmentation,
characterized by its symmetrical U-shaped structure.

• Attention U-Net (42): an extension of U-Net that
incorporates attention mechanisms to focus on relevant
regions and emphasize important features.

• Depthwise U-Net (43): a variant of U-Net that uses depthwise
separable convolutions to reduce the number of parameters
and computational complexity.

• Res U-Net (44): a U-Net model enhanced with residual
connections, which help to alleviate the vanishing gradient
problem and improve feature propagation through
the network.

• Shuffle U-Net (45): a lightweight U-Net variant that utilizes
shuffle operations to improve feature mixing and maintain
high segmentation accuracy with reduced computational cost.

For image classification:

• ResNet (ResNet-18 and ResNet-50) (14): residual networks
that use skip connections to enable deeper architectures with
improved gradient flow.

• MobileNet-V3-Small (46): a compact and efficient CNN
model designed for mobile and edge devices, utilizing
efficient layers like depthwise convolutions and squeeze-and-
excitation blocks.

• MobileNet-V2 (47): a lightweight CNN model featuring
inverted residuals and linear bottlenecks, optimized for
performance on mobile and low-resource devices.

• MobileNet-V1 (48): the original MobileNet architecture that
employs depthwise separable convolutions to reduce model
size and complexity.

• EfficientNet (EfficientNet-B0 and EfficientNet-B1) (49):
utilizes compound scalingmethods that systematically balance
depth, width, and resolution, achieving superior accuracy with
fewer parameters.

4.4 Training and implementation details

We train all models on both medical image segmentation
datasets and medical image classification datasets, including
the OCDC dataset, the ORCA dataset and 100X and 400X

classification datasets. Prior to training, the original images from
both datasets were resized to 256× 256 pixels and augmented using
random rotations, flips, and scaling to enhance model robustness.
Each image undergoes the process shown in Figure 5.

Models were trained using binary cross-entropy loss and
optimized using Adam optimizer. The training was conducted
with a batch size of 32 and a learning rate of 0.01, using early

stopping to prevent overfitting. Each model’s performance was
evaluated using key metrics introduced above. All experiments
were implemented using PyTorch and conducted on an NVIDIA
RTX 3090 GPUwith 24GBmemory. The classificationmodels were
trained for ∼5.5 h, while the segmentation models required about
4 h on the OCDC dataset and 1.5 h on the smaller ORCA dataset.

5 Results

5.1 Experimental results for OSCC
segmentation

The segmentation performance on both the OCDC and ORCA
datasets, as shown in Tables 4, 5, highlights the effectiveness of our
proposed model architecture gamUnet, outperforming traditional
architectures such as plain U-Net, Attention-Unet, Depthwise-

Unet, Res-Unet, and Shuffle-Unet. Given the class imbalance
in the datasets, our primary evaluation metrics are the F1/Dice
score and the Intersection-over-Union (IOU, also known as the
Jaccard Index), which effectively measure segmentation accuracy
under imbalanced scenarios. On the OCDC dataset, gamUnet

achieves the highest F1/Dice score (0.9096) and IOU (0.8315),
indicating enhanced ability to precisely delineate tumor regions

FIGURE 4

Image examples of the classification dataset. (Left) Normal epithelium. (Right) OSCC.
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FIGURE 5

Input image preprocess workflow.

TABLE 4 Segmentation performance comparison on OCDC dataset.

Model Acc SE SP PC F1/dice JS/IOU

Unet (9) 0.9064 (0.0057) 0.9268 (0.0137) 0.9042 (0.0157) 0.8747 (0.0102) 0.8963 (0.0088) 0.8145(0.0158)

AttentionUnet (42) 0.9126 (0.0058) 0.9117 (0.0147) 0.8965 (0.0157) 0.8682 (0.0102) 0.8906 (0.0088) 0.8042 (0.0158)

DepthwiseUnet (43) 0.8454 (0.0358) 0.8652 (0.0458) 0.8343 (0.0458) 0.8084 (0.0328) 0.8437 (0.0398) 0.7321 (0.0458)

ResUnet (44) 0.9173 (0.0168) 0.9191 (0.0258) 0.9015 (0.0288) 0.8747 (0.0238) 0.9024 (0.0198) 0.8253 (0.0208)

ShuffleUnet (45) 0.8565 (0.0568) 0.9027 (0.0358) 0.8593 (0.0538) 0.8374 (0.0328) 0.8445 (0.0298) 0.7563 (0.0328)

gamUnet 0.9184 (0.0058) 0.9216 (0.0147) 0.9035 (0.0157) 0.8847 (0.0102) 0.9096 (0.0088) 0.8315 (0.0158)

The best results are highlighted in bold. The reported values represent the average of four runs, with the standard deviation shown in parentheses.

TABLE 5 Segmentation performance comparison on OCRA dataset.

Method Acc SE SP PC F1/Dice JS/IOU

Unet (9) 0.7446 (0.0458) 0.7750 (0.0257) 0.7064 (0.0988) 0.6522 (0.0608) 0.6821 (0.0508) 0.5362 (0.0508)

AttentionUnet (42) 0.7325 (0.0428) 0.7749 (0.0298) 0.6712 (0.0628) 0.6342 (0.0528) 0.6683 (0.0508) 0.5271 (0.0428)

DepthwiseUnet (43) 0.7038(0.0408) 0.7865 (0.0388) 0.6309(0.0538) 0.6018 (0.0238) 0.6635 (0.0398) 0.5226 (0.0458)

ResUnet (44) 0.7847 (0.0088) 0.7857 (0.0458) 0.7452 (0.0288) 0.6115 (0.0198) 0.6929 (0.0208) 0.5478(0.0138)

ShuffleUnet (45) 0.7275 (0.0168) 0.7508 (0.0458) 0.6607 (0.0388) 0.6042(0.0328) 0.6683 (0.0298) 0.5162 (0.0208)

gamUnet 0.7496 (0.0228) 0.8196 (0.0458) 0.6712 (0.0408) 0.6218 (0.0328) 0.7047 (0.0398) 0.5631 (0.0328)

The best results are highlighted in bold. The reported values represent the average of four runs, with the standard deviation shown in parentheses.

while minimizing false predictions. While all models experience
a decrease in performance on the more complex ORCA dataset,
gamUnet maintained robust results with the highest F1/Dice
score (0.7047) and IOU (0.5631), demonstrating its resilience
against complex anatomical structures and tumor morphology.
The superior performance of gamUnet highlights its capacity for
capturing global context through the integrated GAM, effectively

balancing local details with global semantic information crucial for
OSCC segmentation tasks.

Figure 6 presents qualitative and visualized segmentation
results on the OCDC dataset. Compared to baselines, gamUnet

yields segmentation masks that more closely align with the ground
truth, effectively capturing tumor boundaries. In contrast, other
models exhibit either over-segmentation or structural inaccuracies,
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particularly in complex regions. These results further validate the
advantage of incorporating global attention for precise and robust
OSCC segmentation.

5.2 Experimental results for OSCC
classification

Tables 6, 7 detail the classification performance evaluated at
100X and 400X magnifications on the oral cancer classification
datasets. Considering the dataset imbalance, AUROC and F1 Score
are the key evaluation metrics. On the 100X dataset, our proposed
gamResNet attained the highest AUROC (0.991), accuracy (0.902),
and F1 Score (0.945), outperforming traditional baselines such as
ResNet-50, MobileNet-V2, and EfficientNet-B1. This underscores
gamResNet’s superior capacity to accurately distinguish between
positive and negative samples. Additionally, mobilenet-v1 and
efficientnet-b0 exhibit competitive F1 scores (0.897 and 0.898,
respectively), although they fall behind in terms of AUROC and
accuracy, indicating a trade-off in model performance across
different metrics.

On the 400X dataset, similar trends are observed. GamResNet
again achieves the highest AUROC (0.924), accuracy (0.899),
and F1 score (0.933), coupled with notably high sensitivity
(0.991), which is essential for clinical cancer detection applications.
Although efficientnet-b0 performs well with an AUROC of 0.875
and an F1 score of 0.863, it is still notably outperformed by
gamResNet. The baseline ResNet-50 model achieves the highest
precision (0.905) on the 400X dataset, indicating its capability
to minimize false positives, but it falls behind in sensitivity and
F1 score.

Collectively, these results demonstrate that integrating the
GAM mechanism significantly enhances model robustness and
generalization across varied magnification levels and dataset
complexities, confirming the clinical utility of gamResNet for
reliable OSCC classification.

5.3 Ablation studies

To investigate the contribution of the GAM in our
architectures, we conducted ablation studies on both gamUnet

and gamResNet.
For gamUnet, we selectively integrated the GAM modules

into the encoder, decoder, or both components of the U-Net
architecture. All experiments were conducted under identical
training settings on the OCDC dataset. As shown in Table 8, the
variant with GAM integrated solely in the encoder (gamUnet)
achieved the best performance across key segmentation metrics,
including accuracy (0.9294), F1/Dice score (0.9168), and Jaccard
Index (0.8467). These results highlight the benefit of enhancing
global contextual representation at the encoding stage. Conversely,
applying GAM to both encoder and decoder improved specificity,
suggesting enhanced ability in distinguishing background regions,
albeit with a slight drop in overall accuracy. These findings support
our design choice of encoder-focused GAM integration.

For gamResNet, we explored how different placements of
the GAM module within the residual blocks affect classification
performance. The original design of gamResNet replaces
the second convolution layer of each residual block with
a GAM module. We compared this configuration against
two variants: (1) replacing the first convolution instead of
the second, and (2) replacing both convolutions with GAM.
Results on OCDC 100X dataset are summarized in Table 9.
The original gamResNet achieved the best trade-off across all
metrics, with the highest AUROC, accuracy, and F1 score, while
maintaining a balanced sensitivity and specificity. Replacing
only the first convolution slightly reduced AUROC (0.895),
indicating suboptimal background discrimination. Substituting
both convolutions with GAM led to near-perfect sensitivity
but drastically reduced specificity (0.125), suggesting severe
over-sensitivity to positive class predictions. These results
confirm the efficacy of selectively applying GAM to the second
convolutional layer, balancing attention to relevant features
without compromising classification reliability.

Collectively, our ablation studies across segmentation and
classification tasks demonstrate that a targeted integration of GAM
as designed in our gamUnet and gamResNet strikes the best
balance between leveraging global attention and preserving task-
specific structural inductive biases.

5.4 Statistical significance

To evaluate the statistical significance and robustness of
our experimental results, we conducted four independent runs
for each model configuration and report both the mean and
standard deviation in the main results. The relatively small
standard deviations across most metrics indicate high stability
and reproducibility of our results, which also enhances tthe
credibility of the comparisons. Additionally, for the OCDC
segmentation task, we performed statistical analysis by calculating
95% confidence intervals and p-values for key metrics, including
F1/Dice and IOU. As summarized in Table 10, our proposed model
gamUnet achieves significantly higher F1/Dice and IOU scores
with narrow confidence intervals and p-values well below 0.05.
These findings confirm that the observed performance gains are
not only consistent but also statistically significant, reinforcing the
effectiveness and reliability of our approach in handling complex
and imbalanced OSCC image analysis tasks.

5.5 Model e�ciency and computational
cost

Regarding the computational overhead introduced by the GAM
module, we provide a detailed comparison of model complexity
in terms of parameter count across both classification and
segmentation tasks.

For segmentation, Table 11 shows that our proposed gamUnet

contains around 28.9 million parameters. Although this is higher
than vanilla Unet (6.8M) and lightweight variants such as Shuffle
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FIGURE 6

Segmentation performance evaluation of various models for oral cancer detection using the OCDC dataset. The classes are defined as: white for

carcinoma pixels and black for non-carcinoma pixels. The bar chart displays the average performance of each model on the test set.

TABLE 6 Classification performance comparison on OCDC 100X dataset.

Model AUROC Accuracy Precision Sensitivity Specificity F1 Score

ResNet-50 (14) 0.827 (0.045) 0.818 (0.049) 0.818 (0.032) 0.993 (0.006) 0.215 (0.215) 0.900 (0.026)

ResNet-18 (14) 0.924 (0.031) 0.873 (0.029) 0.913 (0.008) 0.933 (0.027) 0.614 (0.331) 0.923 (0.032)

MobileNet-v3-small (46) 0.731 (0.032) 0.800 (0.056) 0.815 (0.047) 0.978 (0.015) 0.232 (0.154) 0.889 (0.027)

MobileNet-v2 (47) 0.902 (0.037) 0.855 (0.072) 0.951 (0.014) 0.867 (0.037) 0.800 (0.165) 0.907 (0.038)

MobileNet-v1 (48) 0.853 (0.045) 0.836 (0.067) 0.929 (0.022) 0.867 (0.043) 0.712 (0.576) 0.897 (0.056)

EfficientNet-b1 (49) 0.724 (0.088) 0.818 (0.036) 0.818 (0.039) 0.989 (0.010) 0.345 (0.207) 0.900 (0.047)

EfficientNet-b0 (49) 0.840 (0.054) 0.818 (0.067) 0.830 (0.041) 0.978 (0.007) 0.206 (0.157) 0.898 (0.065)

gamResNet 0.991(0.015) 0.902 (0.022) 0.896 (0.047) 0.995 (0.005) 0.375 (0.456) 0.945 (0.044)

The best results are highlighted in bold. The reported values represent the average of four runs, with the standard deviation shown in parentheses.

TABLE 7 Classification performance comparison on OCDC 400X dataset.

Model AUROC Accuracy Precision Sensitivity Specificity F1 score

Resnet-50 (14) 0.860 (0.056) 0.800 (0.065) 0.905 (0.037) 0.844 (0.018) 0.600 (0.324) 0.874 (0.030)

Resnet-18 (14) 0.848 (0.043) 0.831 (0.032) 0.852 (0.052) 0.920 (0.038) 0.619 (0.420) 0.885 (0.049)

MobileNet-v3-small (46) 0.780 (0.054) 0.775 (0.067) 0.827 (0.076) 0.860 (0.027) 0.571 (0.154) 0.843 (0.036)

MobileNet-v2 (47) 0.711 (0.042) 0.634 (0.084) 0.722 (0.132) 0.780 (0.068) 0.286 (0.165) 0.750 (0.049)

MobileNet-v1 (48) 0.627 (0.053) 0.704 (0.090) 0.704 (0.144) 0.988 (0.011) 0.203 (0.154) 0.826 (0.065)

EfficientNet-b1 (49) 0.724 (0.084) 0.831 (0.053) 0.852 (0.069) 0.979 (0.010) 0.286 (0.202) 0.892 (0.053)

EfficientNet-b0 (49) 0.875 (0.077) 0.848 (0.089) 0.827 (0.087) 0.957 (0.023) 0.600 (0.246) 0.863 (0.071)

gamResNet 0.924(0.026) 0.899 (0.035) 0.875 (0.043) 0.991 (0.006) 0.650 (0.342) 0.933 (0.052)

The best results are highlighted in bold.

TABLE 8 Segmentation performance comparison of gamUnet variants on OCDC.

Model Acc SE SP PC F1/dice JS/IOU

Unet 0.9101 0.9421 0.8853 0.8571 0.8974 0.8144

Unet+ decoder GAM 0.9161 0.9183 0.9095 0.8849 0.9012 0.8201

Unet+ encoder and decoder GAM 0.9208 0.9049 0.9312 0.9035 0.9037 0.8248

gamUnet 0.9294 0.9447 0.9176 0.8906 0.9168 0.8467

The best results are highlighted in bold.
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TABLE 9 Classification performance comparison of gamResNet variants on the OCDC 100X dataset.

Model variant AUROC Accuracy Precision Sensitivity Specificity F1 Score

First Conv→ GAM 0.895 0.882 0.894 0.977 0.375 0.933

Both Convs→ GAM 0.922 0.863 0.860 0.998 0.125 0.925

gamResNet 0.991 0.902 0.896 0.995 0.375 0.945

Best results are highlighted in bold.

TABLE 10 Statistical significance analysis on OCDC segmentation results.

Model Metric 95% CI (low–high) p-value

Unet F1/dice [0.8907, 0.9108] 5.72E-07

IOU [0.8033, 0.8365] 3.42E-06

AttentionUnet F1/dice [0.8680, 0.8924] 1.11E-06

IOU [0.7699, 0.8085] 6.47E-06

DepthwiseUnet F1/dice [0.7365, 0.8942] 0.000418

IOU [0.6030, 0.8119] 0.001412

ResUnet F1/dice [0.8644, 0.9016] 5.08E-06

IOU [0.7665, 0.8233] 2.48E-05

ShuffleUnet F1/dice [0.7862, 0.9028] 0.000148

IOU [0.6576, 0.8246] 0.000629

gamUnet F1/dice [0.8826, 0.9067] 7.375E-05

IOU [0.7950, 0.8319] 0.000205

Each value corresponds to the 95% confidence interval and p-value for key evaluationmetrics.

These values were bolded to highlight results that meet the significance threshold (p < 0.05).

Unet (0.61M), it remains substantially more efficient than heavy
models that similarly incorporates attention mechanisms like
Attention Unet (34.9M), while achieving better performance.

For classification, Table 12 shows that our classification model
gamResNet contains ∼8.4 million parameters, significantly fewer
than standard ResNet-18 (11.2M) and ResNet-50 (25M), while
still outperforming them. Compared to lightweight models such as
MobileNet or EfficientNet-B0, gamResNet maintains a reasonable
parameter size and achieves superior diagnostic accuracy, striking
a strong balance between efficiency and effectiveness.

Importantly, our design selectively integrates GAM in a
minimal yet effective way—encoder-only for gamUnet and
second-conv-only for gamResNet—thereby avoiding unnecessary
overhead while preserving the benefits of global attention. This
makes our models well-suited for clinical deployment, where both
accuracy and resource efficiency are critical.

6 Discussion

The experimental results demonstrate that our gamUnet and
gamResNet consistently outperformed baselines across key metrics
in both segmentation and classification of OSCC histopathological
images. The ablation studies also confirms the effectiveness of
our designed model architecture. In classification, the gamResNet
consistently achieved the highest AUROC and F1 scores across both
magnifications. Notably, the enhanced model’s ability to maintain

TABLE 11 Parameter counts for segmentation models.

Model Parameters (millions)

gamUnet 28.95

Unet 6.82

Attention Unet 34.88

ResUnet 1.38

Depthwise Unet 0.61

Shuffle Unet 0.61

TABLE 12 Parameter counts for classification models.

Model Parameters (millions)

gamResNet 8.39

ResNet-18 11.17

ResNet-50 25.00

MobileNet-V1 4.20

MobileNet-V2 3.50

MobileNet-V3-Small 2.54

EfficientNet-B0 5.30

EfficientNet-B1 7.80

high sensitivity across different magnifications underscores its
versatility in handling datasets with varying levels of detail, which
is highly important given the variability in histopathological
images, where different magnification levels can emphasize
different cellular structures. By incorporating GAM, our models
effectively address the inherent limitations of conventional CNNs,
which struggle with capturing global context and long-range
dependencies. This enhancement is particularly crucial for tasks on
OSCC histopathological images, where tumors could be ill-defined
and essential diagnostic features may span across multiple regions
of an image.

Overall, our results validate the effectiveness of the proposed
model architecture in enhancing the diagnostic accuracy and
reliability of deep learning models in OSCC analysis. This
approach not only offers a more efficient alternative to manual
examination but also has the potential to streamline diagnostic
workflows, supporting pathologists in making timely and informed
decisions. Future work may involve exploring the application
of GAM in other cancer types and expanding the dataset to
further validate model robustness. Additionally, integrating
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multi-scale attention mechanisms could further refine the
model’s ability to adapt to different magnifications and improve
clinical applicability.

7 Conclusion

This study presents a deep learning-based approach to
enhance the accuracy and efficiency of OSCC diagnosis and
segmentation using histopathological images. By designing novel
model architectures gamUnet and gamResnet that integrate
Global Attention Mechanism to enable the model to capture
global information, our method significantly improves the
segmentation and classification performance on OSCC H&E-
stained images, where ill-defined tumors and cell infiltration
pose great challenges for other models. Experimental results on
three datasets demonstrate that our gamUnet and gamResNet
outperform traditional architectures, effectively distinguishing
tumor regions within the complex tissue structures characteristic of
OSCC. The ability of our method to provide reliable and consistent
results highlights their potential as a diagnostic tool, supporting
pathologists in delivering timely and accurate assessments. This
work contributes to the advancement of automated pathology
tools, aiming to improve patient outcomes in oral cancer care
and can be further expanded to other cancer types and more
diverse datasets.
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