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Personalized predictions of 
neoadjuvant chemotherapy 
response in breast cancer using 
machine learning and full-field 
digital mammography radiomics
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Objective: This study aimed to develop a comprehensive nomogram model 
by integrating clinical pathological and full-field digital mammography (FFDM) 
radiomic features to predict the efficacy of neoadjuvant chemotherapy 
(NAC) in breast cancer patients, thereby providing personalized treatment 
recommendations.

Methods: A retrospective analysis was conducted on the clinical and imaging 
data of 227 breast cancer patients from 2016 to 2024 at the Second Affiliated 
Hospital of Harbin Medical University. The patients were divided into a training 
set (n = 159) and a test set (n = 68) with a 7:3 ratio. The region of interest (ROI) 
was manually segmented on FFDM images, and features were extracted and 
gradually selected. The rad-score was calculated for each patient. Five machine 
learning classifiers were used to build radiomics models, and the optimal model 
was selected. Univariate and multivariate regression analyses were performed 
to identify independent risk factors for predicting the efficacy of NAC in breast 
cancer patients. A nomogram prediction model was further developed by 
combining the independent risk factors and rad-score, and probability-based 
stratification was applied. An independent cohort was collected from an external 
hospital to evaluate the performance of the model.

Results: The radiomics model based on support vector machine (SVM) 
demonstrated the best predictive performance. FFDM tumor density and HER-
2 status were identified as independent risk factors for achieving pathologic 
complete response (PCR) after NAC (p < 0.05). The nomogram prediction 
model, developed by combining the independent risk factors and rad-score, 
outperformed other models, with areas under the curve (AUC) of 0.91 and 
0.85 for the training and test sets, respectively. Based on the optimal cutoff 
points of 103.42 from the nomogram model, patients were classified into 
high-probability and low-probability groups. When the nomogram model was 
applied to an independent cohort of 47 patients, only four patients had incorrect 
diagnoses. The nomogram model demonstrated stable and accurate predictive 
performance.

Conclusion: The nomogram prediction model, developed by integrating clinical 
pathological and radiomic features, demonstrated significant performance in 
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predicting the efficacy of NAC in breast cancer, providing valuable reference for 
clinical personalized prediction planning.
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breast cancer, radiomics, neoadjuvant chemotherapy, machine learning, full-field 
digital mammography, nomogram

Introduction

Breast cancer has the highest incidence rate of cancer in women 
(1). As a systematic treatment method, neoadjuvant chemotherapy 
(NAC) has been widely used in patients presenting with locally 
advanced tumors or in those for whom surgical intervention is 
indicated (2, 3). It can detect tumor sensitivity to the drug, reduce the 
local size of the tumor, improve the breast-conserving surgery rate (4) 
and even achieve pathological complete response (PCR). PCR is 
defined as the absence of residual invasive carcinoma in both the 
primary tumor bed [ductal carcinoma in situ (DCIS) may persist] and 
regional lymph nodes (including ipsilateral sentinel and axillary 
nodes) (5). Patients who achieve PCR usually have longer disease-free 
survival, overall survival and a lower risk of recurrence, with 
significantly improved patient survival rates (6). However, only a 
fraction of breast cancer patients can achieve PCR after NAC 
treatment (7). Some patients experience adverse outcomes due to 
chemotherapy toxicity and associated adverse effects, which may 
unexpectedly lead to accelerated disease progression (8). Therefore, 
accurate prediction of efficacy before neoadjuvant chemotherapy is 
crucial for optimizing patient outcomes. Currently, the evaluation of 
NAC efficacy is predominantly conducted through pathological and 
clinical assessments. Pathological evaluation is widely regarded as the 
gold standard for assessing NAC efficacy; however, being retrospective, 
it cannot predict therapeutic outcomes in advance. The primary 
clinical evaluation techniques encompass Full-field digital 
mammography (FFDM), ultrasonography, and magnetic resonance 
imaging (MRI). In comparison to ultrasonography and MRI, FFDM 
offers the advantage of lower cost, simplicity in operation, and the 
ability to observe breast structure, abnormalities, and 
microcalcifications. Radiomics, as an emerging interdisciplinary field 
that combines imaging information and computer science to predict 
the treatment response and prognosis of patients through high-
throughput extraction, quantitative analysis and mining of features in 
images (9). Radiomics has shown significant potential in recent years 
for enhancing the accuracy of breast cancer diagnosis, lymph node 
metastasis assessment, and prognosis prediction (10, 11). Machine 
learning is a method for constructing data-driven computational 
models that can enhance the performance and predictive capability of 
disease models, making it an essential component of radiomics (12). 
In the existing literatures, there is a preponderance of studies that 
combine MRI and ultrasound images with radiomics for predicting 
breast cancer response to NAC (13, 14). Even articles utilizing 
contrast-enhanced spectral mammography (CESM) images in 
conjunction with radiomics have emerged in an endless stream (15, 
16). Regarding FFDM, Liu et al. (17) developed a deep learning model 
based on FFDM using Mask-RCNN to evaluate malignant 
architectural distortion, achieving good diagnostic performance. 
Zhang et al. (18) combined radiomics features and deep features to 
classify benign and malignant breast lesions on FFDM images, and the 

results indicated that this classification framework deonstrated 
excellent performance in the diagnosis of breast lesions. However, 
despite being the most widely used technique for breast cancer 
screening, its potential for radiomics-based prediction of NAC efficacy 
remains largely unexplored. The purpose of this study was to explore 
the value of clinical, machine learning, and radiomics nomogram 
models in predicting the efficacy of NAC for breast cancer.

Materials and methods

Patients

A retrospective analysis of breast cancer patients who underwent 
NAC at the Second Affiliated Hospital of Harbin Medical University 
from January 2016 to April 2024. Inclusion criteria: (I) breast cancer 
patients with histologically confirmed diagnosis based on biopsy or 
resected specimens; (II) patients with mass-forming breast cancer; 
(III) patients who underwent pathological biopsy and surgery after 
NAC; (IV) patients with complete mammographic and 
clinicopathological data; Exclusion criteria: (I) multifocal, bilateral, or 
occult breast cancer; (II) patients undergoing NAC or radiotherapy 
before FFDM; (III) the patients who received non-standard treatment 
or did not complete the NAC regimen. (IV) patients who underwent 
biopsy prior to FFDM. We randomly assigned the finally enrolled 227 
breast cancer patients into the training set and the test set in a 7:3 
ratio. In the training set, 37 patients had PCR and 122 patients had 
non-PCR. In the test set, 18 patients were with PCR and 50 patients 
were with non-PCR. The flowchart of patient selection is shown in 
Figure 1.

FFDM examination

In this study, breast imaging was acquired using the Hologic 
Lorad Selenia FFDM system to obtain craniocaudal (CC) and 
mediolateral oblique (MLO) views, with additional lateral views 
acquired as necessary. All FFDM images were independently 
diagnosed by two radiologists, each with over 10 years of experience 
in breast imaging diagnosis, with reference to the 5th edition of the 
Breast Imaging Reporting and Data System (BI-RADS) and without 
knowledge of the pathological results. In cases of disagreement, a 
consensus decision was reached through joint discussion.

NAC assessment

According to the guidelines of the National Comprehensive 
Cancer Network (NCCN) and the American Society of Clinical 
Oncology (ASCO), the NAC regimens for breast cancer patients were 
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based on anthracycline and taxane, while HER-2 positive patients 
received combination therapy with trastuzumab and pertuzumab. The 
NAC regimen primarily consisted of 6 to 8 courses (19, 20).

Clinical and pathological characteristics

The baseline clinicopathological data include: patient age, BMI, 
clinical T stage, estrogen receptor (ER) status, progesterone receptor 
(PR) status, human epidermal growth factor receptor-2 (HER-2) 
status, and the Ki-67 proliferation index. Immunohistochemical 
(IHC) staining demonstrated ER/PR positivity when ≥1% of the 
tumor cells exhibit positive staining in their nuclei. The IHC results 
for HER-2 were deemed positive when (+++), negative when (+), and 
necessitates further evaluation by Fluorescence In Situ Hybridization 
(FISH) when (++). A FISH result showing amplification confirmed 
HER-2 positivity. Conversely, a non-amplified FISH result indicated 
HER-2 negativity. The cutoff level for Ki67 was 20%. The pathological 
response was assessed according to the Miller Payne criteria (21) as 
follows: Grade 1 indicates no reduction in tumor cell count; Grade 2, 
a reduction of <30% in tumor cells; Grade 3, a reduction of 30 to 90%; 
Grade 4, a reduction of >90%; and Grade 5, no infiltrative tumor cells 
observed in the tumor bed on histological sections.

Region of interest segmentation and 
radiomics feature extraction from FFDM

Radiologist 1 (with 15 years of experience in breast imaging) 
utilized the 3D Slicer software to annotate and crop the region of 
interest (ROI) where the tumor was located on the FFDM grayscale 
images. Then, the second radiologist (with 12 years of experience in 

breast imaging) segmented the ROIs for images from 60 randomly 
selected patients. After segmenting the ROIs for all FFDM images, 
we utilized the RIAS MIT V0.2 software to extract features, resulting 
in a suite of radiomic features that includes 190 first-order statistical 
features, 750 texture features, 34 shape features, and 1,504 wavelet 
features. The texture features included 240 gray co-occurrence matrix 
features (GLCM), 140 Gy level dependence matrix features (GLDM), 
160 Gy level run length matrix features (GLRLM), 160 Gy level size 
zone matrix features (GLSZM), and 50 neighbor gray tone difference 
matrix features (NGTDM). The intraclass correlation coefficient (ICC) 
were used to assess intra-observer and inter-observer consistency in 
ROI feature extraction., with radiomic features having ICCs greater 
than 0.8 being retained and the features with ICCs less than 0.8 
being excluded.

Radiomics feature selection and 
establishment of an optimal radiomics 
model based on machine learning

Firstly, the radiomics features were standardized using the z-score 
normalization. Subsequently, feature selection was conducted. All 
signatures were normalized by the z-score method. In the first step, 
the variance threshold method was applied to select features with a 
variance of 0.8 or greater, while features with a variance below 0.8 were 
eliminated. In the second step, Spearman’s correlation analysis was 
utilized to exclude features with a correlation coefficient exceeding 0.9, 
thereby reducing multicollinearity between features. Finally, the Least 
Absolute Shrinkage and Selection Operator (LASSO) regression was 
used for selecting the optimal radiomics features with non-zero 
coefficients, and five-fold cross-validation was performed to choose 
the optimal parameters based on a minimum criterion.

FIGURE 1

Flowchart of patients’ selection in this study.
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In this study, five machine learning classifiers were used, 
including Support Vector Machine (SVM), Random Forest (RF), 
Light Gradient Boosting Machine (LightGBM), Adaptive Boosting 
(AdaBoost), and Naïve Bayes (NB). The five-fold cross-validation was 
used to validate the accuracy of the models. The performance of the 
above models was evaluated using the Receiver Operating 
Characteristic (ROC) curve and the Area Under the Curve (AUC), 
along with the calculation of sensitivity, specificity, accuracy, and 
F1 score.

Establishment and validation of the clinical 
model and combined model

Variables in the training set were screened for independent risk 
factors associated with the efficacy of NAC in breast cancer using both 
univariate and multivariate Logistic regression analyses (p < 0.05), 
including clinical-pathological features and FFDM characteristics, to 
construct a clinical prediction model. The rad-score was calculated 
using a linear combination of the final selected features weighted by 
their LASSO coefficients. A combined model was constructed through 
multivariate logistic regression analysis using the independent risk 
factors from the clinical model and the rad-score. The performance of 
each model was assessed using the AUC of the ROC curve. The 
goodness of fit of the models was evaluated with calibration curves. 
The decision curve analysis (DCA) was employed to assess the net 
benefit of radiomics nomogram at various threshold probabilities. The 
radiomics workflow is shown in Figure 2.

Probability-based stratification using the 
nomogram and application of the 
combined model in an independent cohort 
of patients

The optimal cutoff value was determined based on the ROC curve 
of the training set by selecting the value corresponding to the 
maximum Youden’s index. The optimal cutoff points were used to 
categorize patients into high-probability and low-probability groups 
in the nomogram model. Fifty breast cancer patients who underwent 
NAC were retrospectively identified from Harbin Medical University 
Cancer Hospital in May 2024. These patients were included as an 
independent cohort to evaluate the performance of the combined 
model. The pathological outcomes of these patients were unknown 
prior to obtaining the predictions from the model.

Statistical analysis

Radiomics feature extraction and machine learning modeling 
were performed in Python (v3.7) using the PyRadiomics and scikit-
learn libraries. Nomogram construction and statistical validation were 
implemented in R (v4.2.1) with the rms and pROC packages. The 
quantitative data were expressed as mean (± standard deviation) or 
median (interquartile range) [M (P25, P75)], and group comparisons 
were made using the t-test or the Mann–Whitney U test. The 
categorical data were presented as frequencies (%), and group 
comparisons were performed using the chi-square test or the Fisher’s 

FIGURE 2

Steps for ROI segmentation, radiomics features extraction and selection, models construction, and validation.
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exact test. Bilateral p-values less than 0.05 were considered 
statistically significant.

Results

Clinical and pathological characteristics

A total of 227 patients were enrolled in this study. The training 
set included 159 patients (37 PCR, 122 non-PCR), and the test set 
included 68 patients (18 PCR, 50 non-PCR). There were no 
statistically significant differences in pathological and radiological 
characteristics between the training and test sets (p > 0.05). In both 
the training and test sets, the ER status, PR status, HER-2 status, 
FFDM tumor density, and FFDM tumor margin were significantly 
associated with PCR (p < 0.05). Univariate and multivariate logistic 
regression analyses identified HER-2 status and FFDM tumor density 
as independent risk factors for predicting PCR after NAC in breast 
cancer (Table 1).

Radiomics feature selection and 
establishment of an optimal radiomics 
model

Through radiomic feature extraction, 2,478 radiomic features 
were obtained from the FFDM images (both CC and MLO views) of 
each patient. Among them, 2,254 features with an ICC > 0.8 were 
retained. A total of 1,072 features were selected using the variance 
threshold method, 41 features were identified through spearman’s 
correlation analysis, and ultimately 10 radiomics features were filtered 
out using the LASSO method (Figure  3). Therefore, after feature 
selection using the three methods, a total of 10 radiomics features with 
non-zero coefficients were ultimately retained. Detailed information 
about the radiomics features can be  found in the 
Supplementary material.

Ten radiomic features were used to establish a radiomics model 
based on five machine learning classifiers. Among these, SVM 
demonstrated the best performance, with a training set AUC of 0.88 
(95% CI: 0.84–0.91) and a test set AUC of 0.71 (95% CI: 0.56–0.83) 
(Figure  4). Table  2 presents the predictive performance of the 
radiomics models established using the five machine 
learning classifiers.

Development and validation of the clinical 
model and combined model

A clinical model was constructed based on independent risk 
factors, HER-2 and FFDM tumor density. In the training set, the AUC 
of the clinical model was 0.89 (95% CI: 0.85–0.94); in the test set, the 
AUC was 0.87 (95% CI: 0.76–0.98). Combining the independent risk 
factors identified from clinical pathology with the rad-score, a 
combined model was constructed. Developing a nomogram based on 
a combined model. In the training set, the combined model achieved 
an AUC of 0.91 (95% CI: 0.87–0.96), with a sensitivity of 83.8%, 
specificity of 86.9%, and accuracy of 86.2%. In the test set, the model 
demonstrated an AUC of 0.85 (95% CI: 0.72–0.98), with a sensitivity 

of 83.3%, specificity of 86%, and accuracy of 85.3%. The diagnostic 
performance of the three models is shown in Table 3. The calibration 
curve of the combined model indicated good model fit, suggesting 
that the predicted probabilities were consistent with the actual 
probabilities. The DCA demonstrated that the combined nomogram 
model yielded good clinical net benefit across a broad range of 
threshold probabilities in both the training and test sets, indicating 
favorable clinical performance of the model (Figure 5). The Hosmer-
Lemeshow test indicated a good model fit (all p-values > 0.05). More 
information about the calculation of the rad-score can be found in the 
Supplementary material.

Evaluation of the performance of the 
combined model in an independent cohort

Based on the optimal cutoff points, breast cancer patients with a 
total score ≤ 103.42 were classified into the low-probability group, 
while those with a total score > 103.42 were classified into the high-
probability group. NAC is not recommended for patients in the 
low-probability group; however, it may be considered for patients in 
the high-probability group. Of the 50 patients identified at Harbin 
Medical University Cancer Hospital, 3 did not meet the inclusion and 
exclusion criteria, resulting in a final cohort of 47 patients included in 
the study. Rad-score was calculated for these patients, and HER-2 
status, FFDM tumor density, and rad-score were incorporated into the 
combined model. The predicted outcomes for each patient were 
compared to the optimal cutoff of 103.42 points. The predictive results 
indicated that 15 patients achieved a PCR after NAC, while 32 patients 
did not. A comparison of the predictive outcomes with the 
pathological results revealed that the model erroneously classified one 
patient who could achieve PCR as unable to do so, and three patients 
who could not achieve PCR as achieving it. The model demonstrated 
a sensitivity of 92.3%, specificity of 91.2%, and accuracy of 91.5%. 
Therefore, we conclude that the nomogram prediction model exhibits 
stable and accurate predictive performance. Figure 6 presents two 
examples of using the nomogram model to predict the efficacy of NAC 
in breast cancer.

Discussion

NAC, as a crucial therapeutic approach for breast cancer patients, 
is indicated for those with locally advanced breast cancer, patients 
requiring tumor downstaging to enable surgery or breast-conserving 
surgery, individuals with triple-negative or HER2-positive breast 
cancer, and those at risk of metastasis (4, 22, 23). In this retrospective 
study, we developed and validated clinical-pathological, radiomics, 
and combined clinical-radiomics models based on FFDM to predict 
the therapeutic response of breast cancer patients following NAC. Our 
results suggest that the clinical-radiomics model holds promise as a 
decision-making tool for clinicians seeking to provide personalized 
prediction for patients.

Radiomics can offer a wider selection of higher-order features, 
enabling a comprehensive and accurate assessment of the relevant 
information within tumors (24). In this study, we  constructed 
predictive models based on FFDM radiomics features using five 
machine learning classifiers. The SVM classifier demonstrated high 
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and stable predictive performance in both the training and test 
sets, with AUC values of 0.88 and 0.71, respectively. SVM is 
particularly powerful at identifying subtle patterns in complex 
datasets and can achieve optimal generalization with limited 
sample information. It offers advantages such as high accuracy and 

low computational demand (25, 26). Additionally, the SVM 
algorithm is commonly used in classification and prediction 
methods and demonstrates high accuracy (27). The study by Zhu 
et  al. (28) developed five machine learning models based on 
DCE-MRI radiomic features to predict sentinel lymph node 

TABLE 1 Clinical and pathological characteristics.

Characteristics Training set (N = 159) p-value Test Set (N = 68) p-value

Non-PCR PCR Non-PCR PCR

Age, years* 52 ± 10 52 ± 8 0.581 54 ± 9 53 ± 8 0.623

BMI* 25.1 (22.5, 27.1) 24.0 (21.9, 26.8) 0.512 24.65 (23.25, 26.38)
23.58 (22.63, 

26.30)
0.341

T stage 0.902 0.760

  T1 44 (36%) 14 (38%) 20 (40%) 7 (39%)

  T2 71 (58%) 22 (59%) 27 (54%) 9 (50%)

  T3 7 (6%) 1 (3%) 3 (6%) 2 (11%)

ER <0.001 <0.001

  Negative 30 (25%) 23 (62%) 13 (26%) 13 (72%)

  Positive 92 (75%) 14 (38%) 37 (74%) 5 (28%)

PR <0.001 <0.001

  Negative 41 (34%) 28 (76%) 14 (28%) 15 (83%)

  Positive 81 (66%) 9 (24%) 36 (72%) 3 (17%)

HER-2 <0.001 <0.001

  Negative 96 (79%) 7 (19%) 44 (88%) 3 (17%)

  Positive 26 (21%) 30 (81%) 6 (12%) 15 (83%)

KI-67 0.068 0.160

  Low 26 (21%) 3 (8%) 11 (22%) 1 (6%)

  High 96 (79%) 34 (92%) 39 (78%) 17 (94%)

Breast composition 0.088 0.974

  Non-Dense Breast 52 (43%) 10 (27%) 22 (44%) 8 (44%)

  Dense Breast 70 (57%) 27 (73%) 28 (56%) 10 (56%)

Tumor diameter* 2.81 (2.40, 3.79) 2.60 (2.23, 3.40) 0.130 2.80 (2.43, 3.38) 2.70 (2.53, 3.20) 0.967

Tumor density <0.001 0.231

  Isodense 38 (31%) 23 (62%) 17 (34%) 9 (50%)

  High-density 84 (69%) 14 (38%) 33 (66%) 9 (50%)

Tumor shape 0.567 >0.999

  Round or oval 16 (13%) 3 (8%) 5 (10%) 1 (6%)

  Irregular 106 (87%) 34 (92%) 45 (90%) 17 (94%)

Tumor Margin 0.037 0.041

  Non-spiculated 69 (57%) 28 (76%) 25 (50%) 14 (78%)

  Spiculated 53 (43%) 9 (24%) 25 (50%) 4 (22%)

Abnormal axillary lymph nodes 0.094 0.322

  Negative 60 (49%) 24 (65%) 21 (42%) 10 (56%)

  Positive 62 (51%) 13 (35%) 29 (58%) 8 (44%)

Calcifications 0.913 0.077

  Absent 54 (44%) 16 (43%) 23 (46%) 4 (22%)

  Present 68 (56%) 21 (57%) 27 (54%) 14 (78%)

*Continuous values expressed as the mean ± standard deviation or median (interquartile range). ER, estrogen receptor; Her2, human epidermal growth factor receptor 2; PR, progesterone 
receptor; PCR, pathological complete response. Welch Two Sample t-test; Wilcoxon rank sum test; Fisher’s exact test; Pearson’s Chi-squared test.
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FIGURE 3

Radiomics features selection by LASSO. (A) Using 5-fold cross-validation, select the parameter (λ) for the LASSO model based on the minimum 
criterion; (B) LASSO coefficient profiles of the radiomics features; (C) Radiomics features.

FIGURE 4

Comparison of ROC curves of five machine learning classifiers in the training set (A) and test set (B). AUC, area under the receiver operating 
characteristic curve; SVM, support vector machine; RF, random forest; LightGBM, Light Gradient Boosting Machine; NB, Naïve Bayes; AdaBoost, 
Adaptive Boosting.

TABLE 2 Comparison of diagnostic performance of five machine learning classifiers.

Classifiers Sets AUC (95%CI) Sensitivity Specificity Accuracy F1 Score

SVM Training 0.89 (0.84–0.94) 0.98 0.58 0.78 0.82

Test 0.71 (0.58–0.84) 0.72 0.52 0.57 0.47

RF Training 0.77 (0.68–0.85) 0.81 0.66 0.74 0.76

Test 0.67 (0.52–0.80) 0.72 0.62 0.65 0.52

LightGBM Training 0.73 (0.65–0.81) 0.84 0.57 0.7 0.74

Test 0.67 (0.51–0.80) 0.61 0.62 0.62 0.46

NB Training 0.73 (0.63–0.83) 0.81 0.62 0.72 0.74

Test 0.68 (0.53–0.81) 0.78 0.56 0.62 0.52

AdaBoost Training 0.75 (0.67–0.83) 0.93 0.41 0.67 0.74

Test 0.61 (0.47–0.74) 0.78 0.4 0.5 0.45

AUC, Area Under the Curve; AdaBoost, Adaptive Boosting; LightGBM, Light Gradient Boosting Machine; NB, Naïve Bayes; RF, random forest; SVM, support vector machine; 95% CI, 95% 
confidence interval.
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metastasis in breast cancer. The results indicated that the SVM 
model achieved the highest AUC of 0.86  in the validation set, 
demonstrating the best predictive performance. This is similar to 
our research findings (28). Zhang et al. (29) developed radiomic, 
pathological, deep learning pathological, and deep learning 
radiopathomics (DLRPM) models using the SVM method to 
predict PCR in breast cancer patients. The results showed that in 
the training set, the DLRPM model outperformed the other three 
single-scale prediction models in terms of AUC, sensitivity, 
specificity, accuracy, and other metrics.

In this study, the clinical-pathological model achieved an AUC 
of 0.89 in the training set, surpassed most existing models (30, 31). 
Univariate and multivariate logistic regression analyses identified 
HER2 status and FFDM tumor density as independent risk factors 
for predicting the efficacy of NAC in breast cancer. Both factors 
demonstrated statistical significance (p < 0.05). This study showed 
that HER-2 positive breast cancer patients were more likely to 
achieve a PCR after NAC, which is consistent with previous reports 
(32, 33). NAC is clearly indicated for HER-2 positive patients, 
likely due to the addition of HER-2 targeted therapies (e.g., 
trastuzumab and pertuzumab) during treatment. HER-2 positive 
breast cancer patients are particularly responsive to these agents, 
resulting in higher PCR rates following NAC (34, 35). In addition, 
the results of this study showed that breast cancer patients with 
isodense tumors on FFDM were more likely to achieve a PCR after 
NAC compared to those with high-density tumors. In FFDM 
examination, the density of a mass refers to the result of comparing 
its density to that of normal breast tissue of the same volume in the 
surrounding or contralateral breast. High-density masses in breast 
cancer patients are the most common direct X-ray signs, which 
may be  attributed to factors such as the dense arrangement of 
cancer cells, higher mineral content, increased blood vessels, and 
fibroplasia. Compared to low- or isodense masses, high-density 
masses may require higher pressure gradients and drug dosages to 
achieve the same therapeutic effect. Therefore, breast cancer 
patients with high-density masses are less likely to achieve a PCR 
after NAC (36, 37).

To improve the accuracy of the predictive model, we developed 
a combined model incorporating the rad-score and two 
independent clinical risk factors. This model demonstrated a 
significant advantage in predicting the efficacy of NAC in breast 
cancer. A nomogram was developed based on this combined 
model, with an AUC of 0.91 for the training set and 0.85 for the 
test set. Chen et al. (38) developed a radiomics nomogram model 
using MRI images to predict the efficacy of NAC in breast cancer. 
The AUC for the training set was 0.89, and for the test set, it was 

0.88, both significantly higher than that of the radiomics signature. 
These results suggest that the model can effectively assist clinicians 
in predicting breast cancer patients’ responses to NAC, aligning 
with our findings. Liu et al. (31) established radiomic models based 
on ultrasound image features before (RS1) and after two cycles of 
NAC (RS2), and developed a nomogram model combining 
clinicopathological, and ultrasound features to predict NAC 
efficacy. The results showed that the AUC for RS2 was higher than 
that for RS1 and Delta-RS/RS1. The nomogram model combining 
RS2 with clinicopathological, and ultrasound features 
demonstrated superior AUCs in both the training set and test set 
compared to RS2 alone (0.90 vs. 0.86, 0.89 vs. 0.82). Furthermore, 
we determined that the optimal cutoff points for the nomogram 
are 103.42. Patients with a total score greater than 103.42 are more 
likely to achieve PCR after NAC. For this high-probability group, 
clinicians may consider recommending NAC (39). However, it 
should be noted that the optimal cutoff value (103.42) determined 
in this study may be  data-dependent. The optimization of the 
Youden index relies on the distribution characteristics of the 
training set. Although external validation shows that the model 
remains robust, the cutoff value may need to be  dynamically 
adjusted in other medical institutions or populations (e.g., different 
races, treatment protocols). It is important to emphasize that the 
core value of the nomogram lies in integrating multidimensional 
predictive factors to provide individualized PCR probability 
predictions, while the cutoff value is merely a tool for converting 
continuous probabilities into binary classification. Clinicians can 
freely adjust the threshold based on practical needs.

In recent years, nomogram models have been widely applied 
in clinical practice due to their intuitive nature, personalized 
predictions, and ease of use without the need for complex 
calculations (40). In this study, clinicians can obtain individualized 
predictions of PCR probability by simply inputting HER-2 status, 
FFDM tumor density, and rad-score into the nomogram model. 
However, it should be  noted that the calculation of rad-score 
currently requires manual delineation of the tumor ROI by 
radiologists, which may impose additional workflow burdens. 
Future research will focus on developing deep learning-based 
automated ROI segmentation algorithms to streamline this process 
and enhance clinical utility.

This study had certain limitations: First, as a single-center 
retrospective study, the homogeneity of the patient population and 
the inclusion criteria may introduce selection bias. Although external 
validation indicates the model’s robust performance, variations in 
imaging equipment parameters and treatment strategies across 
different medical centers could impact its practical application. 

TABLE 3 Diagnostic performance of clinical model, radiomics model, and combined model.

Models Sets AUC Sensitivity Specificity Accuracy

Clinical model Training set 0.89 0.87 0.80 0.82

Test set 0.87 0.83 0.88 0.87

Radiomics model Training set 0.88 0.98 0.58 0.78

Test set 0.71 0.72 0.52 0.57

Combined model Training set 0.91 0.84 0.87 0.86

Test set 0.85 0.83 0.86 0.85

AUC, Area Under the Curve.
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Therefore, future multi-center prospective studies are required to 
further assess the generalizability of the model. Second, the study 
included only mass-forming breast cancer, and the efficacy of NAC 
in non-mass-forming breast cancer remained to be  further 
investigated. Third, as a retrospective study, there was a potential for 

selection bias, which might have reduced the reliability of the 
predictive. Model. Fourth, the sample size in this study was relatively 
small; future research will involve increasing the sample size to 
further validate the findings. Fifth, although double-blind manual 
segmentation and ICC-based feature selection ensured consistency, 

FIGURE 5

(A) A nomogram prediction model for NAC efficacy in breast cancer patients. According to the optimal cutoff points of the red and blue junction, the 
nomogram is divided into a low-probability group and a high-probability group; The calibration curve of the nomogram prediction model (Panel B for 
the training set, Panel C for the test set); Clinical decision curve of the nomogram model (D for training set, E for test set).
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observer bias remains a potential limitation. Future studies will 
implement deep learning-based automated segmentation to reduce 
variability and enhance reproducibility. Sixth, while non-linear 
models may capture complex feature interactions, we  prioritized 
linear methods (LASSO regression) to ensure clinical interpretability 
and prevent overfitting in our limited sample, with systematic 
comparisons planned in future work.

Conclusion

In conclusion, the nomogram developed by integrating clinical 
pathological features and rad-score demonstrated superior predictive 
performance, with probability-based stratification enhancing the 
clarity and specificity of the results. This non-invasive preoperative 
prediction method can provide personalized treatment decision-
making guidance for clinicians.
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FIGURE 6

Two examples of using a nomogram model to predict the efficacy of NAC in breast cancer.
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