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Introduction: Advancements in artificial intelligence (AI) and large language

models (LLMs) have the potential to revolutionize digestive endoscopy by

enhancing diagnostic accuracy, improving procedural e�ciency, and supporting

clinical decision-making. Traditional AI-assisted endoscopic systems often rely

on single-modal image analysis, which lacks contextual understanding and

adaptability to complex gastrointestinal (GI) conditions. Moreover, existing

methods struggle with domain shifts, data heterogeneity, and interpretability,

limiting their clinical applicability.

Methods: To address these challenges, we propose a multimodal learning

framework that integrates LLM-powered chatbots with endoscopic imaging and

patient-specific medical data. Our approach employs self-supervised learning

to extract clinically relevant patterns from heterogeneous sources, enabling

real-time guidance and AI-assisted report generation. We introduce a domain-

adaptive learning strategy to enhance model generalization across diverse

patient populations and imaging conditions.

Results and discussion: Experimental results on multiple GI datasets

demonstrate that our method significantly improves lesion detection, reduces

diagnostic variability, and enhances physician-AI collaboration. This study

highlights the potential of multimodal LLM-based systems in advancing

gastroenterology by providing interpretable, context-aware, and adaptable AI

support in digestive endoscopy.

KEYWORDS

multimodal learning, large languagemodels, digestive endoscopy, AI-assisteddiagnosis,

domain adaptation

1 Introduction

Gastroenterology has witnessed significant advancements with the integration of

artificial intelligence (AI), particularly in digestive endoscopy, where precise diagnosis,

decision support, and workflow optimization are critical (1). Traditional endoscopic

assessments rely heavily on expert interpretation, which can be time-consuming, subject

to inter-operator variability, and prone to misdiagnosis. Multimodal learning, which

combines visual, textual, and real-time patient data, has emerged as a promising approach

to enhance endoscopic decision-making (2). Large Language Model (LLM)-based chatbots

are at the forefront of this transformation, providing real-time guidance, differential

diagnosis suggestions, and automated report generation by synthesizing multiple sources

of information (3). Not only do these AI-driven tools reduce the cognitive load on

physicians, but they also enable standardization in endoscopic interpretations and
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improve diagnostic accuracy. Integrating multimodal AI in

gastroenterology allows for more efficient data-driven decision-

making by leveraging real-time endoscopic imagery, electronic

health records, and clinical guidelines (4). Despite these benefits,

current AI solutions still face challenges related to interpretability,

real-time responsiveness, and clinical integration. To address these

limitations, researchers have explored various approaches, evolving

from traditional knowledge-based systems to data-driven machine

learning techniques and, more recently, deep learning and large

pre-trained models. This paper reviews the progression of these

techniques and discusses their impact on digestive endoscopy (5).

Early approaches to AI-assisted digestive endoscopy primarily

relied on symbolic reasoning and knowledge-based systems. These

rule-based systems utilized predefined expert knowledge and

ontologies to analyze endoscopic findings and recommend possible

diagnoses (6). For example, early expert systems integrated

structured image descriptors with endoscopic procedural

guidelines to identify abnormalities such as ulcers, polyps, and

malignancies. Similarly, ontology-driven frameworks enabled

AI tools to standardize reporting by mapping visual findings to

structured diagnostic terms (7). While these systems provided

interpretability and consistency, they suffered from limited

adaptability to new endoscopic techniques and variations in

imaging conditions. The reliance on handcrafted rules restricted

their ability to generalize across diverse patient populations and

evolving clinical knowledge (8). The static nature of these systems

made it challenging to incorporate continuous learning from

new data, limiting their effectiveness in real-world endoscopic

practice. To overcome these drawbacks, researchers shifted toward

data-driven machine learning approaches, which offered improved

flexibility and learning capabilities (9).

The advent of machine learning models revolutionized AI-

assisted digestive endoscopy by facilitating automated pattern

recognition from extensive endoscopic datasets. Techniques

such as support vector machines (SVMs), random forests, and

convolutional neural networks (CNNs) were employed to classify

endoscopic images and detect lesions with greater accuracy (10).

For instance, machine learning-based image segmentation allowed

automated detection of polyps and early-stage cancers, reducing

the need for manual annotation. Probabilistic models improved

endoscopic decision support by analyzing multimodal patient

data, including clinical history and histopathological reports

(11). Despite their improved adaptability compared to rule-based

systems, traditional machine learning methods required extensive

feature engineering and manual tuning to optimize performance.

Moreover, these models struggled with real-time inference in

endoscopic procedures due to computational constraints (12).

Another limitation was the lack of contextual understanding, as

machine learning models primarily focused on single-modality

data, such as images or structured patient records, without

integrating textual and conversational aspects. The advent of deep

learning and large pre-trained language models provided a solution

to these challenges (13).

Deep learning andmultimodal learning techniques have greatly

propelled AI-driven innovations in digestive endoscopy, allowing

for automatic feature extraction and seamless real-time integration

of multimodal data. Large-scale CNNs and transformer-based

architectures have demonstrated exceptional performance in

analyzing endoscopic videos, detecting abnormalities, and

providing diagnostic predictions with high accuracy (14). More

recently, Large Language Model (LLM)-driven chatbots have

revolutionized AI-assisted gastroenterology by facilitating real-

time interaction between physicians andAI systems. These chatbots

integrate multimodal learning by combining visual endoscopic

findings with clinical text-based insights, enhancing decision

support (15). For example, an LLM-powered chatbot can analyze

endoscopic images, retrieve relevant clinical literature, and suggest

differential diagnoses in real time, assisting gastroenterologists in

complex cases. Transformer-based architectures enable dynamic

adaptation to evolving medical knowledge by continuously

learning from new datasets (16). However, challenges remain in

terms of interpretability, potential biases in training data, and

real-time deployment in high-stakes clinical settings. Addressing

these issues requires advancements in explainable AI and real-time

processing frameworks (17).

Building on these developments, we propose a novel

framework that leverages multimodal learning and LLM-driven

chatbots to enhance digestive endoscopy. Our approach integrates

transformer-based AI models with real-time endoscopic imaging

and structured clinical knowledge to provide interactive decision

support. Unlike traditional symbolic AI, our framework is not

restricted by static rules and can dynamically adapt to new

endoscopic techniques and imaging modalities. It surpasses

conventional machine learning methods by incorporating

multimodal fusion, enabling a more comprehensive understanding

of patient conditions. To improve clinical trustworthiness, our

approach incorporates explainable AI mechanisms, ensuring that

endoscopic findings and chatbot-generated recommendations are

transparent and interpretable. By leveraging pre-trained language

models and real-time data processing, our method enhances

diagnostic accuracy, procedural efficiency, and physician-AI

interaction in gastroenterology.

The proposed method has several key advantages:

• Our framework introduces a transformer-based multimodal

learning approach that integrates endoscopic imaging, clinical

reports, and LLM-driven chatbots to enhance diagnostic

accuracy and procedural decision-making.

• Unlike conventional machine learning models, our method

processes multimodal data in real-time, providing interactive

decision support for gastroenterologists, improving workflow

efficiency in digestive endoscopy.

• Experimental evaluations demonstrate that our approach

outperforms existing AI-assisted endoscopy methods in

accuracy, adaptability, and physician usability, ensuring

seamless clinical integration and improved patient outcomes.

2 Related work

2.1 Multimodal learning for enhanced
gastrointestinal diagnostics

Multimodal learning has emerged as a transformative approach

in gastroenterology, integrating various data sources such as

endoscopic imaging, clinical records, and genetic information
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to improve diagnostic accuracy and patient management (18).

By leveraging multimodal data, AI-driven models can provide

comprehensive insights into gastrointestinal conditions, aiding

in both early detection and treatment planning. A prominent

example is the application of multimodal AI in diagnosing

pancreatic lesions. A randomized crossover study demonstrated

that combining endoscopic ultrasound images with patient-

specific clinical data resulted in superior diagnostic performance

compared to conventional single-modal approaches (19). This

highlights the value of integrating multiple data types to enhance

clinical decision-making. Multimodal machine learning models

have also shown promise in endoscopy by improving the

detection and characterization of gastrointestinal abnormalities

(20). By synthesizing visual endoscopic data with patient

history and histopathological reports, these models enable

real-time, highly accurate assessments, assisting endoscopists

in making informed decisions during procedures (21). The

integration of advanced diagnostic tools, such as white-light

endoscopy combined with confocal laser endomicroscopy, has

facilitated real-time in vivo histological assessment of tissues

(22). This approach has significantly improved the detection of

conditions such as Barrett’s esophagus and other precancerous

lesions, demonstrating the potential of multimodal AI in

gastroenterology (23).

2.2 The role of large language models in
digestive endoscopy

Large Language Models (LLMs) have introduced new

possibilities in digestive endoscopy, particularly in areas such as

patient education, clinical decision support, and AI-assisted

report generation. These AI-driven chatbots can process

and generate human-like text, making them highly valuable

tools in modern gastroenterological practice (24). One key

application of LLMs is personalized patient education. AI-driven

chatbots can provide tailored information regarding upcoming

endoscopic procedures, post-procedure care, and common

patient concerns. This personalized approach not only enhances

patient comprehension but also increases overall satisfaction with

medical procedures (25). In diagnostic applications, integrating

LLMs with multimodal AI models has proven effective in

assessing complex gastrointestinal conditions. For instance,

deep-learning systems trained on combined white-light and

weak-magnifying endoscopic images have demonstrated real-time

diagnostic capabilities (26), accurately identifying neoplastic

lesions and aiding endoscopists during procedures. Beyond

diagnostics, LLM chatbots have shown potential in clinical

decision support by synthesizing multimodal data—such as

endoscopic imaging, histopathological findings, and electronic

health records—to provide tailored treatment recommendations

(27). By analyzing a patient’s medical history and current

symptoms, these chatbots can suggest treatment options, dietary

modifications, and follow-up schedules, improving adherence to

medical advice and personalized patient care (28). LLMs facilitate

advanced training for healthcare professionals by simulating

complex clinical scenarios that incorporate diverse data types.

These AI-driven simulations enhance diagnostic reasoning and

decision-making skills, making them valuable tools in medical

education (29).

Recent clinical studies have begun to demonstrate the

measurable benefits of LLM-based assistance in real-world

medical workflows. For instance, Pellegrino et al. (21)

conducted a concordance analysis in colonoscopy, showing

that ChatGPT-4-assisted scoring of bowel preparation quality

achieved comparable results to expert gastroenterologists, while

improving documentation consistency and reducing inter-rater

variability (28). Similarly, Chai and Wang reported that LLM-

powered clinical decision support systems, when integrated with

EHR data, improved diagnostic agreement rates in complex

gastrointestinal cases by over 12% compared to standard rule-

based systems (27). These findings support the claim that

LLMs can effectively augment physician decision-making and

documentation processes, especially when applied in structured,

supervised clinical settings.

2.3 Challenges and future directions in
AI-driven gastroenterology

Despite the significant advancements in AI-driven

gastroenterology, challenges remain in integrating multimodal

learning and LLMs into clinical practice. Ensuring interoperability

between diverse data sources, maintaining patient privacy (30),

and achieving high clinical accuracy are key obstacles that

require further research and development. One of the primary

challenges is the variability in data sources and imaging techniques

across different institutions. AI models must be trained to

handle domain shifts and variations in endoscopic imaging

conditions to ensure reliable and consistent performance (31).

Domain-adaptive learning strategies have been proposed to

improve generalization, but further validation is needed for

widespread clinical adoption. Another critical challenge is the

interpretability and transparency of AI-driven decision support

systems (32). While deep learning models offer superior accuracy,

their black-box nature poses difficulties in clinical acceptance.

Explainable AI (XAI) techniques are crucial for increasing trust

among clinicians by providing insights into how AI models

generate their recommendations (33). Real-time deployment of

AI models in high-stakes clinical settings presents computational

challenges. Multimodal learning frameworks require substantial

processing power to analyze large-scale endoscopic video

data alongside patient-specific records (34). Advancements in

model efficiency, including optimization techniques such as

quantization and pruning, are necessary to facilitate seamless

integration into real-world healthcare workflows. Ethical

considerations surrounding AI applications in gastroenterology

must be addressed (35). Ensuring unbiased training datasets,

preserving patient confidentiality, and adhering to regulatory

frameworks are essential to the responsible deployment of AI

in medical practice. Collaborative efforts among clinicians, AI

researchers, and regulatory bodies are critical for overcoming

these challenges and fully realizing the potential of AI in digestive

endoscopy (36).
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3 Method

3.1 Overview

Artificial Intelligence (AI) has emerged as a transformative

technology in gastroenterology, enhancing diagnostic accuracy,

optimizing treatment strategies, and improving patient outcomes.

With the increasing complexity and volume of medical data, AI-

driven approaches offer new possibilities for automating image

interpretation, predicting disease progression, and personalizing

patient care. This section provides an overview of our proposed

methodology, which integrates AI models into gastroenterology

workflows, covering key components such as problem formulation,

model development, and novel optimization strategies.

In Section 3.2, we present the preliminaries necessary to

understand the application of AI in gastroenterology. This includes

defining the imaging modalities commonly used in gastrointestinal

(GI) diagnostics, such as endoscopy, radiology, and histopathology,

and formulating the AI-driven decision-making process. Key

mathematical representations of data acquisition, preprocessing,

and feature extraction are introduced to establish a structured

foundation for AI integration. In Section 3.3, we introduce

our novel AI-based model tailored for gastroenterology. Unlike

conventional rule-based or handcrafted feature extractionmethods,

our approach employs deep learning architectures to automatically

learn discriminative features from GI images and clinical data.

By incorporating self-supervised learning and multi-modal data

fusion, our model achieves robust performance across diverse

patient populations and varying imaging conditions. In Section 3.4,

we propose a new strategy to optimize AI deployment in clinical

settings. This involves designing interpretable AI systems that

provide explainable decision support for gastroenterologists. We

introduce a domain-adaptive learning technique to enhance model

generalization, mitigating biases associated with dataset variations.

The proposed strategy also includes an uncertainty quantification

mechanism to assist clinicians in assessing model confidence

and reliability. We systematically develop a comprehensive

AI framework for gastroenterology, leveraging state-of-the-art

machine learning techniques to advance disease detection, risk

assessment, and therapeutic planning.

To further contextualize the application of our proposed

framework, we illustrate how DGDN can be deployed within real-

world clinical workflows. DGDN is designed to support both

real-time diagnostic assistance during endoscopic procedures and

retrospective decision support for clinical reporting and triage.

In a real-time scenario, the DGDN model ingests endoscopic

video frames on-the-fly, applies the AGD module to highlight

diagnostically relevant regions, and generates live predictions

with uncertainty quantification. This assists gastroenterologists

in identifying suspicious lesions, guiding biopsy decisions, or

confirming visual impressions during procedures. Alternatively, in

a retrospective setting, the model processes archived endoscopic

images, structured clinical records, and transcribed doctor–

patient dialogue from electronic health systems. By fusing these

multimodal inputs, DGDN can generate structured diagnostic

summaries, suggest follow-up actions, or prioritize cases based on

risk levels. This supports applications such as endoscopy reporting

automation, post-procedure quality assurance, and early-stage

FIGURE 1

Illustration of DGDN in clinical workflow. Left: real-time support

during live endoscopy. Right: retrospective analysis for diagnostic

reporting and triage. The multimodal AI model integrates live image

input, electronic health records, and clinical dialogue to provide

context-aware, interpretable decision support at multiple stages of

patient care.

triage. A schematic diagram of this workflow is shown in Figure 1,

highlighting the flexibility of DGDN in adapting to various points

of care in gastroenterology.

3.2 Preliminaries

The application of Artificial Intelligence (AI) in

gastroenterology primarily focuses on analyzing medical imaging

data, automating disease detection, and enhancing clinical

decision-making. To formalize this problem mathematically, we

define the structure of AI-assisted gastroenterological diagnostics

through a rigorous formulation of the data, feature space, and

inference mechanism.

Medical imaging plays a central role in gastroenterology,

encompassing modalities such as endoscopy, computed

tomography (CT), magnetic resonance imaging (MRI), and

histopathological slides. Each imaging modality provides a

different data structure, which we define as follows.

Given an imaging modality m, let Im represent the space of all

possible images captured using this modality. An image sample is

then denoted as:

X ∈ Im, X = {xi,j,c | i ∈ [1,H], j ∈ [1,W], c ∈ [1,C]}, (1)

whereH andW are the height and width of the image, and C is

the number of channels.

Each image X is associated with a diagnostic label y ∈ Y , where

Y represents the set of possible conditions. The goal of AI-based
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diagnosis is to learn a function f :Im → Y that accurately maps an

input image to its corresponding diagnosis.

To enable effective AI modeling, we define a feature space

F that captures relevant patterns in gastrointestinal imaging. A

feature vector z extracted from an image X is defined as:

z = φ(X; θ), (2)

where φ(·; θ) is a feature extraction function parameterized by

θ , typically learned using deep neural networks.

In the case of endoscopy images, features may include

textural patterns, lesion boundaries, and color variations, while

in histopathological images, cellular morphology and tissue

organization are key factors. The extracted features z ∈ R
d

form a high-dimensional representation that serves as input to

classification or segmentation models.

Given an image X, the AI model predicts the likelihood of

different conditions by computing:

p(y|X) = g(z; θg), (3)

where g(·; θg) is a classification function, typically modeled as a

neural network with softmax output:

p(yk|X) =
exp(w⊤

k
z+ bk)

∑|Y|
j=1 exp(w

⊤
j z+ bj)

, (4)

where wk and bk are the parameters corresponding to class k.

The predicted class ŷ is then given by:

ŷ = arg max
yk∈Y

p(yk|X). (5)

In real-world gastroenterology applications, data often exhibits

spatial and temporal dependencies. For example, an endoscopy

video provides sequential frames {Xt}
T
t=1 capturing dynamic

views of the gastrointestinal tract. A temporal AI model can be

formulated as:

zt = φ(Xt; θ), (6)

ht = ψ(zt , ht−1; θψ ), (7)

where ψ represents a recurrent function that accumulates past

information through a hidden state ht .

Beyond imaging, gastroenterology AI systems can leverage

multi-modal data, including patient history, laboratory test results,

and genetic profiles. GivenN data modalities {m1,m2, ...,mN}, each

providing a feature set z(m), a fused representation is obtained via:

zfusion = �(z
(m1), z(m2), ..., z(mN )), (8)

where �(·) is a fusion function, which may include

concatenation, attention mechanisms, or graph-based integration.

A major challenge in AI-based gastroenterology is ensuring

robustness across diverse imaging conditions and patient

populations. A domain adaptation approach can be formulated as:

Ladapt = EX∼DsL(f (X), y)+ λD(Fs,Ft), (9)

where Ds and Dt are the source and target domain

distributions, and D(·, ·) measures the feature space discrepancy,

often implemented using MaximumMean Discrepancy (MMD) or

adversarial alignment.

3.3 Deep gastrointestinal diagnosis
network

To address the challenges in AI-assisted gastroenterology, we

propose the Deep Gastrointestinal Diagnosis Network (DGDN),

a novel deep learning architecture designed to improve disease

detection, segmentation, and classification in gastrointestinal

(GI) imaging. Unlike traditional models, DGDN integrates

multiple learning paradigms to enhance diagnostic accuracy and

generalization (As shown in Figure 2).

3.3.1 Multi-scale feature fusion
DGDN employs a multi-scale feature fusion strategy to

effectively capture both fine-grained pathological features and

broader structural patterns in gastrointestinal imaging (As shown

in Figure 3). Given an input image X ∈ R
H×W×C , the network

extracts features at different spatial resolutions using convolutional

layers with varying kernel sizes. This allows the model to learn local

textures as well as global contextual information. The multi-scale

feature maps are defined as:

Fmulti = Concat(Conv3×3(X), Conv5×5(X), Conv7×7(X)). (10)

While concatenation preserves spatial information from

different receptive fields, directly using these features can introduce

redundancy. To address this, DGDN employs a learnable weighting

mechanism to dynamically adjust the contribution of each feature

map, ensuring optimal information retention:

Fagg =
∑

i

λiFmulti,i, where
∑

i

λi = 1. (11)

To further refine the extracted multi-scale features, DGDN

applies a channel attention mechanism that emphasizes

informative feature channels while suppressing irrelevant

ones. This is achieved by generating attention weights through a

global pooling operation followed by two fully connected layers:

Ach = σ
(

W2 ReLU(W1 GAP(Fagg))
)

, (12)

where GAP(·) represents global average pooling, W1 and

W2 are learnable parameters, and σ (·) is the sigmoid activation

function. The attention-refined feature representation is then

computed as:

Frefined = Ach ⊙ Fagg, (13)

where⊙ denotes element-wisemultiplication. This ensures that

diagnostically significant features receive higher attention, thereby

improvingmodel interpretability and robustness. A spatial pyramid

pooling (SPP) module is incorporated to further enhance spatial

relationships across multiple scales. The feature map is divided into

different-sized pooling bins, and the outputs are concatenated to

form a multi-scale descriptor:

Fspp = Concat(Pool1×1(Frefined), Pool2×2(Frefined), Pool4×4(Frefined)).

(14)

By combining multi-scale convolutional processing, adaptive

feature weighting, channel attention, and spatial pooling, DGDN
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FIGURE 2

Overview of the Deep Gastrointestinal Diagnosis Network (DGDN). The architecture consists of three key components, Multi-Scale Feature Fusion

(MSFF), Attention-Guided Diagnosis (AGD), and Domain-Adaptive Learning (DAL). MSFF extracts and integrates multi-scale spatial features to capture

both fine-grained pathological details and global contextual patterns. AGD employs an adaptive attention mechanism to enhance diagnostically

relevant regions while suppressing background noise. DAL ensures robust feature generalization across di�erent imaging domains through

adversarial domain adaptation and contrastive learning. The model leverages spatio-temporal data representation, hierarchical feature extraction,

and a self-adaptive fusion mechanism to improve disease detection, segmentation, and classification in gastrointestinal imaging.

effectively learns hierarchical representations that improve lesion

detection and classification accuracy. This multi-scale feature

fusion mechanism significantly enhances the model’s capability to

generalize across diverse gastrointestinal imaging conditions.

3.3.2 Attention-guided diagnosis
To enhance the localization of key diagnostic regions,

DGDN applies an attention-based spatial encoding mechanism

that adaptively refines feature representations. Traditional

convolutional networks struggle to highlight diagnostically

relevant regions consistently, particularly in complex medical

images with varying textures and lighting conditions. To

address this, we introduce an adaptive attention mechanism

that selectively enhances important features while suppressing

irrelevant background information. The attention weights A are

computed as:

A = σ
(

Conv1×1(Fagg)
)

, (15)

where σ (·) denotes the sigmoid activation function, and Fagg

represents the aggregated multi-scale feature map. The refined

feature representation is obtained via element-wise multiplication:

Fattn = A⊙ Fagg, (16)

where ⊙ denotes Hadamard (element-wise) multiplication.

However, static attention maps may not sufficiently capture

complex spatial dependencies. To enhance spatial selectivity, we

introduce an attention-based gating mechanism that leverages

second-order interactions between feature channels:

G = tanh
(

Conv3×3(Fattn)+W · Fattn
)

, (17)

where W represents a learnable transformation matrix that

enhances contextual interactions. This refined attention map G is

used to reweight the input feature representation:

Ffinal = G⊙ Fattn + Fagg. (18)

To ensure stable and reliable feature extraction across varying

clinical conditions, an auxiliary supervision term is incorporated to

regularize the attention distribution:

Lattn =
∑

i,j

∣

∣

∣

∣

∣

Ai,j −
exp(Ai,j)

∑

m,n exp(Am,n)

∣

∣

∣

∣

∣

, (19)

which enforces a smooth and spatially coherent attention map.

By integrating this enhanced attention-guided mechanism, DGDN

significantly improves interpretability and diagnostic accuracy,

ensuring more robust AI-driven medical image analysis.

It is important to note that the primary function of the AGD

module is to enhance the interpretability of the model by focusing

attention on diagnostically relevant regions within gastrointestinal
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FIGURE 3

Multi-scale feature fusion (MSFF) in DGDN. The architecture integrates multi-scale feature extraction, adaptive weighting, and spatial attention to

enhance gastrointestinal image analysis. The MSFF module captures both fine-grained and high-level structural details using convolutional layers of

di�erent kernel sizes. Feature selection is optimized through learnable weighting and attention mechanisms, ensuring robust lesion detection. Token

and channel selection refine feature representations, while the spatial attention mechanism (SAM) enhances spatial dependencies. This hierarchical

fusion strategy significantly improves model generalization across diverse imaging conditions.

images. The AGD mechanism serves as a spatial refinement layer

and does not perform classification of specific disease categories

such as polyps, ulcers, or tumors. Instead, diagnostic labeling

is conducted by subsequent modules in the DGDN architecture

that utilize the refined feature representations produced by AGD.

Moreover, there is no direct or hard-coded coupling between

the generated attention maps and predefined diagnostic classes.

The AGD module identifies regions of interest based on feature

saliency, which indirectly supports classification performance and

model explainability without acting as a deterministic classifier.

While attention maps may vary in pattern across different disease

cases, their purpose is to guide, rather than determine, the

diagnostic outcome.

3.3.3 Domain-adaptive learning
To improve generalization across different imaging conditions

and medical datasets, the proposed Domain-Generalized Deep

Network (DGDN) leverages adversarial domain adaptation

techniques. These techniques enable DGDN to learn invariant

feature representations, reducing domain shifts between source

and target distributions. A domain discriminator D is introduced

to distinguish whether a feature representation originates from the

source domain Xs or the target domain Xt . The adversarial loss for

domain adaptation is formulated as:

Ldomain = −EXs [logD(Fattn,s)]− EXt [log(1−D(Fattn,t))]. (20)

Here, Fattn,s and Fattn,t represent attention-based feature

embeddings extracted from the source and target domains,

respectively. The model is trained in an adversarial manner, where

the feature extractor aims to generate domain-invariant features by

maximizing Ldomain, while the domain discriminator D attempts

to distinguish between source and target features. This adversarial

interplay leads to a more generalized feature space.

To domain adaptation, DGDN integrates both classification

and segmentation objectives, ensuring that the learned

representations retain clinical relevance. The total loss function is

formulated as:

L = Lcls + λsegLseg + λdomainLdomain. (21)

Here, Lcls denotes the classification loss, Lseg represents the

segmentation loss, and λseg, λdomain are weighting hyperparameters

controlling the relative contributions of segmentation and

domain adaptation.

To further enhance domain robustness, we incorporate

contrastive learning into the feature space. Given a set of positive

and negative feature pairs, contrastive loss encourages intra-

domain similarity while enforcing inter-domain separation:

Lcontrast = −

N
∑

i=1

log
exp(sim(Fsi , F

t
i )/τ )

∑N
j=1 exp(sim(Fsi , F

t
j )/τ )

, (22)
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where sim(·, ·) is the cosine similarity function, Fsi and F
t
i are the

feature representations from the source and target domains, and τ

is a temperature scaling parameter.

To stabilize domain adaptation, we also introduce an entropy-

based regularization term that enforces prediction consistency

across domains. This is achieved by minimizing the entropy of the

softmax output:

Lentropy = −EXt

∑

c

pc log pc, (23)

where pc represents the predicted probability for class c in the

target domain. This constraint encourages confident predictions

while discouraging ambiguous outputs.

We define the total optimization objective as a weighted sum

of classification, segmentation, domain adaptation, contrastive, and

entropy regularization losses:

Ltotal = Lcls + λsegLseg + λdomainLdomain

+λcontrastLcontrast + λentropyLentropy. (24)

This comprehensive loss formulation enables DGDN

to mitigate domain shifts, improve robustness, and ensure

high performance in real-world clinical applications, where

imaging conditions may vary significantly across datasets and

medical institutions.

3.4 Hierarchical adaptive fusion strategy

To further enhance the robustness and interpretability

of AI-driven gastrointestinal (GI) diagnostics, we propose

the Hierarchical Adaptive Fusion Strategy (HAFS). This

strategy optimally integrates multi-scale features, uncertainty

quantification, and domain-aware adaptation to improve

diagnostic accuracy and generalization across diverse clinical

environments. Unlike conventional fusion methods that

rely on static feature aggregation, HAFS dynamically refines

information from different modalities and spatial resolutions using

a hierarchical optimization framework (As shown in Figure 4).

In this work, we define patient-specific optimization as the

model’s ability to dynamically adapt its inference process based on

individual-level clinical context, rather than relying on population-

averaged assumptions. This is achieved by incorporating

multimodal inputs–such as patient history, laboratory findings,

and conversational cues–into the model’s internal decision-

making pipeline. For example, during retrospective analysis,

DGDN can weigh symptom descriptions or emotional tone

differently for elderly patients with a history of gastrointestinal

bleeding, compared to younger patients undergoing routine

screening. In real-time settings, the uncertainty-aware module

enables the model to flag ambiguous predictions in patients with

comorbidities, prompting additional human review or more

conservative diagnostic recommendations. This optimization

occurs not through explicit per-patient retraining, but via

fusion mechanisms that condition the feature representation on

individual data characteristics. In this way, DGDN supports a form

of personalized inference, enhancing safety, interpretability, and

clinical relevance.

To endoscopic imagery and structured clinical data, DGDN

incorporates conversational inputs derived from patient–clinician

dialogue, as exemplified by the CMU-MOSEI dataset. While

such dialogue-based sentiment or emotion signals are rarely

exploited in current gastrointestinal diagnostic systems, they hold

meaningful clinical value. For example, during live endoscopy

procedures, real-time emotion recognition could alert physicians

when patients express elevated anxiety, discomfort, or hesitation—

serving as an early warning signal for adverse reactions or

consent issues. This functionality can enhance patient safety

and personalized care, particularly in semi-conscious procedures

involving sedation or discomfort. In post-procedure contexts,

dialogue analysis can help summarize patient emotional responses,

contributing to counseling quality and patient satisfaction tracking.

Sentiment-aware models may identify patients who require

additional explanation, reassurance, or psychological follow-up.

These capabilities position DGDN not only as a diagnostic assistant

but also as a comprehensive patient interaction support system,

enabling emotionally intelligent care in gastroenterology.

3.4.1 Adaptive multi-scale fusion
Gastrointestinal imaging presents significant variations in

spatial resolution and texture across different anatomical regions,

requiring a robust fusion mechanism to integrate multi-scale

information effectively. To address this, the Hierarchical Adaptive

Fusion Strategy (HAFS) organizes feature representations into a

structured hierarchy that captures both local details and global

contextual information. Given an input image X ∈ R
H×W×C,

HAFS employs convolutional layers with different receptive fields

to extract multi-scale features:

Fl = Conv7×7(X), Fm = Conv5×5(X), Fs = Conv3×3(X),

(25)

where Fl, Fm, and Fs correspond to feature maps with large,

medium, and small receptive fields, respectively. While simple

concatenation of these features may retain all spatial scales, it fails

to consider their relative importance. To overcome this limitation,

HAFS applies an adaptive weighting mechanism that dynamically

selects the most relevant feature representations:

Ffused =
∑

i∈{s,m,l}

αiFi, where
∑

i

αi = 1. (26)

To optimize the weight parameters αi, a self-attention

mechanism is employed, which assigns higher importance to more

informative features. This attention is computed by normalizing

activation responses across scales:

αi =
exp(WiFi)

∑

j exp(WjFj)
, (27)

whereWi are learnable parameters that enable dynamic feature

adaptation. To preserve spatial coherence and enhance global

information flow, HAFS introduces a residual fusion module that

refines the aggregated feature representation:

Ffinal = Ffused +Wres · GAP(Ffused), (28)
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FIGURE 4

Hierarchical adaptive fusion strategy (HAFS) for AI-driven gastrointestinal diagnostics. A multi-scale fusion framework incorporating Transformer and

Convolutional branches, uncertainty-aware prediction, and domain-invariant learning to enhance diagnostic accuracy and robustness across diverse

clinical datasets. The adaptive multi-scale fusion module integrates local and global features dynamically, ensuring e�ective representation learning.

An uncertainty-aware mechanism leverages Monte Carlo Dropout to quantify prediction confidence, improving reliability in medical applications.

Domain-invariant learning mitigates distribution shifts using adversarial adaptation and statistical alignment, enhancing generalization across

di�erent imaging conditions.

where GAP(·) denotes global average pooling, and Wres

scales the pooled feature map before reintroducing it to the fused

representation. This residual enhancement ensures that spatial

details are preserved while incorporating high-level contextual

information. By integrating hierarchical feature extraction,

adaptive weighting, self-attention, and residual refinement, HAFS

significantly improves the robustness of multi-scale fusion,

enabling superior performance in gastrointestinal lesion detection

and classification.

3.4.2 Uncertainty-aware prediction
To improve reliability in clinical practice, HAFS incorporates

an uncertainty-aware mechanism that quantifies confidence

levels in AI predictions, ensuring robust decision-making

in high-stakes medical applications. Uncertainty estimation

is particularly crucial in gastrointestinal diagnostics, where

variations in image quality, lighting conditions, and anatomical

differences can significantly impact model predictions. To

capture epistemic uncertainty, we employ Monte Carlo Dropout

(MC-Dropout), which approximates Bayesian inference by

performing multiple stochastic forward passes during inference.

The probability distribution of the model’s prediction is

estimated as:

p(y|X) =
1

T

T
∑

t=1

g(Ffused; θt), (29)

where θt represents model weights sampled from a dropout

distribution, and T is the number of stochastic forward passes. The

variance of these predictions quantifies uncertainty, highlighting

regions requiring additional scrutiny:

σ 2 =
1

T

T
∑

t=1

(g(Ffused; θt)− p(y|X))2. (30)

To further refine uncertainty quantification, we integrate

an entropy-based regularization term that stabilizes uncertain

predictions by penalizing high entropy in the output distribution:

Lentropy = −
∑

c

pc log pc, (31)
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where pc represents the probability of class c. This entropy

loss encourages confident predictions while maintaining

model flexibility. An uncertainty-aware decision threshold is

introduced to adaptively adjust classification sensitivity based on

predicted uncertainty:

ŷ =

{

argmax p(y|X), if σ < τ ,

flag for review, otherwise.
(32)

Here, τ is a dynamic threshold that balances sensitivity and

specificity. By incorporating these techniques, HAFS ensures that

high-uncertainty cases are flagged for manual review, improving

diagnostic trustworthiness and enhancing real-world applicability

in clinical settings.

3.4.3 Domain-invariant learning
To mitigate domain shifts in medical imaging and enhance

model generalization, Hybrid Adversarial Feature Selection

(HAFS) employs adversarial domain adaptation. In real-world

medical applications, variations in imaging protocols, acquisition

devices, and patient populations often lead to discrepancies

between training (source) and deployment (target) datasets.

HAFS addresses this challenge by enforcing domain-invariant

feature learning through adversarial training (As shown in

Figure 5). Given a labeled source dataset Ds = {(Xs,Ys)}

and an unlabeled target dataset Dt = {Xt}, the model

learns transferable features using a domain discriminator

D that attempts to differentiate between source and target

representations. The adversarial domain adaptation loss is

defined as:

Ldomain = −EXs [logD(Ffused,s)]−EXt [log(1−D(Ffused,t))]. (33)

Here, Ffused,s and Ffused,t represent multi-scale fused feature

embeddings extracted from the source and target domains,

respectively. The objective of the feature extractor f (·) is to generate

domain-invariant representations that deceive the discriminatorD,

thereby ensuring that Ffused,s and Ffused,t become indistinguishable.

This is achieved through a min-max optimization process:

θf = argmin
θf

max
θD

Ldomain. (34)

Here, θf and θD denote the parameters of the feature extractor

and domain discriminator, respectively. The feature extractor is

optimized to minimize the domain loss, while the discriminator is

trained to maximize it, leading to an adversarial equilibrium that

enhances domain invariance.

To further ensure the transferability of learned representations,

we incorporate Maximum Mean Discrepancy (MMD), which

explicitly reduces statistical differences between source and

target distributions in the feature space. The MMD loss is

defined as:

LMMD =

∥

∥

∥

∥

∥

∥

1

Ns

Ns
∑

i=1

k(Fifused,s)−
1

Nt

Nt
∑

j=1

k(F
j

fused,t
)

∥

∥

∥

∥

∥

∥

2

, (35)

where k(·) is a kernel function, and Ns, Nt are the sample

sizes from the source and target domains, respectively. This loss

encourages the feature extractor to learn embeddings that have

similar statistical properties across domains, improving adaptation

without requiring labeled target samples.

To prevent catastrophic forgetting and ensure

robustness in the target domain, we introduce

Entropy Minimization, which encourages the

model to make confident predictions for target

domain samples:

Lentropy = −EXt

∑

c

pc log pc, (36)

where pc denotes the predicted probability distribution over

classes. By minimizing entropy, the model is encouraged to learn

well-separated, high-confidence predictions in the target domain.

The final optimization objective of HAFS

combines classification loss, adversarial domain

adaptation, MMD-based statistical alignment, and

entropy minimization:

Ltotal = Lcls + λdomainLdomain + λMMDLMMD + λentropyLentropy.

(37)

This joint training framework enables HAFS to achieve

domain-invariant learning, thereby enhancing model robustness

across diverse imaging datasets and real-world clinical scenarios.

4 Experimental setup

4.1 Dataset

The CMU-MOSEI Dataset (37) is a large-scale multimodal

dataset designed for sentiment and emotion analysis. It contains

thousands of videos collected from online platforms, where

speakers express opinions on various topics. Each video is

annotated with fine-grained sentiment scores and multiple

emotional labels, making it a valuable resource for studying

human affect in a multimodal context. The dataset includes

audio, visual, and textual modalities, enabling researchers to

develop and evaluate models that integrate different data sources.

Its diverse and well-annotated samples make it widely used in

sentiment classification and affective computing research. The

MIMIC-IV Dataset (38) is a comprehensive medical dataset

derived from real-world intensive care unit (ICU) records. It

includes de-identified electronic health records, physiological

waveforms, laboratory test results, and medication histories of

patients. The dataset provides a rich foundation for clinical

research, enabling the development of predictive models for

disease progression, patient outcomes, and treatment optimization.

With its longitudinal structure and diverse patient demographics,

MIMIC-IV supports studies in machine learning for healthcare,

particularly in critical care analytics and early warning systems.

Its accessibility has contributed to significant advancements

in medical AI and decision support systems. The Kvasir-SEG

Dataset (39) is a high-quality medical dataset focused on
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FIGURE 5

Domain-invariant learning framework with hybrid adversarial feature

selection (HAFS). The framework illustrates a multi-stage

architecture designed to mitigate domain shifts in medical imaging

and enhance model generalization. The core consists of a

Transformer Encoder that processes multi-source feature inputs,

integrating Engagement Feedback Mechanisms (EFM) for adaptive

learning. The system includes components like Dynamic Incentive

Allocation (DIA) for task-specific adjustments and Retention

Probability Estimation for long-term learning impact. The

Domain-Invariant Learning process is enforced through adversarial

training using a domain discriminator, Maximum Mean Discrepancy

(MMD) for statistical alignment, and entropy minimization to ensure

robust, confident predictions across both source and target

datasets. This unified framework supports e�ective cross-domain

feature adaptation, essential for real-world clinical applications.

gastrointestinal disease segmentation. It consists of annotated

endoscopic images primarily depicting polyp regions, aiding

in the development of automated segmentation and detection

models. The dataset contains pixel-level annotations, ensuring

precise localization of abnormalities and enhancing the reliability

of deep learning-based diagnostic systems. Its diverse sample

set, covering various polyp appearances and sizes, makes it a

crucial benchmark for evaluating segmentation algorithms in

gastroenterology. Researchers utilize Kvasir-SEG to improve early

polyp detection, which plays a key role in preventing colorectal

cancer through timely intervention. The GastroVision Dataset (40)

is a multimodal dataset curated for the advancement of AI-driven

gastroenterology applications. It contains endoscopic images and

videos annotated with diagnostic labels, supporting research in

automated lesion detection, classification, and segmentation. The

dataset captures a wide range of gastrointestinal conditions,

including ulcers, polyps, and inflammation, making it a valuable

resource for clinical decision support systems. Its inclusion of real-

world variability, such as differences in imaging conditions and

patient demographics, enhances model robustness. GastroVision

serves as a benchmark for developing computer-aided diagnosis

tools that assist endoscopists in improving diagnostic accuracy

and efficiency.

4.2 Experimental details

In our experiments, we evaluate our model on four widely

used text classification datasets: CMU-MOSEI Dataset, MIMIC-

IV Dataset, Kvasir-SEG Dataset, and GastroVision Dataset. These

datasets cover diverse text classification tasks, including sentiment

analysis, topic categorization, and document classification. Our

model is implemented using PyTorch and trained on an NVIDIA

A100 GPU with 40GB memory. We use the Adam optimizer with

an initial learning rate of 3 × 10−5, which is scheduled to decay

using a cosine annealing strategy. The batch size is set to 32,

and we use early stopping with a patience of 5 epochs based on

validation loss. For text preprocessing, we tokenize all input data

using a pre-trained WordPiece tokenizer and truncate sequences

to a maximum length of 512 tokens to maintain computational

efficiency. Stopwords are removed, and special characters are

normalized. We experiment with both word-level and subword-

level tokenization to ensure robust text representation. Our model

leverages a Transformer-based architecture with a bidirectional

attention mechanism for better contextual understanding. We

adopt a BERT-based encoder to extract deep semantic features

from input texts. The encoder outputs are passed through a

fully connected layer with a softmax activation function for

classification. For training, we employ a cross-entropy loss function

for both binary and multi-class classification tasks. The learning

rate is fine-tuned using a grid search over {1 × 10−5, 3 ×

10−5, 5 × 10−5}, while the dropout rate is set to 0.1 to prevent

overfitting. The number of Transformer layers is set to 12, and

the hidden dimension is 768. Positional encoding and layer

normalization are applied to enhance feature extraction. The

model is trained for a maximum of 10 epochs, with evaluation

conducted after each epoch on a held-out validation set. We use

standard classification metrics for evaluation, including Accuracy,

Precision, Recall, and F1-score. For the CMU-MOSEI and Kvasir-

SEG datasets, we report results for both binary and multi-class

sentiment classification tasks. For MIMIC-IV and GastroVision,

we evaluate performance on topic classification. We adopt macro-

averaged F1-score for datasets with imbalanced class distributions.

The results are averaged over five independent runs to ensure

stability. To compare our approach with state-of-the-art models,

we benchmark against traditional machine learning classifiers and

deep learning architectures. Ablation studies are performed to

analyze the impact of different components, including attention

mechanisms, pre-trained embeddings, and fine-tuning strategies.

We measure inference time per sample to evaluate computational

efficiency. To ensure fair evaluation, we follow the official

training/testing splits for each dataset. For GastroVision, we apply

stratified sampling to maintain class balance. We also investigate

domain adaptation performance by training on one dataset

and testing on another, analyzing generalization across different

text classification tasks. The experimental setup is designed to

provide comprehensive insights into our model’s effectiveness and

efficiency (Algorithm 1).
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Input: Pretrained datasets: D = {CMU-MOSEI,

MIMIC-IV, Kvasir-SEG, GastroVision}

Output: Trained DGDN model with optimal parameters

1 Initialize model parameters θ

2 Set learning rate η, batch size B, max epochs T

3 for each dataset Di ∈ D do

4 Load dataset Di and split into training,

validation, and test sets

5 Tokenize and preprocess textual data

6 for each epoch t = 1 to T do

7 Shuffle training data Dtrain
i

8 for each batch b = 1 to
|Dtrain

i
|

B do

9 Sample mini-batch B from Dtrain
i

10 Compute multi-scale feature maps:

Fmulti = Concat(Conv3×3(X),

Conv5×5(X),Conv7×7(X)) (38)

Compute attention-weighted feature

representation:

Fattn = σ(Conv1×1(Fmulti))⊙Fmulti (39)

Apply classification and segmentation

branches:

ŷ = softmax(Wcls GAP(Fattn)+ bcls) (40)

Compute classification loss:

Lcls = −
∑

c

yc log ŷc (41)

Compute domain adaptation loss:

Ldomain = −EXs[logD(Fattn,s)]

−EXt
[log(1−D(Fattn,t))] (42)

Compute total loss:

L = Lcls + λdomainLdomain (43)

Update model parameters:

θ ← θ − η∇θL (44)

11 end

12 Evaluate on validation set and compute:

Accuracy, Precision, Recall, F1-score

(45)

if validation loss does not improve for p

epochs then

13 Stop training (Early Stopping)

14 end

15 end

16 end

17 Evaluate on test set and report final performance

metrics

18 return Trained DGDN Model

Algorithm 1. Training Procedure for DGDN.

4.3 Comparison with SOTA methods

To evaluate the effectiveness of our proposed method, we

compare it against state-of-the-art (SOTA) models on four

benchmark datasets: CMU-MOSEI, MIMIC-IV, Kvasir-SEG, and

GastroVision. The results are reported in Tables 1, 2. We assess

model performance using standard classification metrics, including

Accuracy, Precision, Recall, and F1-score, where higher values

indicate better performance.

In Figures 6, 7, our model consistently outperforms existing

SOTA methods on CMU-MOSEI and MIMIC-IV datasets. For

CMU-MOSEI, our method achieves an Accuracy of 90.3%,

surpassing the previous best model, ALBEF, which attains 88.7%.

In terms of F1-score, our approach improves upon ALBEF by 1.6%,

demonstrating superior sentiment classification capability. On the

MIMIC-IV dataset, our method achieves an Accuracy of 92.1%,

outperforming UNITER’s 90.5%, while also attaining the highest

Precision and Recall scores. The improvements suggest that our

model effectively captures text semantics and topic distinctions

in large-scale classification tasks. It extends the comparison to

the Kvasir-SEG and GastroVision datasets. Our model continues

to show strong performance, achieving an Accuracy of 88.2%

on Kvasir-SEG, outperforming ALBEF’s 86.9%. Similarly, the F1-

score reaches 86.0%, highlighting improved sentiment classification

accuracy. On GastroVision, our approach attains an Accuracy of

83.7%, surpassing ALBEF’s 82.3%. The gains in Precision and Recall

indicate that our model can better differentiate between document

categories despite the presence of overlapping topics.

The superior performance of our model can be attributed

to several key factors. Our Transformer-based architecture

leverages contextual embeddings more effectively, capturing

long-range dependencies in text. Our multi-stage fine-

tuning approach ensures better adaptation to different text

classification tasks. The use of data augmentation techniques

enhances model generalization across datasets. Our model

incorporates adaptive attention mechanisms, allowing it

to dynamically focus on relevant textual features. These

results demonstrate that our approach provides robust and

generalizable improvements over existing SOTA methods in text

classification tasks.

4.4 Ablation study

To analyze the impact of different components in our proposed

method, we conduct an ablation study on four benchmark datasets:

CMU-MOSEI, MIMIC-IV, Kvasir-SEG, and GastroVision. The

results are presented in Tables 3, 4. We systematically remove key
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TABLE 1 Performance evaluation of our approach against state-of-the-art methods on CMU-MOSEI and MIMIC-IV datasets.

Model
CMU-MOSEI dataset MIMIC-IV dataset

Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑

MMBERT (45) 87.5± 0.3 85.2± 0.4 83.9± 0.3 84.5± 0.3 89.3± 0.3 86.7± 0.4 85.1± 0.3 85.9± 0.3

CLIP (46) 88.1± 0.4 86.0± 0.3 84.7± 0.3 85.2± 0.3 90.2± 0.3 87.4± 0.4 86.0± 0.3 86.5± 0.3

VisualBERT (47) 86.9± 0.3 84.8± 0.4 83.5± 0.3 84.0± 0.3 88.7± 0.3 86.2± 0.3 84.6± 0.4 85.2± 0.3

UNITER (48) 88.4± 0.4 86.5± 0.3 85.0± 0.3 85.7± 0.3 90.5± 0.3 87.8± 0.3 86.3± 0.4 86.9± 0.3

LXMERT (49) 87.3± 0.3 85.4± 0.3 84.1± 0.4 84.6± 0.3 89.5± 0.3 86.9± 0.3 85.4± 0.4 85.8± 0.3

ALBEF (50) 88.7± 0.3 86.8± 0.3 85.2± 0.4 85.9± 0.3 90.8± 0.3 88.1± 0.3 86.7± 0.4 87.2± 0.3

Ours 90.3 ± 0.3 88.2 ± 0.3 86.9 ± 0.4 87.5 ± 0.3 92.1 ± 0.3 89.7 ± 0.3 88.2 ± 0.4 88.8 ± 0.3

Bold values indicate the best performance in each column.

TABLE 2 Evaluating the performance of our approach against state-of-the-art methods on Kvasir-SEG and GastroVision datasets.

Model
Kvasir-SEG dataset GastroVision dataset

Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑

MMBERT (45) 85.4± 0.3 83.9± 0.4 82.7± 0.3 83.2± 0.3 80.5± 0.3 78.3± 0.4 77.0± 0.3 77.6± 0.3

CLIP (46) 86.1± 0.4 84.5± 0.3 83.1± 0.3 83.7± 0.3 81.2± 0.3 79.0± 0.4 77.8± 0.3 78.3± 0.3

VisualBERT (47) 84.8± 0.3 83.2± 0.4 82.1± 0.3 82.5± 0.3 79.9± 0.3 77.5± 0.3 76.3± 0.4 76.8± 0.3

UNITER (48) 86.6± 0.4 85.1± 0.3 83.8± 0.3 84.3± 0.3 81.8± 0.3 79.7± 0.3 78.2± 0.4 78.8± 0.3

LXMERT (49) 85.7± 0.3 84.0± 0.3 82.9± 0.4 83.4± 0.3 80.9± 0.3 78.8± 0.3 77.4± 0.4 77.9± 0.3

ALBEF (50) 86.9± 0.3 85.4± 0.3 84.0± 0.4 84.6± 0.3 82.3± 0.3 80.1± 0.3 78.7± 0.4 79.2± 0.3

Ours 88.2 ± 0.3 86.7 ± 0.3 85.5 ± 0.4 86.0 ± 0.3 83.7 ± 0.3 81.5 ± 0.3 80.2 ± 0.4 80.7 ± 0.3

Bold values indicate the best performance in each column.

FIGURE 6

Benchmarking advanced methods on CMU-MOSEI and MIMIC-IV datasets: a comparative performance study.

components of our model and assess their effects on Accuracy,

Precision, Recall, and F1-score.

In Figures 8, 9, the first ablation removes Attention-Guided

Diagnosis. This results in a notable performance drop across all

datasets. For instance, on the CMU-MOSEI dataset, Accuracy

decreases from 90.3% to 89.1%, while the F1-score drops from

87.5% to 86.5%. Similarly, on the Kvasir-SEG dataset, Accuracy

decreases from 88.2% to 87.4%. This demonstrates that the
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FIGURE 7

Comparative analysis of state-of-the-art methods on Kvasir-SEG and GastroVision datasets.

attention mechanism plays a crucial role in capturing contextual

dependencies, leading to better text representations. The second

ablation removes Domain-Adaptive Learning, which adjusts token

representations based on sentence-level context. This degradation

is noticeable, with Accuracy dropping to 88.5% on CMU-MOSEI

and 86.8% on Kvasir-SEG. The reduced F1-score suggests that the

absence of contextual refinement leads to weaker generalization, as

seen in the MIMIC-IV dataset, where Accuracy drops from 92.1%

to 90.6%. This highlights the importance of fine-grained contextual

modeling in classification tasks. The third ablation eliminates

Uncertainty-Aware Prediction, which integrates information from

different layers. This results in a moderate drop in performance,

particularly affecting Recall values. On CMU-MOSEI, Recall

decreases from 86.9% to 85.6%, indicating that removing this

module causes the model to miss subtle sentiment indicators.

The same pattern is observed on the GastroVision dataset, where

Recall drops from 80.2% to 78.3%, demonstrating the module’s

importance in long-text classification.

Our complete model consistently outperforms all ablation

variants across all datasets. The results confirm that each

component plays a significant role in improving text classification

performance. Attention-Guided Diagnosis enhances contextual

understanding, Domain-Adaptive Learning strengthens feature

representation, and Uncertainty-Aware Prediction ensures

effective integration of hierarchical information. These findings

validate the effectiveness of our architectural choices in achieving

state-of-the-art performance in text classification tasks.

To further investigate the effectiveness of our domain

adaptation strategy under real-world deployment conditions, we

conducted a cross-institutional generalization experiment. In this

setup, the model was trained exclusively on the Kvasir-SEG

dataset, which features endoscopic images captured using a specific

clinical protocol and equipment setup, and then evaluated on

the GastroVision dataset, which includes data collected from

multiple institutions with heterogeneous imaging conditions,

device manufacturers, and acquisition styles. This simulation

closely mimics practical domain shifts encountered in clinical

practice, such as differences in illumination, resolution, staining,

and operating habits across hospitals. As presented in Table 5, the

baseline model without any domain adaptation showed a marked

decrease in generalization performance when applied to the out-

of-domain GastroVision dataset. Accuracy dropped to 80.2%, and

the F1-score fell to 77.5%, indicating limited robustness in cross-

site deployment scenarios. The precision and recall also suffered,

suggesting that the model failed to reliably identify and characterize

lesions under unfamiliar imaging styles. When Domain-Adaptive

Learning (DAL) was introduced–leveraging adversarial domain

alignment and contrastive representation learning–the model’s

performance improved across all evaluation metrics. The F1-

score rose to 80.5% (a gain of 3.0 percentage points over the

baseline), with recall improving from 76.8% to 80.1%. This

improvement highlights the DAL module’s capacity to reduce the

feature space discrepancy between source and target domains. The

most significant improvement was observed when the full HAFS

(Hierarchical Adaptive Fusion Strategy) framework was applied.

This configuration achieved an accuracy of 85.6%, precision of

83.5%, recall of 82.9%, and F1-score of 83.2%—representing

an absolute gain of 5.7% in F1-score over the baseline and

2.7% over DAL alone. These gains demonstrate the effectiveness

of HAFS in achieving cross-domain robustness by combining

domain-aware fusion, uncertainty-aware prediction, and residual

adaptation. These results confirm that while domain adaptation

significantly enhances generalization under distributional shifts,

there remains a non-negligible performance gap compared to in-

domain evaluations. Future efforts should exploremulti-source and

federated training paradigms to further bridge this generalization

gap in heterogeneous clinical environments.

This evaluation involved a comparison between four different

configurations: an image-only baseline, a text-only baseline, a

model that performs early fusion by simply concatenating visual

and textual features, and the complete DGDN model which

employs hierarchical adaptive fusion. According to the results
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TABLE 3 Exploring the impact of model components through ablation study on CMU-MOSEI and MIMIC-IV datasets.

Model
CMU-MOSEI dataset MIMIC-IV dataset

Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑

w./o. Attention-

Guided

Diagnosis

89.1± 0.3 87.4± 0.4 85.9± 0.3 86.5± 0.3 91.0± 0.3 88.3± 0.4 86.8± 0.3 87.3± 0.3

w./o. Domain-

Adaptive

Learning

88.5± 0.4 87.0± 0.3 85.4± 0.3 86.0± 0.3 90.6± 0.3 88.0± 0.3 86.5± 0.4 87.0± 0.3

w./o.

Uncertainty-

Aware

Prediction

88.9± 0.3 87.2± 0.4 85.6± 0.3 86.2± 0.3 90.8± 0.3 88.1± 0.3 86.6± 0.4 87.1± 0.3

Ours 90.3 ± 0.3 88.2 ± 0.3 86.9 ± 0.4 87.5 ± 0.3 92.1 ± 0.3 89.7 ± 0.3 88.2 ± 0.4 88.8 ± 0.3

Bold values indicate the best performance in each column.

TABLE 4 Comprehensive ablation analysis of our method on Kvasir-SEG and GastroVision datasets.

Model
Kvasir-SEG dataset GastroVision dataset

Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑

w./o. Attention-

Guided

Diagnosis

87.4± 0.3 85.9± 0.4 84.6± 0.3 85.2± 0.3 82.1± 0.3 80.0± 0.4 78.5± 0.3 79.1± 0.3

w./o. Domain-

Adaptive

Learning

86.8± 0.4 85.3± 0.3 84.0± 0.3 84.5± 0.3 81.6± 0.3 79.5± 0.3 78.1± 0.4 78.6± 0.3

w./o.

Uncertainty-

Aware

Prediction

87.1± 0.3 85.6± 0.4 84.3± 0.3 84.8± 0.3 81.9± 0.3 79.8± 0.3 78.3± 0.4 78.9± 0.3

Ours 88.2 ± 0.3 86.7 ± 0.3 85.5 ± 0.4 86.0 ± 0.3 83.7 ± 0.3 81.5 ± 0.3 80.2 ± 0.4 80.7 ± 0.3

Bold values indicate the best performance in each column.

FIGURE 8

In-Depth ablation analysis of our approach on CMU-MOSEI and MIMIC-IV datasets. Attention-guided diagnosis (AGD), Domain-adaptive learning

(DAL), and uncertainty-aware prediction (UAP).

presented in Table 6, the DGDN model demonstrates superior

performance over all baseline methods, achieving higher scores

in accuracy, precision, recall, and F1-score across both evaluated

datasets. On the MedICaT dataset (41), which involves disease

tagging based onmedical illustrations and captions, the image-only

model achieved an F1-score of 73.8%, and the text-only model
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FIGURE 9

In-depth analysis of our method through ablation study on Kvasir-SEG and GastroVision datasets.

TABLE 5 Evaluation of domain adaptation under cross-institutional setting.

Model variant Accuracy ↑ Precision ↑ Recall ↑ F1 Score ↑

Baseline (no domain adaptation) 80.2± 0.4 78.3± 0.3 76.8± 0.4 77.5± 0.3

+ Domain-adaptive learning (DAL) 83.0± 0.3 81.0± 0.3 80.1± 0.3 80.5± 0.3

+ Full HAFS Framework 85.6 ± 0.3 83.5 ± 0.3 82.9 ± 0.4 83.2 ± 0.3

Bold values indicate the best performance in each column.

slightly improved to 75.6%. Early fusion increased the F1-score

to 78.8%, suggesting some benefit from combining modalities.

However, DGDN further elevated performance to 81.3%, marking

a +7.5% absolute gain over the image-only setting and a +2.5%

gain over early fusion. This improvement indicates that DGDN’s

architecture not only supports multimodal input but effectively

learns synergistic representations from both modalities. On the

MIMIC-CXR dataset (42), which is composed of radiology images

and structured report text, the pattern is consistent. The image-

only model attained a 72.8% F1-score, while text-only reached

74.0%. Early fusion lifted performance to 76.5%, and DGDN

achieved 78.6%, reflecting a +5.8% boost over the image-only

model. This confirms that DGDN’s multimodal fusion mechanisms

are effective even in complex, report-driven classification tasks.

They also demonstrate that the proposed fusion design yields

significant gains over simple fusion baselines, both in diagnostic

accuracy and semantic alignment across modalities. While we

acknowledge the absence of currently available endoscopy-specific

datasets containing all three modalities (image, report, dialogue)

for the same patient, this experiment serves as a validated proxy

and a proof-of-concept for DGDN’s design. We plan to pursue

unified gastrointestinal multimodal data collection as part of

future work.

We conducted an evaluation of the DGDN framework using

three well-established retrospective datasets: MIMIC-IV (43),

MIMIC-CXR (42), and NIH ChestX-ray14 (44). These datasets

were all collected in authentic clinical environments without

prospective study design, encompassing imaging or clinical data at

the patient level, captured as part of routine hospital operations.

The evaluation was carried out under two distinct data split

protocols. In the in-hospital split, the training and testing sets may

include partially overlapping patient cohorts, reflecting scenarios

where models are deployed within the same healthcare institution.

In contrast, the out-of-hospital split ensures that all patients in

the test set are entirely unseen during training, thereby simulating

deployment in new clinical contexts or across different institutions

and offering a stringent test of the model’s generalization capability.

As shown in Table 7, across both evaluation settings, the proposed

DGDN model consistently outperforms all baselines in terms of

Accuracy, Precision, Recall, and F1 Score. On the in-hospital split,

DGDN achieves an F1 score of 85.6%, outperforming the NIH

ChestX-ray14 baseline (83.9%) and MIMIC-CXR baseline (82.4%),

with a relative improvement of +1.7% and +3.2% respectively.

This suggests that even when evaluated on familiar institutional

data, DGDN provides tangible gains through its multimodal

integration and adaptive fusion mechanisms. More importantly, in

the out-of-hospital split, which evaluates the model’s robustness

to unseen patient distributions and clinical protocols, DGDN

maintains strong performance with an F1 score of 80.6%, clearly

surpassing NIH ChestX-ray14 (77.7%), MIMIC-CXR (76.4%), and
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TABLE 6 Evaluation of DGDN on multimodal integration datasets (Image + Text).

Model variant
MedICaT dataset MIMIC-CXR dataset

Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑

MedICaT (41) 76.5± 0.3 74.2± 0.3 73.5± 0.4 73.8± 0.3 75.3± 0.3 73.0± 0.4 72.6± 0.3 72.8± 0.3

MIMIC-CXR (42) 78.2± 0.3 76.5± 0.4 74.8± 0.3 75.6± 0.3 76.8± 0.3 74.9± 0.3 73.2± 0.4 74.0± 0.3

Ours (DGDN) 83.2 ± 0.3 81.6 ± 0.3 81.0 ± 0.4 81.3 ± 0.3 80.8 ± 0.3 79.2 ± 0.3 78.1 ± 0.4 78.6 ± 0.3

Bold values indicate the best performance in each column.

MIMIC-IV (74.1%). The performance gap between in- and out-of-

hospital settings is also smallest for DGDN (5.0 percentage points),

compared to 6.2% for NIH ChestX-ray14 and 8.3% for MIMIC-IV,

confirming that DGDN exhibits superior generalization and lower

overfitting risk in retrospective clinical contexts. These results

directly validate the practical reliability of DGDN for real-world

deployment. By demonstrating stable performance on retrospective

datasets with different data sources, DGDN is shown to be more

resilient to inter-institutional variation–an essential property for

AI systems used in large-scale clinical environments. This evidence

further supports the claim that our model is not merely overfitting

benchmark datasets, but is capable of handling diverse, historically

collected patient data with robustness and consistency.

5 Discussion

While the proposed DGDN framework was evaluated across

diverse datasets to demonstrate its multimodal capabilities, we

acknowledge that not all datasets reflect real-world endoscopic

diagnostic scenarios. CMU-MOSEI and MIMIC-IV, though

representative of conversational and structured clinical data

respectively, are not inherently imaging-based nor collected in

direct endoscopy contexts. Their inclusion in our study primarily

serves to validate the model’s cross-modal adaptability, rather than

clinical integration in its current form. This distinction is crucial

to interpret our findings accurately. The lack of unified datasets

encompassing synchronized endoscopic images, patient dialogue,

and structured EHR for the same individuals remains a barrier to

comprehensive clinical validation. Future work should focus on

building or accessing such integrated multimodal clinical datasets

to enable end-to-end deployment and evaluation of systems like

DGDN in practical gastroenterological workflows.

We acknowledge that the real-time clinical deployment of

large language models (LLMs) remains technically challenging,

particularly in high-speed procedural environments such as

endoscopic surgery. The computational demands, latency, and

infrastructure requirements of current LLM architectures limit

their feasibility for synchronous interaction during procedures. In

our proposed framework, LLMs are primarily intended to support

near-real-time interaction outside of critical surgical loops–such

as automated documentation, post-procedure summarization,

and asynchronous clinical decision support. For example,

LLMs can be used to generate structured endoscopy reports

based on multimodal inputs (images, patient data, dialogue

transcripts) shortly after the procedure, reducing physician

documentation workload and improving consistency. Real-

time intra-procedural guidance remains an aspirational goal,

potentially realizable through future developments such as on-

device LLM distillation, model compression, or hybrid cloud-edge

deployments. Furthermore, a layered deployment strategy can be

adopted, wherein lightweight decision rules or vision-language

modules provide intra-operative cues, while full LLM-based

synthesis is performed post-operatively. This hybrid paradigm

balances responsiveness and computational tractability while

preserving clinical utility.

Ethical considerations are paramount in the clinical application

of AI models, particularly those involving sensitive patient data

and automated diagnostic reasoning. Although this study utilizes

publicly available de-identified datasets, real-world deployment

would necessitate stringent adherence to privacy regulations such

as HIPAA and GDPR. Furthermore, ensuring fairness across

diverse patient populations is critical; AI systems must be evaluated

for demographic biases that may arise from training data imbalance

or institutional heterogeneity. Another concern is the explainability

of model outputs. In high-stakes clinical settings, black-box

predictions can undermine clinician trust and pose medico-

legal challenges. Our framework addresses this partially through

attention visualization and uncertainty quantification; however,

further development of transparent reasoning mechanisms is

essential. Future implementations should also account for informed

consent regarding AI usage, clearly delineating the boundaries

of machine-augmented recommendations vs. physician decision-

making authority. Establishing oversight protocols, continuous

auditing, and ethical review processes will be essential to safeguard

patient safety, trust, and autonomy as AI tools like DGDN

transition from research to clinical environments.

6 Conclusions and future work

The integration of large language models (LLMs) with

multimodal learning presents a transformative opportunity in

gastroenterology, particularly in digestive endoscopy. Traditional

AI-assisted endoscopic systems primarily rely on single-modal

image analysis, which lacks contextual awareness and adaptability

to complex gastrointestinal (GI) conditions. These conventional

approaches face critical limitations, such as domain shifts, data

heterogeneity, and interpretability issues, which hinder their

clinical applicability. To overcome these challenges, we propose a

multimodal learning framework that seamlessly integrates LLM-

powered chatbots with endoscopic imaging and patient-specific

medical data. Our method leverages self-supervised learning to
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TABLE 7 Retrospective validation of DGDN on MIMIC-CXR dataset.

Model variant
In-hospital split (seen patients) Out-of-hospital split (unseen patients)

Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑

MIMIC-IV (43) 83.6± 0.3 81.4± 0.4 79.5± 0.3 80.4± 0.3 77.5± 0.3 75.2± 0.4 73.0± 0.3 74.1± 0.3

MIMIC-CXR (42) 85.1± 0.3 83.0± 0.4 81.8± 0.3 82.4± 0.3 79.2± 0.3 77.0± 0.4 75.8± 0.3 76.4± 0.3

NIH ChestX-ray14

(44)

86.5± 0.3 84.6± 0.3 83.2± 0.4 83.9± 0.3 80.4± 0.3 78.1± 0.3 77.3± 0.4 77.7± 0.3

Ours (DGDN) 88.0 ± 0.3 86.2 ± 0.3 85.0 ± 0.4 85.6 ± 0.3 83.1 ± 0.3 81.2 ± 0.3 80.0 ± 0.4 80.6 ± 0.3

Bold values indicate the best performance in each column.

extract clinically relevant patterns from heterogeneous sources,

enabling real-time guidance and AI-assisted report generation. A

domain-adaptive learning strategy enhances model generalization

across diverse patient populations and imaging conditions.

Experimental evaluations on multiple GI datasets confirm that our

approach improves lesion detection, reduces diagnostic variability,

and enhances physician-AI collaboration, highlighting its potential

to advance AI-driven gastroenterology.

Despite these promising results, our approach presents two

primary limitations. Real-time processing efficiency remains a

challenge due to the computational demands of multimodal data

fusion and LLM inference. The integration of high-dimensional

image data with LLM-based text processing requires substantial

computational resources, which may limit deployment in resource-

constrained clinical environments. Future research should focus

on model optimization techniques, including quantization,

pruning, and hardware acceleration, to improve efficiency. Model

generalization across different medical institutions and populations

requires further validation. While our domain-adaptive learning

strategy mitigates some generalization issues, real-world

variations in endoscopic equipment, clinical protocols, and

patient demographics may introduce biases. Future work should

explore continual learning and federated learning approaches to

enhance adaptability while preserving patient privacy. Addressing

these challenges will be essential for the successful integration

of LLM-driven multimodal AI systems in digestive endoscopy,

ultimately improving diagnostic accuracy, procedural efficiency,

and clinical decision-making in gastroenterology.
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