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Purpose: To develop and evaluate a deep learning system for screening multiple

abnormal findings including hemorrhages, drusen, hard exudates, cotton wool

spots and retinal breaks using ultra-widefield fundus images.

Methods: The system consisted of three modules: (I) quality assessment module,

(II) artifact removal module and (III) lesion recognition module. In Module III, a

heatmap was generated to highlight the lesion area. A total of 4,521 UWF images

were used for the training and internal validation of the DL system. The system

was evaluated in two external validation datasets consisting of 344 images and

894 images from two other hospitals. The performance of the system in these

two datasets was compared with or without Module II.

Results: In both external validation datasets, the deep learning system made

better performance when recognizing lesions on processed images after

Module II than on original images without Module II. Module II-enhanced

preprocessing improved Module III’s five-lesion recognition performance by an

average of 6.73% and 14.4% areas under the curves, 14.47% and 19.62% accuracy

in the two external validations.

Conclusion: Our system showed reliable performance for detecting MAF in real-

world UWF images. For deep learning systems to recognize real-world images,

the artifact removal module was indeed helpful.

KEYWORDS

deep learning, ultra-widefield fundus images, real-world images, artifact removal,
multiple abnormal findings
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Introduction

Retinal diseases have become one of the leading causes of
irreversible vision loss and blindness worldwide (1). For example,
diabetic retinopathy (DR) is the most common vision-threatening
fundus disease in working population (2). Age-related macular
degeneration (AMD) is one of the leading causes of blindness
in elder population (3). Rhegmatogenous retinal detachment can
cause vision loss in any age, especially in myopic population
(4), which is preventable when retinal breaks were timely found
and treated. Typically, ophthalmologists make diagnoses of these
vision-threatening diseases by detection of certain clinical signs,
such as retinal hemorrhage, drusen, hard exudate, cotton wool spots
and retinal breaks. Early detection of the former retinal lesions
contributes to timely management and better prognosis. However,
the lack of retinal specialists, particularly in underserved regions,
impedes timely diagnosis, exacerbating the burden on patients and
healthcare systems.

AI has achieved impressive results in detecting single retinal
diseases using UWF imaging and deep learning (5–11). However,
these systems struggle with real-world clinical challenges (12). They
cannot identify multiple coexisting lesions often seen in practice.
They also depend heavily on pre-processed, high-quality images
from eyes with clear media. Some studies report good performance
in multi-lesion detection (13–18), but their clinical value is limited.
These models use retrospective data with artificially high disease
rates and strict quality control, making them poorly representative
of actual clinical settings (19–21). This creates an urgent need for
practical AI systems that can reliably detect multiple lesions in raw,
diverse patient images.

The aim of this article was to develop and evaluate
a deep learning system for screening and displaying lesion
heatmaps of multiple abnormal findings (hemorrhages, drusen,
hard exudates, cotton wool spots and retinal breaks) based on
ultra-widefield fundus images and to verify its performance on
an internal validation dataset and two independent external
validation datasets.

Materials and methods

Data collection

For dataset establishment, initial random 4,521 UWF images
were obtained from patients presenting for fundus evaluation
between November 2017 and January 2019 at Xinhua Hospital
(XHH) affiliated to Shanghai Jiao Tong University School of
Medicine. A total of 344 high-quality UWF images were selected
from patients examined in (ZRH) in 2022 and 894 high-quality
UWF images were selected from patients examined in Shibei
Hospital (SBH) Jingan District Shanghai in 2024, both for
independent external validation. All images were captured using
ultra-wide filed Scanning Laser Ophthalmoscopy (OPTOS Daytona
P200T, Dunfermline, United Kingdom) with 200◦ fields of view in
one shot. Patients underwent this examination without mydriasis.
All images were checked for duplicate acquisition and de-identified
prior to transfer to study investigators. The study was approved by
the Ethics Committees of Xinhua Hospital Affiliated to Shanghai

Jiao Tong University School of Medicine, Zhenjiang Ruikang
Hospital, and Shibei Hospital. And this study followed the tenets
of the Declaration of Helsinki.

Characteristics of the datasets

A total of 4,521 UWF images varying in quality from 1,504
subjects examined in Xinhua Hospital were included in this
study for algorithm development and internal validation. This
development dataset was used for training and internal validation.
The external validation dataset consisting of 344 high-quality UWF
images was collected from 243 patients examined in Zhenjiang
Ruikang Hospital in 2022. And the other external validation dataset
consisting of 894 high-quality UWF images was collected from
500 patients from Shibei Hospital in 2024. The demographics and
image characteristics of XHH dataset, ZRH dataset and SBH dataset
are summarized in Supplementary Table 1. Noted that a UWF
image may contain more than one lesion.

Image labeling and reference standard

Training a deep learning system requires a reliable reference
standard. Our system consisted of three modules: (I) quality
assessment module, (II) artifact removal module and (III) lesion
recognition module. For Module I training, we randomly extracted
500 of 4,521 UWF images from XHH dataset as the training set. The
quality of the UWF images was first assessed by two board-certified
retinal specialists with more than 5 years of clinical experience. The
initially collected images were categorized as high, acceptable or low
quality based on the clarity of the fundus structure and the visible
range. Additional 50 images from each quality category are selected
for internal validation on Module I. After training and testing
Module I, only 4,289 high-quality images were kept for further
development. We randomly selected 300 high-quality images as
the training set for Module II. Artifacts such as patients’ eyelids or
the examiner’s finger in these images were labeled (if present) by
two board-certified retinal specialists with over 5 years of clinical
experience. The results were used as a reference standard for the
training of Module II. To evaluate the performance of Module II, we
conducted additional analyses by training Module II with different
sizes of training data and evaluating their effect on Module III’s
final performance.

After artifacts’ removal in Module II, fully-pre-processed 4,289
UWF images were prepared for lesion recognition in Module III.
And 3,789 images were randomly selected for training with 500
images left for internal validation for tuning and early stopping.
Since we aimed to compare the performance of the DL system
with and without Module II, we recruited five board-certified
retinal specialists to perform lesion classification on all high-quality
UWF images after Module II and those only after Module I.
They annotated the observed abnormal findings (hemorrhages,
drusen, hard exudates, cotton wool spots and retinal breaks) and
their corresponding lesion location information according to eight
non-overlapping regions (macular, temporal, superior temporal,
inferior temporal, superior nasal, inferior nasal, superior disk and
inferior disk areas) using LabelMe software. To ensure accurate
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identification of target lesions, all anonymous images were graded
independently by the five retinal specialists. Only when there
was agreement between the five retinal ophthalmologists would
a consensus identification be made. Any level of disagreement
resulted in a discussion between the retinal ophthalmologists.
Disputed images were adjudicated by another senior retinal
specialist with over 30 years of experience. The results of the
annotation were also used as a reference standard for the internal
and external validation datasets. The data splitting was performed
at the patient level so images from the same patient were assigned
either to the training set or to the validation set.

Development of the deep learning
classification model

As shown in Figure 1, the overall diagnostic framework consists
of three modules: (I) quality assessment module; (II) artifact
removal module; (III) lesion recognition module.

In Module I, as explained above, all the images initially collected
were categorized into high-quality, acceptable or low-quality. The
aim of this module is to automatically select the available images
for training or testing. The images and their corresponding quality
annotations were used to train a classification network. The model
produces the predictions of the quality of the input images. In this
study, only high-quality images were kept for further use.

Module II aims to remove artifacts from the UWF fundus
images, such as eyelids. The presence of artifacts is a significant
hurdle for UWF fundus images. By removing the irrelevant regions,
the deep learning model can learn more specific and valuable
information. A segmentation network was trained to predict
whether a pixel was an artifact or a fundus area. For detected artifact
pixels, we replaced them with black pixels with the value (RGB:
0, 0, 0). After Module I and Module II, the original images were
pre-processed, ready for Module III training.

In Module III, a unified classification network was trained to
diagnose different lesions. This module outputs the probability of
the inputs being negative or positive for a particular lesion, such as
hemorrhages, drusen or retinal breaks.

Implementation

Image preprocessing and augmentation
All images were uniformly resized to 512 × 512 pixels before

being used in different modules. In order to speed up learning and
to achieve faster convergence, the value pixels were normalized
from (0, 255) to (0, 1) for all channels. To increase the number
of images available for training and to avoid overfitting, we
applied data augmentation techniques during the training phase
with random vertical/horizontal flip with probability 0.5, random
rotation up to 90◦, and brightness shift in the range 0.8–1.6.

Deep learning network
For Module I, we use the MobileNetV3 (22) as the backbone.

The task of assessing the quality of UWF fundus images can be
much easier than other diagnostic tasks. MobileNet is a lightweight
deep neural network that combines precision and efficiency. It

is flexible enough to be embedded in many mobile devices with
low resource cost.

In Module II, a semantic segmentation network U-Net (23) was
trained to detect the regions of artifacts as pre-processing.

Followed by Module I and II, a classification model built by
ResNet-101 (24) was used in Module III for abnormality detection.
ResNet is a widely used CNN architecture that addresses the
“vanishing gradient” problem.

More technically, for Module I and Module III, the Adam (25)
optimizer was used for backpropagation to minimize the object loss
functions (cross-entropy loss). The learning rate was set to 3e-4.
For Module II, we use the Adadelta (26) optimizer to update the
parameters of the U-net. We have the following settings: learning
rate = 1.0, rho = 0.95, epsilon = none and decay = 0. For Module
I and Module III, the batch size was set to 128, while for Module
II, the batch size was set to 16. Each module was trained for 50
epochs, and 5-fold cross-validation was performed to evaluate the
robustness of the models and report the average results on external
datasets with 95% CI. Early stopping was applied if the validation
loss did not decrease for 10 consecutive epochs.

The experimental environment was built using Ubuntu version
18.04.4 LTS 64-bit with GPU RTX 3090 and 24 GB of memory.
The deep neural network implementation was based on PyTorch
platform version 1.8.1 and CUDA version 11.2.

Visualization of image features

To highlight which regions contribute most to the diagnostic
results of the model, we used gradient-weighted class activation
mapping (Grad-CAM) (27) to visualize the image features. Grad-
CAM is a training-free technique that uses the gradients that
flow into the final convolutional layer to produce a coarse
localization map that highlights the important regions in the
image for predicting the specific category. Errors were also
inevitable when the DL system did the classification work. We
reviewed all misclassified images to determine the reasons for
the misclassification. And for all true-positive and false-positive
images, heatmaps highlighted any abnormal findings, including
hemorrhages, drusen, hard exudates, cotton wool spots and/or
retinal breaks. Image pixels with a higher impact on the model’s
prediction have a heatmap color closer to the red spectrum in the
jet color map, while those with a lower impact have a color closer to
the blue spectrum.

Statistical analysis

The performance of our DL system was assessed using accuracy,
sensitivity and specificity that yielded the highest harmonic
mean with the 95% confidence intervals. In addition, a receiver
operating characteristic (ROC) curves and areas under the curves
(AUC) of ROC for each abnormal finding was drawn. To
determine the optimal classification thresholds for each lesion
type, we employed the Youden Index, which maximizes the
sum of sensitivity and specificity. Other metrics were used
for more views of the results: Sensitivity = TP/(TP + FN),
Specificity = TN/(TN + FP), Precision = TP/(TP + FP),
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FIGURE 1

The overview of our proposed deep learning-based screening system.

Accuracy = (TP + TN)/(TP + TN + FP + FN), and F1 Score = 2
∗ Precision ∗ Sensitivity/(Precision + Sensitivity), where TP is truly
positive, TN is true negative, FP is false positive, and FN is false
negative. 95% confidence interval was also applied and presented to
assess the DL system. All statistical analyses were performed using
Python 3.7.3 (Wilmington, Delaware, United States).

Results

Evaluation of module I and module II

To quantitatively evaluate the trained Module I, a confusion
matrix was plotted using 50 samples selected for each category.
As seen in the confusion matrix (Figure 2), although there are
samples that are difficult to distinguish between the “acceptable”
and “low-quality” categories, we ultimately selected only the “high-
quality” samples for the training of subsequent modules. This
demonstrates that Module I has a strong discriminative ability in
quality assessment.

To preliminarily evaluate the performance of trained Module
II, early stopping approach was used to train Module II with
different sizes of training data (Figure 3). Interestingly, we found
that even a small number of annotated images were sufficient to
bring noticeable improvements, suggesting a favorable cost-benefit
ratio for Module II development.

Evaluation of screening models on
different abnormalities

To evaluate the effectiveness of artifact removal module
(Module II) and screening models in two external validation
datasets, we presented the results on UWF images wo/w
artifacts removed, which were denoted as “Original” and
“Processed,” respectively. The results of ZRH dataset were
shown in Table 1 and Figure 4. With Module II, the system
demonstrated improved performance in AUC, sensitivity, and
accuracy for recognizing all five abnormalities. And the results
for SBH dataset are presented in Table 2. Similarly, in the

FIGURE 2

Confusion matrix for image quality assessment.

FIGURE 3

Validation loss with early stopping.

presence of Module II, our system exhibited better performance
in AUC, sensitivity, and accuracy for recognizing all five
abnormalities.
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TABLE 1 Performance of the screening models on MAF on Zhenjiang Ruikang Hospital (ZRH) external validation dataset without Module II —-(Original)
and with Module II (Processed), respectively.

Original Hemorrhages Drusen Hard exudates Cotton wool
spots

Retinal breaks

AUC 0.8935 (0.8334–0.9536) 0.8880 (0.8256–0.9503) 0.9144 (0.8630–0.9658) 0.8861 (0.8230–0.9492) 0.9440 (0.9059–0.9820)

Sensitivity 0.6944 (0.5713–0.8176) 0.8750 (0.8075–0.9425) 0.8194 (0.7318–0.9071) 0.7708 (0.6679–0.8738) 0.8264 (0.7411–0.9116)

Specificity 1.0000 (1.0000–1.0000) 0.8000 (0.7060–0.8940) 0.9333 (0.8903–0.9763) 0.9333 (0.8903–0.9763) 1.0000 (1.0000–1.0000)

Precision 1.0000 (1.0000–1.0000) 0.9767 (0.9555–0.9980) 0.9916 (0.9799–1.0000) 0.9911 (0.9790–1.0000) 1.0000 (1.0000–1.0000)

Accuracy 0.7233 (0.6072–0.8394) 0.8679 (0.7977–0.9381) 0.8302 (0.7462–0.9141) 0.7862 (0.6878–0.8845) 0.8428 (0.7632–0.9223)

F1 score 0.8197 (0.7321–0.9072) 0.9231 (0.8755–0.9707) 0.8973 (0.8388–0.9559) 0.8672 (0.7967–0.9377) 0.9049 (0.8495–0.9603)

Processed Hemorrhages Drusen Hard exudates Cotton wool
spots

Retinal breaks

AUC 0.9611 (0.9315–0.9907) 0.9485 (0.8895–1.0000) 0.9609 (0.9251–0.9968) 0.9929 (0.9698–1.0000) 0.9642 (0.9118–1.0000)

Sensitivity 0.9306 (0.8863–0.9748) 0.8780 (0.7774–0.9787) 0.9155 (0.8595–0.9715) 0.9286 (0.8525–1.0000) 0.8846 (0.7913–0.9779)

Specificity 0.9333 (0.8903–0.9763) 0.8889 (0.7940–0.9838) 0.8636 (0.7892–0.9381) 1.0000 (1.0000–1.0000) 1.0000 (1.0000–1.0000)

Precision 0.9926 (0.9817–1.0000) 0.9730 (0.9325–1.0000) 0.9559 (0.9175–0.9943) 1.0000 (1.0000–1.0000) 1.0000 (1.0000–1.0000)

Accuracy 0.9308 (0.8867–0.9749) 0.8800 (0.7804–0.9796) 0.9032 (0.8425–0.9639) 0.9535 (0.8930–1.0000) 0.9455 (0.8808–1.0000)

F1 score 0.9606 (0.9307–0.9905) 0.9231 (0.8476–0.9985) 0.9353 (0.8874–0.9832) 0.9630 (0.9093–1.0000) 0.9388 (0.8703–1.0000)

Values are the highest harmonic mean with the 95% confidence intervals.

FIGURE 4

The receiver operating characteristic (ROC) of MAF on Zhenjiang Ruikang Hospital (ZRH) external validation dataset.

Evaluation and comparison of artifact
removal methods

Preprocessing images through artifact removal can significantly
improve lesion detection performance in deep learning systems.
To assess the effectiveness of different artifact removal strategies,
we conducted a comparative analysis involving three representative
denoising techniques: (1) Center Crop. This method retains only
the central elliptical region of the image, based on the fundus
boundaries along the x- and y-axis diameters. While it effectively
removes most border artifacts, it may inadvertently discard
peripheral retinal regions, potentially omitting lesions located

near the image margins. (2) Otsu Thresholding. This method
refines the image by applying Otsu’s algorithm to distinguish
and eliminate non-retinal background regions, providing a more
precise segmentation of the valid area. (3) Attention-based
Masking. Inspired by previous work (15), this strategy leverages
attention maps generated by the model to identify and mask out
low-attention regions, under the assumption that these areas are
less informative or dominated by noise.

Our results demonstrate that Module II, which integrates
a more efficient and adaptive artifact removal mechanism in
low cost, achieved the most significant improvement in lesion
recognition accuracy across multiple categories. As illustrated in
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TABLE 2 Performance of the screening models on MAF on Shibei Hospital (SBH) external validation dataset without Module II (Original) and with
Module II (Processed), respectively.

Original Hemorrhages Drusen Hard exudates Cotton wool
spots

Retinal breaks

AUC 0.8312 (0.7715–0.8907) 0.8145 (0.7532–0.8738) 0.8524 (0.7921–0.9128) 0.8043 (0.7456–0.8629) 0.8739 (0.8342–0.9136)

Sensitivity 0.6427 (0.5231–0.7623) 0.8342 (0.7629–0.9055) 0.7736 (0.6824–0.8648) 0.7259 (0.6253–0.8265) 0.7824 (0.6935–0.8713)

Specificity 0.9718 (0.9234–1.0000) 0.7538 (0.6642–0.8434) 0.8925 (0.8417–0.9433) 0.8934 (0.8432–0.9436) 0.9741 (0.9248–1.0000)

Precision 0.9735 (0.9246–1.0000) 0.9437 (0.9123–0.9751) 0.9648 (0.9229–1.0000) 0.9654 (0.9241–1.0000) 1.0000 (1.0000–1.0000)

Accuracy 0.6834 (0.5739–0.7930) 0.8239 (0.7432–0.9046) 0.7821 (0.7023–0.8619) 0.7427 (0.6438–0.8416) 0.7845 (0.7042–0.8648)

F1 score 0.7738 (0.6925–0.8551) 0.8817 (0.8229–0.9405) 0.8523 (0.7927–0.9119) 0.8224 (0.7516–0.8932) 0.8741 (0.8146–0.9336)

Processed Hemorrhages Drusen Hard exudates Cotton wool
spots

Retinal breaks

AUC 0.9517 (0.9215–0.9819) 0.9378 (0.8771–0.9985) 0.9483 (0.9124–0.9842) 0.9815 (0.9617–1.0000) 0.9532 (0.9046–1.0000)

Sensitivity 0.9124 (0.8721–0.9527) 0.8638 (0.7645–0.9631) 0.9026 (0.8429–0.9623) 0.9142 (0.8357–0.9927) 0.8726 (0.7835–0.9617)

Specificity 0.9236 (0.8829–0.9643) 0.8735 (0.7732–0.9738) 0.8514 (0.7802–0.9226) 0.9923 (0.9725–1.0000) 0.9918 (0.9715–1.0000)

Precision 0.9817 (0.9728–1.0000) 0.9649 (0.9241–1.0000) 0.9451 (0.9043–0.9859) 1.0000 (1.0000–1.0000) 1.0000 (1.0000–1.0000)

Accuracy 0.9125 (0.8729–0.9521) 0.8629 (0.7623–0.9635) 0.8928 (0.8231–0.9625) 0.9426 (0.8732–1.0000) 0.9317 (0.8614–1.0000)

F1 score 0.9523 (0.9227–0.9819) 0.9124 (0.8329–0.9921) 0.9217 (0.8735–0.9709) 0.9529 (0.8932–1.0000) 0.9321 (0.8629–1.0000)

Values are the highest harmonic mean with the 95% confidence intervals.

Figure 5, this approach outperformed the baseline and three
competitors, suggesting that preserving critical lesion features while
selectively removing noise-rich areas is essential for robust model
performance.

Evaluation of explainability

As we trained segmentation model as Module II to remove
the artifacts, irrelevant information can be removed through this
process. Figure 6 shows the images before processing (denoted as
Original) and after processing (denoted as Processed). Moreover,
to investigate the basis of the predictions output by the screening
models and which part the models mainly cared about, we applied
gradient-weighted class activation mapping (Grad-CAM) method
on the corresponding fundus images from the positive individuals.
Specifically, we extract the features from the last convolutional
layer of ResNet-50, and then was used to calculate the probability
distribution for the heatmap visualization. From Figures 6a–c, one
UWF image with drusen, one UWF image with hemorrhage, and
one image with both of hemorrhage and drusen were selected. It
can be seen that, without artifacts removed, the heatmaps mainly
focus on the eyelids. After artifacts were removed, more attention
was paid on the lesions, which were clinically mainly cared about.
The findings clearly validated Module II’s effectiveness, indicating
that artifacts of UWF imaging can bring strong interference to the
deep learning-based model training and prediction for a real-world
screening.

Discussion

In this study, we developed and evaluated a DL system using
5,759 UWF images for automated identification of five abnormal

findings including hemorrhage, drusen, hard exudate, cotton-wool
spot and retinal break. Consisting of all the three Modules (quality
assessment module, artifact removal module and lesion recognition
module), the DL system showed remarkable performance for the
detection of hemorrhages, drusen, hard exudates, cotton wool
spots and retinal breaks on the external validation dataset. This
unprecedented success offered a promising way to accurately
discriminate the five common retinal lesions in UWF images at
one time, which might be particularly helpful in regular screening
of diverse retinal diseases in general population. Besides, Our
screening tool was trained with real-world non-mydriatic fundus
images, which makes this tool especially suitable for patients with
small pupil or mydriasis contraindication.

Sun et al. (28) developed a deep learning model based on ultra-
widefield images that can identify eight fundus diseases, achieving
good performance matching the capabilities of experienced fundus
clinicians. In their study, they artificially excluded images with
significant refractive media opacity or obvious treatment traces and
images obscured by eyelids and eyelashes or the examiner’s finger,
which might reduce the generalizability of the system. Antaki et al.
(16) utilized AutoML model to differentiate retinal vein occlusion
(RVO), retinitis pigmentosa (RP) and retinal detachment (RD)
from normal fundi based on only one publicly available image
data set, resulting in ordinary usability and generalizability of the
model in spite of good performance. Cao et al. (29) established
a four-level hierarchical eye diseases screening system with good
performance in identifying up to 30 abnormalities and eye diseases
based on UWF images. They designed a lesion atlas to recognize
and describe retinal diseases on lesion level, thus increasing the
expandability and interpretability particularly in multi-morbidity
and comorbidity. However, their datasets consisted of images
of patients with only target diseases and they also made image
exclusion intentionally.

Different from former studies, our team did not undergo any
filtering or cleaning on our data, and we emphasized quality
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FIGURE 5

Areas under the curves (AUC) performance comparison of five methods.

FIGURE 6

Representative images of original/processed UWF images and corresponding heatmaps generated using gradient-weighted class activation
mapping (Grad-CAM). (a) Images and heatmaps with drusen; (b) Images and heatmaps with hemorrhage; (c) Images and heatmaps with both
hemorrhage and drusen.

assessing and artifact removing part, which makes our study
unique. In Module II (artifact removal module), artifacts were
replaced with black areas and we kept these areas as masks,
providing processed-images for subsequent procedures. As a result,
not only model performance improved (as shown in Tables 1, 2),
but also Grad-CAM heatmaps showed that attention shifted from

artifacts to lesions after processing, as shown in Figure 6. Similar
to our Module I and Module II, Liu et al. (30) established a
flow-cytometry-like model DeepFundus to evaluate color fundus
images in terms of multidimensional quality properties including
overall quality, clinical quality factors, affected retinal structures
and refractive media opacity. And they integrated this image
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quality classifier into a disease detecting model as a prescreening
tool to filter out poor-quality images, which efficiently enhanced
the performance of the system detecting DR, AMD and optic
disk edema. Another team also focused on the real-world clinical
translation of the deep learning system (15). First of all, they
not only kept images with multiple diseases in the same image,
artifacts and borderline cases, but also totally “healthy” images,
thus making the data unbalanced. Secondly, they evaluated their
system on a challenging external dataset that included images
with different preprocessing and images taken with various UWF
imaging device models. As a result, their model showed lower AUCs
than other published models. Yet they further proved that degraded
performance resulted from challenging but realistic test data rather
than inefficient approach. Apparently, their model trained for
identifying images with disease and detecting seven retinal diseases
would be more applicable under realistic conditions, despite the fact
that they used only one public dataset. In future work, it is necessary
for researchers to develop AI model based on multiple data sources
to get close to reality. In addition, transfer learning (31), a technique
aiming to transfer knowledge from one task to a different but
related task is worth trying to enhance the generalizability of AI
systems. All in all, to the best of our knowledge, our study was the
first to develop a DL system consisting of three modules to recreate
a whole screening process in clinical practice based on UWF images
in three hospitals. And our results showed exactly how much
influence artifacts would have on the DL system training process.
We also compare our proposed methods with the existing methods
specified for artifacts removal. Our findings highlight the critical
role of artifact removal in improving deep learning-based lesion
detection. While conventional strategies such as center cropping
and thresholding offer straightforward solutions to reduce noise,
they may also risk discarding peripheral or subtle pathological
features. In contrast, our Module II approach demonstrates
that a more targeted and adaptive denoising mechanism can
better preserve clinically relevant information while suppressing
irrelevant artifacts.

Although our DL system showed high accuracy in detecting
MAF, there were still misclassifications. We found that most false-
positive classifications came from regions with similar color or
appearance. For example, some retinal pigment spots had a similar
color to old retinal hemorrhages. And more than half of the false
positives for drusen and hard exudates were due to white dots
or hard reflections from the internal limiting membrane. When
investigating the causes of false-negative classifications using the
DL system without Module II, we observed that the majority were
due to obscured MAF features caused by optical media opacity
or imaging artifacts. Moreover, the imbalance in lesion prevalence
may have also contributed to missed detections, particularly for
underrepresented abnormalities. The incorporation of the artifact
removal module significantly reduced these misclassifications by
improving image clarity and feature visibility. However, a small
number of false negatives remained, mainly attributable to MAFs
that were too subtle or small to be identified by the system.
Therefore, additional strategies to address class imbalance and
enhance feature sensitivity are necessary to further minimize
misclassifications and optimize the screening tool for clinical use.

This study has several limitations. First, as a retrospective study,
our system was developed from images in only one medical center
and was validated in only three Chinese hospital datasets. We

need more datasets with more sources of variation and multiethnic
clinic-based study assess its generalizability. In addition, it was hard
to precisely detect subtle changes such as drusen and exudates
around the posterior pole. Other examinations such as optical
coherence tomography and more precise algorithms are needed
in future work. Thirdly, although Optos can image up to 200◦

of the retina, some peripheral regions may not be observed,
resulting in some peripheral lesions such as hemorrhages and
retinal breaks missed by this screening system. Lastly, although our
model is capable of producing multi-label predictions for a single
image, this study only evaluated its performance on individual
lesion types in isolation. As a result, we have not yet assessed
its effectiveness in jointly recognizing multiple co-existing lesions.
Further development and validation are needed to ensure robust
multi-label diagnostic performance in complex clinical scenarios.

In conclusion, we developed a promising tool for screening
real-world multiple abnormal findings based on non-mydriatic
ultra-wide field fundus image with a high level of accuracy.
Further multicenter validation is needed for a more comprehensive
evaluation of the versatility of this DL system.
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