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Purpose: To predict human epidermal growth factor receptor 2 (HER2) 
expression in breast cancer (BC) using Sonazoid-enhanced ultrasound in a 
machine learning-based model.

Materials and methods: Between August 2020 and February 2021, patients 
with breast cancer who underwent surgical treatment without neoadjuvant 
chemotherapy were prospectively enrolled from 17 hospitals in China. HER2 
expression status was assessed by immunohistochemistry or fluorescence in 
situ hybridization (FISH). The training set contained data from 11 hospitals and 
the validation set contained 6 hospitals. Clinical features, B-mode ultrasound, 
contrast-enhanced ultrasound (CEUS), and time-intensity curve were selected 
by the Least Absolute Shrinkage and Selection Operator. Based on the selected 
features, six prediction models were established to predict HER2 3 + and 
2 +/1 + expression: logistic regression (LR), support vector machine (SVM), 
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random forest (RF), eXtreme Gradient Boosting (XGB), XGB combined with LR, 
and fusion model.

Results: A total of 140 patients with breast cancer were enrolled in this study. 
Seven features related to HER2 3 + and six features related to HER2 2+/1 + were 
selected to establish prediction models. Among the six models, LR, SVM, and 
XGB showed the best prediction performance for both HER2 3 + and HER2 
2+/1 + cases. These three models were then combined into a fusion model. 
In the validation, the fusion model achieved the highest value of area under 
the receiver operating characteristic curve as 0.869 (95%CI: 0.715–0.958) 
for predicting HER2 3 + and 0.747 (95%CI: 0.548–0.891) for predicting HER2 
2+/1 + cases. The model could correctly upgrade HER2 2 + cases to HER2 
3 + cases, consistent with the FISH test results.

Conclusion: Sonazoid-enhanced ultrasound can provide effective guidance for 
targeted therapy of breast cancer by predicting HER2 expression using machine 
learning approaches.

KEYWORDS

human epidermal growth factor receptor 2, breast cancer, Sonazoid, ultrasound, 
machine learning

1 Introduction

According to the World Health Organization, breast cancer (BC) 
can cause 500,000 deaths, and 1.7 million new cases are diagnosed 
annually (1). Characterized by overexpression of the human epidermal 
growth factor receptor 2 (HER2) gene and its protein, HER2-positive 
breast cancer accounts for 20–30% of breast cancer cases and requires 
distinct therapeutic strategies (2, 3). Trastuzumab and pertuzumab, 
which are targeted by monoclonal antibody therapies, improve the 
survival outcomes of HER2-positive (HER2 3+) breast cancer (4–6). 
Recent reports have recommended HER2-targeted agents and 
antibody-drug conjugates (ADCs) as new clinical therapies for 
HER2-low expression (HER2 1+, 2+) breast cancer (7). The distinct 
pathological characteristics of HER2 0, HER2-low, and HER2-positive 
breast cancers have been the focus of research. Studies have reported 
that the 50% recurrence rate of HER2-positive breast cancers can 
be decreased by the use of HER2-targeted monoclonal antibodies (8).

For patients with HER2-positive cancers, preoperative targeted 
therapy could increase the chance of breast conservation and sentinel 
lymph node biopsy rather than mastectomy and axillary lymph node 
dissection (7, 9). The selection of breast cancer neoadjuvant treatment 
regimens (particularly monoclonal antibodies) depends on the results 
of preoperative core needle biopsy (CNB), especially molecular 
profiling tested by immunohistochemistry (IHC) and fluorescence in 
situ hybridization (FISH) (10–12). However, because of intratumoral 
heterogeneity, the inadequate tissue acquired from CNB may not 
provide complete pathological characteristics of the tumor, causing 
discordance between cores in 8% of HER2-positive cases and 
discordance between CNB and surgical pathology results for 
approximately 26.6% of HER2 status (11, 13, 14). Thus, HER2 
expression levels in breast cancer could be underestimated, and the 
concomitant false-negative results may cause missed diagnosis of 
HER2-positive cases, affecting clinical arrangements and prognosis. 
Increasing the number of multi-point punctures may increase the 
accuracy or decrease the underestimation in the diagnosis of HER2 
expression. However, it has been reported that the possibility of core 

needle seeding in breast cancer varies from 2 to 63% (15–17). Adding 
the number of punctures to increase the amount of tissue may also 
increase the risk of tumor seeding (16, 17).

Contrast-enhanced ultrasound (CEUS) indicates vascular 
information of the tumor, which has been widely used in the diagnosis 
of benign and malignant breast lesions, assessing the pathological 
characteristics, and predicting neoadjuvant chemotherapy (NAC) 
response (18, 19). CEUS can improve the categorization of suspicious 
breast lesions, reduce unnecessary biopsies, and improve the cancer 
yield rate of biopsy procedures (20). SonoVue (Bracco, Milan, Italy), 
the most widely used ultrasound contrast agent, consisting of sulfur 
hexafluoride microbubbles, has shown better performance in 
low-intensity imaging (21). Consisting of lipid-stabilized 
perfluorocarbon microbubbles, Sonazoid (GE Healthcare, Oslo, 
Norway) is more stable for long-term imaging and has a higher 
resistance to ultrasound mechanical index (MI), which is more 
suitable for high-frequency linear array probe scanning (22, 23). 
Machine learning approaches have been widely applied for the early 
detection, diagnosis, and outcome prediction of breast cancer (24, 25). 
It has been reported that the diagnostic accuracy and sensitivity of 
CEUS in breast cancer can be  improved by combining it with a 
machine learning approach (20).

Hence, our study aims to predict the HER2 status of breast cancer 
by combining B-mode ultrasound and contrast Sonazoid-enhanced 
ultrasound features using machine learning models.

2 Materials and methods

2.1 Patients

This prospective, multicenter study was approved by the 
institutional ethics committee (ClinicalTrials.gov: NCT04657328). 
Informed written consent was obtained from all participants before 
the examinations. Between August 2020 and February 2021, 168 
patients with breast cancer with 168 breast masses diagnosed by 
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surgical pathology from a multicenter cohort of 17 hospitals in 
China, were enrolled in this study. Patients with an unclear HER2 
status and incomplete time-intensity curve (TIC) features were 
excluded. According to current guidelines (26), HER2 status was 
determined using IHC for HER2 protein expression and FISH for 
equivocal cases (IHC 2+). The multicenter IHC results for HER2 
expression were evaluated by experienced pathologists. A total of 140 
patients with HER2 status were included in the study. The exclusion 
criteria were (1) absence of HER2 results and (2) absence of TIC 
features due to substandard image acquisition. The training set 
contained datasets from 11 hospitals, including 104 and 79 cases in 
the two cohorts. The external validation set contained prospective 
datasets from 6 other hospitals, including 36 and 28 cases in the two 
cohorts. Among these cases, 104 patients from 11 hospitals were 
included in the training set and 36 patients from the other 6 hospitals 
were included in the validation set. In total, there were 26 HER2-
positive (IHC 3+), 68 HER2-low (39 IHC 1 + and 29 IHC 2+), 39 
HER2 0 (IHC 0), and 7 HER2-negative (IHC 0, 1+, and 2+) cases in 
the training and validation sets. In total, 88 patients with invasive 
ductal carcinoma, 3 with mucinous breast carcinoma, 1 with 
metaplastic breast carcinoma, and 12 with ductal carcinoma in situ 
were included.

Furthermore, to differentiate HER2-low expression cases from 
HER2 0 and exclude the confounding effect of HER2-positive 
expression levels in the analysis, 26 HER2-positive cases and 7 patients 
with uncertain HER2 expression status (only known as HER2-
negative cases) in the cohort were excluded. Finally, 107 patients were 
included in the HER2-negative and low-expression group, containing 
79 patients in the training cohort from the same 11 hospitals and 28 
patients in the validation cohort. The study design is shown in 
Figure 1.

2.2 B-mode and CEUS image acquisition

B-mode ultrasound and CEUS examinations were performed by 
radiologists from 17 hospitals with 10 ultrasound devices 
(Supplementary Table 1) equipped with a linear probe. All ultrasound 
examinations were conducted following a uniform diagnostic consensus. 
Prior to image acquisition, participating radiologists in this multicenter 
study, with more than 3 years of experience in breast ultrasound, 
received systematic training in B-mode and CEUS breast examination. 
All radiologists in this study received standardized training in breast 
CEUS interpretation according to Sonazoid instructions and previous 

FIGURE 1

Flowchart of study design. HER2: human epidermal growth factor receptor-2; IHC: immunohistochemistry; TIC: time intensity curve; CEUS: contrast-
enhanced ultrasound. LR: logistic regression; SVM: support vector machine; RF: random forest; XGB: XGBoost.
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studies. They were required to complete a minimum of 50 breast CEUS-
independent case evaluations to ensure consistent diagnostic consensus 
prior to the study. Breast masses were first identified using a B-mode 
ultrasound scan. Next, 0.015 mL/kg of perfluorobutane-filled 
microbubble contrast agent (Sonazoid; GE Healthcare, Oslo, Norway) 
was injected via the catheter line (≥ 22-gauge) placed in the antecubital 
vein, followed by a 5 mL flush of 0.9% sodium chloride solution. The 
mechanical index of 0.18–0.24 was applied. When the injection was 
completed, the imaging timer was started simultaneously. After 1 min 
of continuous assessment of the whole mass, intermittent scanning (10 s 
each time) was arranged at the time points of 1.5 min, 2 min, 3 min, 
4 min, and 5 min. For patients with multiple masses, images of the 
largest masses were preserved. Both B-mode and CEUS images and 
videos were stored in DICOM format on a hard disk at the hospital and 
sent to our study center. Finally, six radiologists with more than 15 years 
of experience in conventional breast ultrasound and breast CEUS were 
independently evaluated for image features at the study center (Figure 2).

In B-mode breast ultrasound, the “strip-shaped echoic” feature 
represents thin, elongated, and hyperechoic lines or bands within the 
breast tissue or mass. CEUS characteristics were evaluated, including 
shape (regular or not), margin (well or poorly defined), wash-in time 
(earlier, later, synchronous), enhancement degree (hyperenhancement, 
isoenhancement, hypoenhancement), complete wash-out time of 
lesions (≤5 min or not), uptake pattern (centripetal, centrifugal, diffuse, 
no enhancement), as well as exhibitions of the homogeneous pattern, 
rim-like enhancement, claw-shaped pattern, perfusion defects, lesion 
size compared with conventional ultrasound increased, and nourishing 
vessels. The time-intensity curve (TIC) features were evaluated using 
external perfusion software (VueBox™) to quantitatively evaluate the 
microvasculature of the tumors through the CEUS videos.

2.3 Statistical analysis

R version 3.4.4 software, SPSS Version 23.0 (IBM, Armonk, 
NY, United  States), and MedCalc 19.5.6 were used to perform 
statistical analysis. Statistics are described as mean ± standard 

deviation or numbers with percentiles for distribution. The t-test, 
chi-square test, and the Least Absolute Shrinkage and Selection 
Operator (LASSO) were used to select the features. The 
regularization property of LASSO constrains the model 
coefficients through the penalty parameter (λ) and shrinks the 
coefficients of less important variables to zero to mitigate 
overfitting (27, 28). Logistic regression (LR), support vector 
machine (SVM), random forest (RF), eXtreme Gradient Boosting 
(XGB), late fusion model based on the voting method, and XGB 
combined with LR were trained to classify HER2-positive status 
and HER2 low expression status in the two groups. A combination 
of XGB (constructing new features based on existing features) and 
LR (classifiers) was used to establish the prediction model. 
Prediction models were established on the training set, and their 
performance was tested on the validation set (29). For internal 
validation, leave-one-out cross-validation (LOOCV) was 
performed to assess the predictive accuracy and stability of the 
training set. External validation was performed to test the 
performance of the trained models, evaluate their generalizability, 
and identify potential biases. The receiver operating characteristic 
curves (ROC) of the predictive models were analyzed. The area 
under the receiver operating characteristic curve (AUC), accuracy, 
sensitivity, specificity, and 95%CI were assessed. The DeLong test 
was used to compare differences between the AUC values of the 
different models.

3 Results

3.1 Clinical characteristics

The clinical characteristics of 140 patients with breast cancer 
(mean age 52.35 ± 11.03 years, range 23–85 years) with 140 masses are 
shown in Table 1. In the training cohort, 104 patients were enrolled, 
including 20 HER2-positive cases. Of the 107 patients in the HER2 
low expression group, 79 were included in the training cohort, with 56 
IHC 2 + or 1 + and 23 IHC 0 cases.

FIGURE 2

CEUS and B-mode ultrasound images of a patient with HER2-positive breast cancer.
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3.2 B-mode and CEUS characteristics

In 140 patients with breast cancer, the image features of 
B-mode ultrasound, CEUS, and TIC were assessed 
(Supplementary Table 2). According to the LASSO regression in 
clinical B-mode with CEUS and TIC of CEUS characteristic 
groups, seven features related to HER-2 positive breast cancer, 
including tumor size (cm), echotexture, strip-shaped echoic, 
macrocalcifications, microcalcifications, perfusion defects, and fall 
time (FT) of TIC, were selected (Figure  3). No clinical 
characteristics were observed. The distribution of the selected 
characteristics is listed in Table 2.

Characteristics of B-mode imaging with CEUS.

 

+ ∗  
+ ∗  
+ − ∗ −  
+ − ∗  
+ ∗  
+ − ∗

0.19952497 0.01610785 Tumor size
0.01815141 Echotexture

0.07019562 Strip shaped echoic
0.01206527 Macrocalcifications

0.04789061 Microcalcifications
0.01622952 Perfusion defect .

Characteristics of CEUS TIC.

 − + − ∗  1.21674647 0.01299429 FT .

In 107 cases in the HER2 low expression group, the image features 
of the three modalities were assessed in Supplementary Table  3. 
Imaging features related to HER2 low expression were selected by 
LASSO regression, including location, shape, strip-shaped echoic, 
perfusion defect, mean transit time (mTT), and FT. There were no 
clinical characteristics observed. The selected characteristics are listed 
in Supplementary Table 4.

Characteristics in B-mode.

 

+ ∗ + ∗      
+ ∗ −  

0.13508836 0.16800326 Location 0.31750333 Shape
0.02871666 Strip shaped echoic .

Characteristics of CEUS images.

 + − ∗  1.3810282 0.6861225 Perfusion defect .

Characteristics in TIC of CEUS.

 + − ∗ + − ∗      1.2891179887 0.0002615468 mTT 0.0197138051 FT .

3.3 Machine learning models for the 
prediction

The prediction model was established on the training set, and its 
performance was tested on the validation set. The effectiveness and 
stability of the training set, consisting of 104 cases, were validated 
using LOOCV, and the accuracy and Kappa were 0.871 and 0.446, 
respectively. In the training set of FISH positive (IHC 3+) and negative 
groups, six classifiers, including logistic regression (LR), support 
vector machine (SVM), random forest (RF), XGB (XGBoost), 
decision-level fusion technique of hard voting based on LR, SVM, and 
XGB, as well as the XGB combined with the LR model (29, 30).

The final result of the decision-level fusion model was determined 
by three single classifiers: LR, SVM, and XGB (better than RF in this 
study). The hard-voting progression is shown in Figure 4. In the XGB 
combined with LR prediction model, XGB was used to construct new 
variables, reflecting the correlation of the selected variables. LR was 
used to gather the selected and new variables to construct the 
prediction model and to calculate the significance and weight 
coefficients of each variable. In the prediction of the HER2-positive 
breast cancer group, seven variables, including a novel feature (V11) 
generated by the XGB tree-based model trained on existing features, 
were selected for the final LR prediction model based on the feature 
importance rankings (Supplementary Figure 1).

Classifiers of LR, SVM, RF, and XGB were established in three 
imaging modalities: (1) B-mode ultrasound, (2) B-mode ultrasound 
combined with CEUS, and (3) B-mode ultrasound combined with 
CEUS and TIC. The other two types of fusion models were used in the 
third multi-modality to predict HER2-positive breast cancer.

The AUC, sensitivity, specificity, and accuracy of the four 
classifiers in three modalities are shown in Table 3. The sensitivities of 
SVM were increased from 0.728 (95%CI: 0.554–0.862) to 0.778 
(95%CI: 0.608–0.899) by adding the CEUS modality. In the three 
modalities group, SVM performs the best AUC value in the four single 
classifiers, with an AUC of 0.806 (95%CI: 0.640–0.918), a sensitivity 
of 0.833 (95%CI: 0.359–0.996) and a specificity of 0.767 (95%CI: 
0.577–0.901). The AUC values improved with the enrichment of the 
imaging modalities. In the third modality, the performances of the 
other two fusion models are also shown in Table 3.

According to the predictive performance of LR, SVM, RF, and 
XGB, the three top-performing individual classifiers for HER2 
expression, LR, SVM, and XGB, were combined using hard voting to 

TABLE 1 Clinical characteristics of 140 patients in training and validation 
sets.

Total 
(n = 140)

Training 
set 

(n = 104) 
(%)

Validation 
set 

(n = 36) 
(%)

p 
value

Age (years)
52.35 ± 1.03 

(23–85)
53.13 ± 11.07 50.11 ± 10.75 0.158

BMI (kg/m2)

24.20 ± 5.04 

(13.65–

63.70)

24.46 ± 5.30 23.46 ± 4.18 0.308

Menopause 0.608

  Premenopause 61 44 (42.3) 17 (47.2)

  Postmenopause 79 60 (57.7) 19 (52.8)

Family history of 

breast cancer
1.000

  No 133 99 (95.2) 34 (94.4)

  Yes 7 5 (4.8) 2 (5.6)

BMI: body mass index.
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generate a consolidated prediction result. Thus, the decision-level 
fusion model was constructed using hard voting based on LR, SVM, 
and XGB to establish the fusion model, and the weighted ratio was set 
as 1:1:1. In the six models, the fusion model of LR, SVM, and XGB 
classifiers performed best, with an AUC value of 0.869 (95%CI: 0.715–
0.958), a sensitivity of 1.000 (95%CI: 0.541–1.000), and a specificity of 
0.668 (95%CI: 0.472–0.827). The ROCs of the six classifiers in B-mode 
ultrasound combined with CEUS and TIC modalities are shown in 
Figure 5. In the training cohort of 104 cases, 31 cases with certain IHC 
results were assessed as IHC 2 + by CNB, and two of them were 
reclassified as IHC 3 + according to FISH results. The fusion model of 
LR, SVM, and XGB also predicted them as IHC 3 + cases.

In the training set of the HER2 low expression and HER2-negative 
groups, prediction models based on the six classifiers in the third 
modality were also established. In the training set of 79 participants, 
the accuracy and kappa values were 0.864 and 0.637, respectively. The 
AUC values, sensitivity, specificity, and accuracy are shown in Table 4. 
The decision-level fusion model was selected as the voting result of 
LR, SVM, and XGB, and the weighted ratio was set at 1:2:1, according 
to the performance of the classifiers. The fusion model of LR, SVM, 
RF, and XGB classifiers also gets the highest AUC value of 0.747 
(95%CI: 0.548–0.891), sensitivity of 1.000 (95%CI: 0.735–1.000), and 
specificity of 0.438 (95%CI: 0.198–0.701). The ROCs of the six 

prediction models in the HER2 low expression and negative group are 
shown in Figure 6. Both the AUCs for predicting HER2 status were 
increased using the decision-level machine learning approach.

4 Discussion

4.1 Key findings in the context of prior 
literature

HER2-targeted therapy can reduce recurrence and increase the 
likelihood of breast-conserving surgery in patients with HER2-
positive breast cancer. In this study, the fusion model of multiple 
single classifiers, based on machine learning approaches, performed 
best in predicting HER2 3 + and HER2 2+/1 + expression, with an 
AUC of 0.869 (95%CI: 0.715–0.958) and 0.747 (95%CI: 0.548–0.891), 
respectively. It could also predict the two equivocal IHC 2 + breast 
cancers as HER2 3+, in concordance with the FISH results.

In this research, imaging features of multimodalities, including 
B-mode ultrasound, CEUS, and TIC, were obtained by assessment of 
radiologists. Previous studies that predicted HER2 expression using 
imaging features are shown in Supplementary Table 5. Compared with 
radiomic features acquired by software or a single ultrasound 

FIGURE 3

Feature selection in B-mode, CEUS, and TIC of the CEUS group by LASSO regression in 140 patients with breast cancer. (a,b) Selection of B-mode 
ultrasound and CEUS features. (c,d) Selection of TIC parameters.
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modality, these features are more available and can provide abundant 
vascularity information. Vasculogenic mimicry (VM), which differs 
from angiogenesis formed by endothelial cells, is a vascular structure 
formed by cancer cells that transit tumor and blood cells in a channel 
network and is involved in tumor neovascularization (31, 32). In 
breast cancer, VM is associated with HER2-positive cases, which may 
contribute to two anticoagulant-secreted proteins, Serpine2 and Slpi, 
promoting VM formation. Both of them mostly occurred in HER2-
positive patients with breast cancer (33, 34). Studies have shown that 
CEUS can assess VM density in vitro, and the quantitative parameters 
of TIC are related to VM (35, 36). Thus, the microbubbles of CEUS 
may provide information on HER2-positive breast cancer 
neovascularization at the molecular level.

Previous studies have mostly focused on HER2 3 + expression in 
breast cancers using radiomic approaches. To the best of our 

knowledge, this is the first study to use LR, SVM, and XGB fusion 
models by voting decision method to prospectively predict HER2 
3 + and 2+/1 + expression levels in breast cancer based on a 
multicenter study of contrast Sonazoid-enhanced ultrasonography. In 
predicting HER2-positive and HER2-low expression BC cases, the 
AUC values of the fusion model in both of the two groups were the 
highest compared with other single machine learning models.

4.2 Clinical implications and innovations

In this study, tumor size, echotexture, strip-shaped echoic, 
macrocalcifications, and microcalcifications on B-mode ultrasound, 
perfusion defects on CEUS, and FT of TIC were predictive factors of 
HER2-positive breast cancer. Factors including tumor location, shape, 
strip-shaped echoic in B-mode ultrasound, perfusion defect in CEUS, 
mTT, and FT of TIC could predict HER2 low expression. Strip-shaped 
echogenic perfusion defects and FT are also predictors of HER2-
positive expression, indicating that these features may be  closely 
related to HER2 protein expression levels (2, 37).

Tumor size may reflect growth, indicating the prognosis of 
malignant tumors. Features of macrocalcifications and 
microcalcifications on B-mode ultrasound were associated with 
HER2-positive breast cancer in this study, which was also consistent 
with previous studies (38–41). Macrocalcification is regarded as the 
degeneration of the breast caused by injury and inflammation 
unrelated to cancer, while microcalcification is regarded as a calcium 
spot caused by rapid decomposition of cancer cells (38). With high 
aggressiveness and poor prognosis, HER2-positive breast cancer may 
be related to a faster growth rate than negative cases, indicating that 
more cell decomposition of the breast exists in positive cases (42, 43).

A strip-shaped echo mostly indicates the fibrosis inside the tumor. 
Malignant lesions can exhibit disordered hyperechoic strands, whereas 
benign lesions tend to exhibit organized linear echoes. Fibrosis in 
breast tumors is histologically regarded as fibroblasts and collagen 
fibers in the tumor center (44). Some studies have reported that 
fibrosis is positively related to HER2 expression and high 
aggressiveness of tumors (45), which is in contrast to the results of this 
study. In this study, fewer strip-shaped echoes were observed in 
HER2-positive breast cancer. A possible reason may be that most of 
our breast cancer cases were in stage I or II (100/104), and tumor cells 
were in the rapid growth phase, without undergoing necrosis and 
fibrosis. Further studies are still needed to determine the relationship 
between strip-shaped echoes and HER2 expression (45, 46).

Previous studies have also revealed that high HER2 expression 
might be related to the increased invasiveness of tumor cells and the 
formation of neovasculature (47). In some studies, perfusion defects 
in CEUS more frequently occurred in HER2-positive breast cancer, 
which might be caused by ischemic necrosis of the tumor, contributing 
to the slower blood vessel growth rate than the increased oxygen 
consumption of the tumor cells (48, 49). Other studies have also 
revealed that perfusion defects might be  associated with uneven 
distribution of the contrast agent caused by heterogeneity and blood 
vessel distribution inside the tumor (47, 50). However, in this study, 
perfusion defects in Sonazoid-based CEUS were negatively associated 
with HER2-positive and low-expression breast cancers. In HER2 
expression cases, less fibrosis was observed, indicating the presence of 
abundant vascularity, compared with HER2-negative cases.

TABLE 2 Selected features of 140 patients in training and validation sets.

Validation 
set (n = 36) 

(%)

Training set 
(n = 104) (%)

Total 
(n = 140)

Tumor size (cm) 2.45 ± 1.18 2.11 ± 1.05
2.20 ± 1.09 

(0.5–5.9)

Echotexture

  Homogeneous 11 (30.6) 26 (25.0) 37

  Heterogeneous 25 (69.4) 78 (75.0) 103

Strip-shaped echoic

  Absence 11 (30.6) 32 (30.8) 43

  Present 25 (69.4) 72 (69.2) 97

Macrocalcifications

  Absence 7 (19.4) 14 (13.5) 21

  Present 29 (80.6) 90 (86.5) 119

Microcalcifications

  Absence 31 (86.1) 71 (68.3) 102

  Present 5 (13.9) 33 (31.7) 38

Perfusion defects

  Presence 13 (36.1) 34 (32.7) 47

  Absence 23 (63.9) 70 (67.3) 93

FT (s) 17.45 ± 18.46 17.49 ± 13.33 -

CEUS: contrast-enhanced ultrasound; TIC: time intensity curve; FT: fall time.

FIGURE 4

Hard voting progression of the decision-level fusion model.
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TABLE 3 Diagnostic performance of the classifiers in predicting HER2-positive patients.

AUC (95%CI) Sensitivity (95%CI) Specificity (95%CI) Accuracy

B-mode ultrasound

RF 0.567 (0.392–0.730) 0.167 (0.004–0.641) 0.967 (0.828–0.999) 0.833

B-mode ultrasound and CEUS

SVM 0.778 (0.608–0.899) 0.667 (0.223–0.957) 0.867 (0.693–0.962) 0.833

RF 0.583 (0.408–0.745) 0.167 (0.004–0.641) 1.000 (0.884–1.000) 0.861

B-mode ultrasound, CEUS, and TIC

LR 0.633 (0.457–0.787) 0.667 (0.223–0.957) 0.767 (0.577–0.901) 0.722

SVM 0.806 (0.640–0.918) 0.833 (0.359–0.996) 0.767 (0.577–0.901) 0.778

RF 0.583 (0.408–0.745) 0.167 (0.400–0.641) 1.000 (0.884–1.000) 0.861

XGB 0.700 (0.525–0.841) 0.500 (0.118–0.882) 0.900 (0.735–0.979) 0.833

XGB + LR 0.689 (0.513–0.832) 0.668 (0.223–0.957) 0.633 (0.439–0.801) 0.639

LR + SVM + XGB 0.869 (0.715–0.958) 1.000 (0.541–1.000) 0.668 (0.472–0.827) 0.722

CEUS: contrast-enhanced ultrasound; TIC: time intensity curve; LR: logistic regression; SVM: support vector machine; RF: random forest; XGB: XGBoost.

FIGURE 5

ROCs of the classifiers in predicting HER2-positive breast cancer based on B-mode ultrasound, CEUS, and TIC in the (a) training and (b) validation sets.

TABLE 4 Diagnostic performance of the classifiers in predicting HER2 low expression patients based on B-mode ultrasound, CEUS, and TIC 
characteristics.

Models AUC (95%CI) Sensitivity (95%CI) Specificity (95%CI) Accuracy

LR 0.698 (0.496–0.856) 0.750 (0.428–0.945) 0.625 (0.354–0.848) 0.679

SVM 0.687 (0.486–0.848) 0.667 (0.349–0.901) 0.813 (0.544–0.960) 0.750

RF 0.615 (0.413–0.791) 0.917 (0.615–0.998) 0.313 (0.110–0.587) 0.571

XGB 0.625 (0.423–0.799) 0.750 (0.428–0. 945) 0.500 (0.247–0.753) 0.607

XGB + LR 0.654 (0.451–0.822) 0.917 (0.615–0.998) 0.313 (0.110–0.587) 0.571

LR + SVM + XGB 0.747 (0.548–0.891) 0.917 (0.615–0.998) 0.500 (0.247–0.753) 0.679

AUC, area under curve; CI, confidence interval; LR: logistic regression; SVM: support vector machine; RF: random forest; XGB: XGBoost.
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In SVM models of three modalities, the sensitivities in predicting 
HER2-positive breast cancer were increased by CEUS, from 0.728 
(95%CI: 0.554–0.862) to 0.778 (95%CI: 0.608–0.899). By adding the TIC 
feature, the sensitivity could also be increased, up to 0.806 (95%CI: 0.640–
0.918). This result may indicate that the evaluation of microvasculature 
could improve the performance of prediction models in HER2-positive 
breast cancer, especially for the evaluation of TIC features. In previous 
studies of Sonazoid-based CEUS in liver cancer, short mTT and FT could 
be  factors that differentiate angiomyolipoma and hepatocellular 
carcinoma from hepatocellular carcinoma because of the different 
amounts of blood vessels (51). In this study, short FT may be associated 
with HER2 expression (IHC3+, 2+, and 1+) in breast cancer, compared 
with HER2-negative expression cases. This may be related to the rapid 
excretion rate of Sonazoid microbubbles from intratumoral vessels in 
HER2 expression breast lesions. FT may be related to the number of blood 
vessels inside tumors because abundant vessels may contribute to a fast 
blood flow discharging from the draining vein and a short contrast agent 
staying time. Therefore, HER2-expressing breast tumors tend to exhibit 
higher internal vascularity.

In the 104 cases of patients with breast cancer, there were a total 
of 31 cases defined as IHC 2 + for the first time of CNB, with certain 
results of biopsy. Two of these were finally defined as IHC 
3 + according to the FISH results, revealing that 6.5% (2/31) of HER2-
positive cases were underestimated by IHC in this study. In the 
prediction results of the LR + SVM + XGB fusion model, the two cases 
were also predicted as IHC 3+, indicating that the fusion predictive 
model could improve the detection of IHC 3 + compared with the 
results of CNB by pathologists.

4.3 Limitations and future directions

Our study used LR, SVM, and XGB decision-level fusion 
models to predict three HER2 expression levels in breast cancer in 

two cohorts based on a prospective multicenter study of contrast 
Sonazoid-enhanced and B-mode ultrasound. However, this study 
has some limitations. First, the number of cases was limited 
because of the use of Sonazoid in breast CEUS multicenter studies. 
Second, this study only contained image features evaluated by 
radiologists. Radiomic features can reflect unrecognizable and 
quantifiable messages to the naked eye. Using radiomic approaches 
in multi-modal ultrasound may improve the prediction of BC 
biomarkers. However, radiomic features extracted by software were 
less available compared with the features assessed by radiologists 
in this study. Third, our study only included images from B-mode 
ultrasound and CEUS. Additional modalities, such as MRI and 
mammography, are expected to be included in the prediction of 
HER2 expression.

5 Conclusion

In conclusion, multi-mode ultrasound, including B-mode 
ultrasound, CEUS, and TIC, can predict HER2 expression status. 
Moreover, the fusion model of machine learning classifiers can 
improve the prediction results.
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