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Introduction: Aortic stenosis (AS) is a valvular heart disease that obstructs 
normal blood flow from the left ventricle to the aorta due to pathological 
changes in the valve, leading to impaired cardiac function. Echocardiography 
is a key diagnostic tool for AS; however, its accuracy is influenced by inter-
observer variability, operator experience, and image quality, which can result 
in misdiagnosis. Therefore, alternative methods are needed to assist healthcare 
professionals in achieving more accurate diagnoses.

Methods: We proposed a deep learning model, RSMAS-Net, for the automated 
identification and diagnosis of AS using echocardiography. The model enhanced 
the ResNet50 backbone by replacing Stage 4 with Spatial and Channel 
Reconstruction Convolution (SCConv) and Multi-Dconv Head Transposed 
Attention (MDTA) modules, aiming to reduce redundant computations and 
improve feature extraction capabilities.

Results: The proposed method was evaluated on the TMED-2 echocardiography 
dataset, achieving an accuracy of 94.67%, an F1-score of 94.37%, and an AUC 
of 0.95 for AS identification. Additionally, the model achieved an AUC of 0.93 
for AS severity classification on TMED-2. RSMAS-Net outperformed multiple 
baseline models in recall, precision, parameter efficiency, and inference time. It 
also achieved an AUC of 0.91 on the TMED-1 dataset.

Conclusion: RSMAS-Net effectively diagnoses and classifies the severity of AS 
in echocardiographic images. The integration of SCConv and MDTA modules 
enhances diagnostic accuracy while reducing model complexity compared 
to the original ResNet50 architecture. These results highlight the potential 
of RSMAS-Net in improving AS assessment and supporting clinical decision-
making.
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1 Introduction

Aortic stenosis (AS) is a frequently occurring valvular heart disease 
that is mainly due to the narrowing or hardening of the aortic valve 
(AV), which impacts the normal blood flow from the left ventricle to 
the aorta (1, 2). This condition can increase the cardiac burden and, in 
severe cases, lead to heart failure. Valve stenosis is usually caused by 
aging, calcium deposition, or congenital diseases (3). In the early 
stages of aortic stenosis, patients may have no noticeable symptoms 
or very mild symptoms that are often overlooked. As the condition 
progresses and stenosis worsens, it may lead to exertional dyspnea, 
chest pain, and syncope, all resulting from inadequate cardiac 
perfusion. In advanced stages, left ventricular dilation, decreased 
wall elasticity, and impaired systolic function can lead to heart 
pump failure and possible blood regurgitation (4). With an aging 
population, aortic stenosis is becoming an increasingly common 
issue. Clinically, severe AS is a potentially fatal condition, with 
untreated moderate to severe AS patients having five-year mortality 
rates of 56 and 67%, respectively (5). Therefore, creating an easily 
accessible screening method is essential for prompt diagnosis and 
immediate intervention.

Transthoracic echocardiography (TTE) is one of the key tools for 
diagnosing aortic stenosis. It is a widely used cardiac imaging 
technique that assesses the heart’s structure and function (6) using an 
ultrasound probe on the chest wall. Echocardiography encompasses 
several views such as parasternal long-axis (PLAX), parasternal short-
axis (PSAX), apical two-chamber (A2C), and apical four-chamber 
(A4C), all of which are used for diagnosing AS. PLAX images the 
heart along its long axis, usually taken from the third or fourth 
intercostal space at the left sternal border, as shown in Figure 1A. PSAX 
images the heart along its short axis, also from the left sternal border 
but with the probe oriented differently, as shown in Figure 1B. These 
views provide detailed information to help doctors assess the valve’s 
structure, function, and the severity of the pathology. Specifically, the 

information includes valve morphology and closure, valve orifice area, 
average blood flow velocity and pressure gradient, as well as the extent 
of valve calcification (7). Both A2C and A4C image the heart from the 
apex, but with different probe orientations and angles. These views 
allow the indirect evaluation of aortic stenosis by observing the degree 
of left ventricular hypertrophy, the extent of left ventricular outflow 
tract narrowing, and the aortic root dilation. Doctors evaluate these 
parameters to diagnose AS. However, factors such as the operator’s 
image acquisition skills, Doppler usage techniques, and 
echocardiogram interpretation abilities can lead to poor 
reproducibility, misdiagnosis, and increased inter-observer variability. 
In routine clinical assessments of AS severity, 20–30% of cases may 
yield conflicting results regarding stenosis severity (8). Therefore, 
there is a need for alternative methods to assist clinicians in making 
accurate diagnoses.

Deep learning’s powerful feature learning and pattern recognition 
capabilities enable it to address the characteristics of echocardiography 
and the aforementioned issues, achieving excellent automatic 
identification and analysis. This provides an efficient and accurate tool 
for clinical use, making automated assisted diagnosis feasible.

In the study by Ghorbani et al. (9), deep learning was not only 
used to identify local structures of the heart and assess cardiac 
function but also to predict detailed cardiac structures, evaluate heart 
function, and predict physiological characteristics such as age and 
gender. Liu et al. (10) developed a deep learning framework called 
AIEchoDx, specifically for diagnosing cardiovascular diseases and 
locating lesions in echocardiography. It can distinguish four common 
cardiovascular diseases from echocardiograms and accurately identify 
key lesion areas for each disease, demonstrating the efficiency of deep 
learning in disease localization and heterogeneity typing. The review 
study by Hassan and Obied (11) discussed in detail the application of 
different deep learning techniques in cardiac disease classification. By 
analyzing existing research, the authors emphasized the role of deep 
learning in improving the accuracy of echocardiographic analysis.

These studies show considerable advancements in applying deep 
learning to ultrasound image recognition, particularly in processing 
and analyzing echocardiographic data, which significantly improves 
diagnostic accuracy and efficiency. This includes the identification of 
aortic stenosis. For example, Holste et  al. (12) proposed a 3D 
convolutional neural network for identifying severe AS using PLAX-
view echocardiography videos. The model was pretrained via self-
supervised learning, fine-tuned through ensemble learning across 
datasets, and finally trained with supervised learning. Hatfaludi et al. 
(13) developed a deep learning model based on Faster R-CNN with 
VGG and ResNet backbones to detect and classify aortic valve states 
from PLAX images, using a temporal model to aggregate frame-level 
features. Ahmadi et al. (14) introduced a spatiotemporal Transformer-
based architecture that integrates anatomical and motion features 
from 2D echocardiographic data, achieving high accuracy in 
classifying AS severity on both public and private datasets. Avola et al. 
(15) introduced a multi-view multi-scale feature extractor and 
transformer encoder (MV-MS-FETE) designed to predict valve 
stenosis using parasternal long-axis and short-axis views. Dual feature 
extractors generate multi-scale maps, which are then sequentially 
combined and passed to a patch embedding module to create latent 
representations of the ultrasound images. These representations are 
then fed into a transformer encoder to identify whether aortic valve 
stenosis is present.

FIGURE 1

Examples of common echocardiographic diagnostic views. 
(A) Parasternal long-axis (PLAX). (B) Parasternal short-axis (PSAX).
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Based on the aforementioned conceptual background and 
literature review, the automated diagnosis of AS still faces several 
critical challenges. First, existing models typically have large parameter 
sizes, making them difficult to deploy in clinical settings that require 
lightweight architectures and real-time responsiveness. Second, most 
current approaches rely on a single echocardiographic view (e.g., 
PLAX or PSAX), failing to fully leverage multi-view information. 
Third, classification performance—including accuracy, recall, and 
other key metrics—remains suboptimal and requires further 
improvement. Given the often asymptomatic nature of early-stage AS 
and the high rate of clinical misdiagnosis, developing an efficient, 
accurate, and clinically applicable screening tool is essential to 
improve early detection and facilitate timely intervention.

In practical clinical applications, improving the diagnostic 
accuracy and interpretive consistency of echocardiographic analysis 
can reduce errors caused by subjective human judgment and enhance 
reproducibility. Additionally, compared to high-cost imaging 
modalities such as magnetic resonance imaging (MRI), ultrasound 
offers greater affordability and convenience, making it better suited for 
large-scale screening and preliminary evaluation. Therefore, 
developing cost-effective diagnostic models based on ultrasound 
images can reduce dependence on expensive equipment and improve 
the efficiency of medical resource utilization. Furthermore, by 
enabling automated analysis and interpretation of echocardiographic 
images, deep learning models have the potential to promote intelligent 
AS diagnostic workflows, alleviate the workload on clinicians, and 
enhance overall healthcare efficiency.

To address these challenges, this study proposes a structurally 
optimized and lightweight deep learning model for binary 
classification of AS. The model is built upon the ResNet50 backbone 
and integrates Spatial and Channel Reconstruction Convolution 
(SCConv) and Multi-Dconv Head Transposed Attention (MDTA) 
modules to enhance feature extraction and classification performance. 
We name this model RSMAS-Net, which is designed to improve the 
accuracy and efficiency of AS recognition in echocardiographic 
images, providing a reliable and clinically practical tool for intelligent 
diagnostic support.

In summary, this paper’s contributions include the following:

 1. Proposal of RSMAS-Net: This study introduces RSMAS-Net, a 
module-optimized convolutional neural network specifically 
designed for identifying AS in echocardiography. By integrating 
SCConv and MDTA attention modules into the ResNet50 
backbone, the proposed network effectively reduces redundant 
computations, enhances representative feature learning, and 
improves the accuracy and efficiency of AS recognition tasks.

 2. Superior performance and benchmark establishment: 
RSMAS-Net achieves higher classification accuracy than 
several widely used CNN models (ResNet50, EfficientNet, 
MobileNet, SqueezeNet, and VGG16) on the TMED-2 dataset, 
while requiring fewer parameters and offering faster inference 
speed. Moreover, the proposed model demonstrates robust 
generalization performance on the TMED-1 validation dataset. 
These results establish new benchmark references for future 
research in echocardiographic AS classification.

 3. Advancement of AI-assisted echocardiographic diagnostic 
workflows: This study presents an efficient and accurate deep 
learning model tailored for automated AS diagnosis, promoting 

the practical integration of deep learning techniques into 
echocardiographic analysis. The proposed model can serve as 
a key component of intelligent diagnostic systems, providing 
technical support for the development of AI-driven 
echocardiographic workflows.

2 Materials and methods

This section focuses on the approach we adopted in our improved 
deep learning model, RSMAS-Net, for aortic stenosis identification in 
this research. The proposed model is named RSMAS-Net, where R 
represents the backbone network (ResNet50), S stands for the 
introduced SCConv module, M refers to the integrated MDTA 
attention module, and AS denotes the target clinical condition, aortic 
valve stenosis. The full name of the model is ResNet50 with SCConv 
and MDTA Attention for Aortic Stenosis Classification Network.

RSMAS-Net is built upon the ResNet50 framework and has been 
modified to address the classification and diagnostic characteristics of 
echocardiography. In the original ResNet50 structure, we replaced the 
convolutional set in the original fourth stage (Stage 4) with a 
combination of SCConv and MDTA modules, further boosting the 
model’s capacity to understand and represent echocardiographic 
characteristics, as shown in Figure  2. The inclusion of these two 
modules aims to utilize the SCConv module to lessen redundant 
computations and promote the acquisition of representative features, 
and the MDTA module’s multidimensional attention mechanism to 
more effectively identify and diagnose aortic stenosis in 
echocardiography. Through these optimizations, the model 
demonstrates higher accuracy in identifying variant cardiac 
pathological conditions, such as aortic stenosis.

Building upon the ResNet50 framework, RSMAS-Net introduces 
targeted innovations to overcome the limitations of conventional 
architectures when applied to echocardiographic image analysis. The 
original Stage 4 of ResNet50 consists of multiple residual blocks 
containing standard convolutional layers and skip connections. 
However, traditional ResNet50 may face limitations in handling 
echocardiographic images, including information redundancy, 
insufficient local feature representation, and limited capability in 
modeling long-range dependencies. To overcome these issues, 
we replaced and enhanced this stage at the module level.

Specifically, we replaced the convolutional layers in Stage 4 with a 
combination of SCConv (Spatial-Channel Convolution) and MDTA 
(Multi-Dimensional Transformer Attention) modules to more 
effectively extract and represent critical pathological features in 
echocardiographic images:

SCConv Module (Section 2.2): This module integrates spatial and 
channel information, reducing redundant computations while 
enhancing feature representation. By focusing on key anatomical 
structures in echocardiographic images, SCConv minimizes 
background noise interference and increases sensitivity to subtle 
pathological changes, all without significantly increasing 
computational cost compared to standard convolution.

MDTA Module (Section 2.3): The MDTA module employs a 
multi-dimensional self-attention mechanism that captures multi-scale 
feature information, enhancing the model’s ability to fuse local and 
global information. Given the dynamic nature and spatial 
dependencies of echocardiography, MDTA strengthens cross-region 
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associations, improving pathological pattern recognition in 
ultrasound images.

Additionally, we incorporated a global average pooling (AvgPool) 
layer at the final stage to reduce model parameters, mitigate overfitting, 
and streamline computation, followed by a fully connected (FC) layer 
to output classification results.

This structural optimization improves AS detection accuracy 
while maintaining an optimal balance between generalization ability 
and computational efficiency. By integrating these enhancements, the 
model achieves more accurate recognition of AS lesions in 
echocardiographic images, demonstrating robustness to pathological 
variations and greater clinical applicability in computer-
aided diagnosis.

2.1 RSMAS-Net backbone network 
ResNet50

ResNet (Residual Network) is a deep convolutional neural 
network proposed by He  et  al. (16) to address the training 
difficulties of deep networks. By introducing residual blocks, it 
allows inputs to be directly passed to subsequent layers through 
skip connections. This paper uses ResNet50 as the main framework 
of the model. The ResNet series includes various structures 
depending on the network depth, and ResNet50 is one of them, 
comprising 50 neural network layers. One convolution operation is 
contained in the first group of convolutions, also known as Stage 0. 
The second through fifth convolutional groups comprise several 
identical residual units. In the code implementation, these are 
usually referred to as Stage 1, Stage 2, Stage 3, and Stage 4, 
respectively. Stages 1–3 contain 3, 4, and 6 Bottleneck modules, 
respectively. The TMED-2 public dataset used in this study is 
suitable for the classification training of small sample image dataset 
models. Therefore, while maintaining a moderate overall parameter 
count, the model possesses good network performance and 
excellent feature extraction capabilities. Considering these factors, 
this paper selects the ResNet50 network as the backbone for 
further improvement.

2.2 SCConv module

Spatial and Channel Reconstruction Convolution (SCConv) is an 
optimized component created by Li et  al. (17) to mitigate feature 
redundancy within convolutional neural networks. In deep learning 
networks, there is notable redundancy present in model parameters 
as well as in the spatial and channel aspects of feature maps. SCConv 
minimizes unnecessary computations and improves the learning of 
key features by tackling both spatial and channel redundancies, thus 
enhancing computational efficiency and overall performance. Figure 3 
shows the framework of SCConv.

SCConv is created to function as a plug-and-play component, 
meaning it is readily integrable within established convolutional 
neural network frameworks, replacing traditional convolutions 
without significant modifications. Its primary components are the 
Spatial Reconstruction Unit (SRU) and the Channel Reconstruction 
Unit (CRU). The specific workflow is as follows:

First, the feature map Χ processed by the previous convolutional 
block is received. It is input into the Spatial Reconstruction Unit 
(SRU), where a series of operations, including group normalization 
and thresholding, separate and reconstruct features to reduce spatial 
redundancy, resulting in spatially refined features Χw . The Channel 
Reconstruction Unit (CRU) receives Χw  output from the SRU and 
reduces channel redundancy through segmentation, transformation, 
and fusion strategies, generating channel-refined features Y. The 
channel-refined features Y output by the CRU are processed through 
convolution, then added to the previous features, and finally passed to 
the next layer. This design aims to reduce redundancy in feature 
extraction, enhancing the efficiency and effectiveness of convolutional 
neural networks for feature processing.

2.2.1 Spatial Reconstruction Unit
This unit uses a “separation-reconstruction” method to manage 

spatial redundancy. It separates less informative features from more 
valuable ones, refining the extracted spatial features to enhance overall 
feature representation. The SRU structure is depicted in Figure 4.

In this process, the scaling factors of the Group Normalization 
(GN) (18) layer are used to evaluate the information content of various 

FIGURE 2

General workflow structure of RSMAS-Net model.
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feature maps. Specifically, for the input intermediate feature map 
× × ×Χ∈ N C H W , where N, C, H, W represent batch, channel, height, 

and width dimensions, respectively, the initial step involves 
normalizing the input features Χ by removing their mean μ and 
scaling by their standard deviation σ:

 
( ) µγ β

σ ε

Χ −
Χ = = +

+
out

2
GN X

Here, the parameters μ and σ denote the feature map’s mean and 
standard deviation, ε is added for numerical stability, and γ and β 
adjustable parameters in the GN layer.

The vector γ (in c ) is used to evaluate the spatial pixel variability 
for each channel and batch. Higher variability indicates richer spatial 
information, typically resulting in larger values. Then, the normalized 
weights of the feature map γ ∈

CW   are calculated using the 
following formula:

 

{ }
γ

γ
γω

=

= = =
∑



1

, , 1,2 ,
j

i
i C

j

W i j C

These weights are then converted to the (0, 1) range using a 
sigmoid function and selectively gated through a threshold. Weights 
exceeding the threshold are set to 1 (representing informative features, 
denoted as 1W ), while the rest are set to 0 (representing less informative 
features, denoted as 2W ); In the experiments, the threshold is 

established at 0.5. This way, the input features Χ are effectively 
separated based on their information content.

 ( )( )( )( )γ=Gate Sigmoid GNW W X

Furthermore, to address spatial redundancy, a “reconstruction” 
operation is implemented to enhance feature representation and 
conserve space by overlaying informative features with less informative 
ones. A cross-reconstruction strategy is employed instead of direct 
addition to effectively integrate the two types of information. The 
reconstructed features ωΧ 1 and ωΧ 2 are then concatenated to obtain 
the optimized spatial feature map ωΧ . The entire reconstruction 
process can be described as follows:

 

 Χ = ⊗Χ

 Χ = ⊗Χ

Χ ⊕Χ = Χ


Χ ⊕Χ = Χ

Χ ∪Χ = Χ

1 1

2 2
1

11 22
2

21 12
1 2

,

,

,

,

w

w

w w w

w w w
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W

W

where ⊗ signifies element-wise multiplication, ⊕ signifies 
element-wise summation, and ∪  signifies the Concat 
concatenation module.

FIGURE 3

Overall framework of the SCConv module.

FIGURE 4

Workflow structure of the SRU unit within the SCConv module.
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2.2.2 Channel Reconstruction Unit
Although the spatially optimized feature maps are improved in the 

spatial dimension, they may still have redundancy in the channel 
dimension. Therefore, the CRU unit uses a “split-transform-fuse” 
strategy to further address channel redundancy. The CRU unit 
involves three operations: Split, Transform, and Fuse. These operations 
maintain effective information flow and reduce computational costs. 
The structure is depicted in Figure 5.

In the split stage, the channels of the feature map Χw  are first 
divided into two groups, αC and (1 − α)C, and then compressed using 
1 × 1 convolution. A compression ratio r is introduced to control the 
feature channels of the CRU, optimizing computational efficiency and 
balancing computational costs. The spatially refined features Χw  are 
then divided into Χup and Χlow.

In the transform stage, Χup is sent to the upper transform stage, 
acting as a “rich feature extractor.” Efficient convolution operations 
GWC (Group-Wise Convolution) and PWC (Point-Wise 
Convolution) replace standard k × k convolutions to extract 
representative features. The upper transform stage can be expressed as:

 = + 1
1 up up

G PY M X M X

where GM  and 1PM  are the learnable weights of GWC and PWC. 1Y  
and upX  correspond to the input and output feature maps of the upper 
transform stage. Χlow  is then input to the lower transform stage, 
which can be expressed as:

 = ∪22 low low
PY M X X

where 2PM  corresponds to the learnable weights of PWC, ∪ 
represents the Concat concatenation operation, and 2Y  and lowX  
correspond to the input and output feature maps of the lower 
transform stage.

After completing the transform stage, the features of the upper and 
lower transform stages are fused. The simplified SKNet method (19) 

is used to adaptively fuse the output features 1Y  and 2Y  from the 
transform stage. Then, global average pooling is used to collect global 
spatial information × ×∈ 1 1c

mS  , which can be expressed as:

 
( )= =

= =
× ∑ ∑1 1
1 , , 1,2H w

m ci jS Y i j m
H W

Then, the global channel descriptors 1S  and 2S  from the upper and 
lower layers are stacked, and a channel soft attention mechanism is 
used to generate feature importance vectors β1, β2 ∈ c , which can 
be expressed as:

 
β β= =

+ +

1 2

1 2 1 2
1 2,

s s

s s s s
e e

e e e e

In the end, directed by the feature importance vectors β1 and β2, 
the upper layer features 2Y  and lower layer features 2Y  are merged to 
obtain the channel reconstructed feature Y . This can be expressed as 

β β= +1 1 2 2Y Y Y . Thus, the two modules SRU and CRU reduce the 
redundancy of feature maps, leading to performance improvement 
while reducing computational load.

2.3 Multi-Dconv Head Transposed 
Attention module

In traditional self-attention (SA) mechanisms (20), the 
dot-product interactions between keys and queries typically result in 
a significant increase in computational complexity as the input image 
size grows. In contrast, the Multi-Dconv Head Transposed Attention 
(MDTA) module by Zamir et al. (21) achieves better computational 
efficiency through innovative computational methods, as shown in 
Figure  6. MDTA primarily applies self-attention in the channel 
dimension rather than the spatial dimension by computing the cross-
covariance between channels to implicitly construct a global context 
attention map. Additionally, by introducing point-wise convolution to 

FIGURE 5

Workflow structure of the CRU unit within the SCConv module.
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enhance local context expression, MDTA further generates a global 
attention map through feature covariance computation.

MDTA starts from a layer-normalized tensor × ×=
ˆˆ ˆH W CY  , 

generating projections for queries (Q), keys (K), and values (V). 
These projections first aggregate inter-channel pixel context 
through 1×1 convolutions and then encode intra-channel spatial 
context through 3 × 3 depth-wise convolutions, resulting in 
= = =, andQ Q K K V V

p p pd d dQ W W Y K W W Y V W W Y . Here, ( ).
pW  and 

( ).
dW  denote 1 × 1 point-wise convolutions and 3 × 3 depth-wise 

convolutions, respectively. By reshaping the query and key projections, 
their dot-product interactions generate a reverse attention map A with 
a size of ×ˆ ˆC C  instead of the traditional larger attention map. The 
computational process of MDTA can be summarized as:

 ( )= +Attentio ˆˆ ˆn , ˆ,pX W Q K V X

 
( ) α

 
=   

 

..Attention , , Softmax
ˆˆ

ˆ ˆ ˆ ˆ K Q
Q K V V

where X  and X̂  represent the input and output feature maps; 
×∈
ˆˆ ˆˆ HW CQ  , ×∈

ˆ ˆ ˆˆ C HWK  , and ×∈
ˆˆ ˆˆ HW CV   are the reshaped tensor 

matrices. The parameter α is an adjustable scaling factor that regulates 
the dot product magnitude between K and Q prior to applying the 
Softmax function. Like conventional multi-head self-attention, the 
channels are split into several “heads” to simultaneously learn distinct 
attention maps.

By integrating the MDTA module into image classification 
models, the ability of the model to capture image features is 
significantly improved. This enhanced self-attention mechanism 
optimizes inter-channel interactions, effectively increasing the model’s 
sensitivity to key visual information, thereby improving 
classification accuracy.

3 Experimental results and discussion

This section primarily delves into assessing how effectively the 
proposed model identifies and diagnoses aortic stenosis along with 

determining its severity. Section 3.1 introduces the publicly available 
dataset used for the experiment, Section 3.2 explains the experimental 
parameter settings, and Section 3.3 presents the analysis and 
discussion of the model’s performance based on different 
evaluation metrics.

3.1 Experimental dataset

This study uses the publicly available dataset from Tufts 
University (Tufts Medical Echocardiogram Dataset, TMED) (22) to 
evaluate and test the proposed model. It is worth noting that the 
dataset currently has two versions: TMED-1 and TMED-2. In this 
study, TMED-2 is used for both diagnosis and severity classification, 
while TMED-1 is employed to further validate the model’s diagnostic 
performance for AS. The TMED-1 dataset contains data from 260 
patients, with each patient’s images labeled for AS diagnosis (none, 
mild/moderate, severe) and image view types (PLAX, PSAX, others). 
Compared to TMED-1, TMED-2 includes additional views such as 
A2C and A4C, provides more detailed severity labels, and contains 
higher-resolution images. Additionally, the images in TMED are all 
sized at 64 × 64. The TMED-2 dataset contains 599 studies with 
17,270 fully annotated images, including different views (PSAX, 
PLAX, A2C, A4C) and severity labels (none, mild, mild to moderate, 
moderate, severe). All images have been preprocessed, leveraging 
metadata from the original DICOM files to ensure inclusion of only 
2D TTE images from each study, while excluding Doppler images, 
M-mode images, and color flow images. The images were resized to 
112 × 112 and saved in PNG format.

For the binary classification diagnosis of aortic stenosis, 
we grouped images labeled “Mild,” “Mild to Moderate,” “Moderate,” 
and “Severe” as “AS,” and “None” as “no_AS.” For severity recognition, 
images labeled “Mild,” “Mild to Moderate,” and “Moderate” were 
grouped as “MildtoMod_AS,” and “Severe” was grouped as “Severe_
AS,” removing the “no_AS” label. Lastly, data augmentation was 
applied to the images, including rotation, flipping, brightness 
adjustment, and scaling. The TMED-2 dataset was then partitioned 
into training, validation, and test sets in a ratio of 6:2:2, as illustrated 
in Table 1. In addition, to reduce the impact of randomness on the 
performance of RSMAS-Net and to ensure the reliability of the results, 
the dataset splitting process was repeated five times.

FIGURE 6

Structure of the MDTA attention module.
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3.2 Experimental setup and evaluation 
metrics

Experimental hardware configuration: AMD R7 5800X3D CPU, 
Nvidia RTX 4090 GPU, 32GB RAM; Software configuration: Windows 
11 OS, Pytorch version:1.12.1, Python version:3.10.0, CUDA 
version:12.3 architecture. Parameter settings: The epochs are 
configured to 100, and the batch size is configured to 32, As the 
optimizer, AdamW (23) is used with an initial learning rate of 1 × 10−4, 
using the cross-entropy loss function, using pre-trained parameters 
from the ImageNet dataset (24). A default threshold of 0.5 is used to 
convert predicted probabilities into binary labels when calculating 
accuracy, precision, recall, and F1-score.

The evaluation metrics and tools for model 
performance include:

 1. +
=

+ + +
TP TNAccuracy

TP TN FP FN

 2. =
+
TPPrecision

TP FP

 3. =
+
TPRecall

TP FN

 4. ×
− = ×

+1
Precision Recallscore 2
Precision Recall

F

 5. ROC curve, where an AUC value closer to 1 indicates better 
classification performance.

 6. PR (precision-recall) curve, where the area under the curve 
(AP, average precision) is larger, indicates better 
model performance.

 7. Confusion matrix: a matrix that compares the model’s 
predictions with the actual labels.

 8. Model parameters: the overall count of trainable parameters 
within the model. Fewer parameters usually mean higher 
computational efficiency.

 9. Prediction time: the time it takes for the model to handle a 
single sample or a batch of samples.

3.3 Results analysis and discussion

To validate the effectiveness and performance of RSMAS-Net 
in identifying AS and its severity, this study sets up a comparative 
experiment involving multiple models and metrics for AS 
diagnosis. Currently, there is limited research on binary AS 
identification using the TMED-2 dataset. Therefore, inspired by 
previous research (which conducted AS classification on the 
TMED-1 dataset), this paper selects ResNet50, EfficientNetV2 (25), 
VGG16 (26), SqueezeNet (27), and MobileNet (28) as comparison 

models. To better compare the models, all comparison models were 
trained and validated according to the experimental parameter 
settings in Section 3.2. Additionally, an AS severity classification 
experiment was set up to evaluate the model’s ability to distinguish 
between “Mild to Moderate” and “Severe” AS.

3.3.1 Model performance in AS diagnosis binary 
classification and comparative analysis

As shown in Figures 7, 8, the accuracy of multiple models on the 
training and validation sets is presented. All models demonstrate good 
performance in AS identification and diagnosis. In terms of training 
accuracy, the proposed model converges quickly, achieving high 
accuracy early on, and then grows steadily. The curve is higher and 
smoother compared to other models, indicating high efficiency and 
strong generalization ability during the learning process. In contrast, 
the accuracy of the comparison models grows slowly in the early 
stages of training and does not reach the same level as even in the later 
stages of training. In terms of validation accuracy, all models exhibit 
significant fluctuations in the early stages, but RSMAS-Net shows 
more stability and consistency in the middle and later stages, 
maintaining an accuracy of over 90%, higher than other models.

Additionally, Figure 9 shows RSMAS-Net’s performance on the 
loss curves. Both training loss and validation loss rapidly decrease 
from the initial value, and the loss curves quickly converge. This 
indicates that the model is effectively learning image features and 
continuously optimizing classification performance. The training loss 
is slightly lower than the validation loss, and both tend to stabilize as 
the epochs increase, without significant overfitting. The loss curves 
demonstrate good convergence and stability of the model during 
training and validation.

Tables 2, 3 present more results. In Table 2, all models have good 
metric parameters, RSMAS-Net achieves the highest accuracy, 
precision, recall, and F1-score, reaching 94.67% ± 0.32, 91.93% ± 0.48, 
96.95% ± 0.35, and 94.37% ± 0.30%, respectively, which represent the 
average results over five independent runs. Notably, when contrasted 
with ResNet50, our improved model with SCConv and MDTA 
attention modules as the backbone enhances accuracy by 2.44%. 
Additionally, the inclusion of SCConv and MDTA attention modules 
reduces redundant features and improves computational efficiency. As 
shown in Table 3, compared to non-lightweight design models, our 
model has fewer parameters and faster prediction times. Overall, 
thanks to the SCConv and MDTA attention modules, the proposed 
model achieves the best metrics in comparative experiments on the 
training and validation sets. The accuracy has increased while the 
number of parameters has decreased, demonstrating that the proposed 
model performs exceptionally well in identifying and classifying AS.

Additionally, the study utilized a ROC curve to evaluate the 
model’s performance in distinguishing between the two classes. As 

TABLE 1 The division of the augmented experimental dataset, including the number of samples in the training, validation, test sets, and the total 
number of sample.

AS diagnosis AS severity

Split no_AS AS Total MildtoMod Severe Total

Train 5,790 45,530 51,320 24,095 22,665 46,750

Validation 1,835 16,175 18,010 8,035 7,555 15,590

Test 1,775 16,235 18,010 8,030 7,560 15,590
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shown in Figure 10A, the AUC for the AS class was 0.95, indicating 
strong classification performance in identifying the AS class. This high 
AUC value demonstrates that the RSMAS-Net model effectively 
distinguishes AS from no_AS cases, which is crucial for accurate 

diagnosis of AS. In cases of class imbalance, the Precision-Recall (PR) 
curve serves as an essential metric for classification performance 
evaluation. As shown in Figure 10B, the average precision (AP) for the 
AS class was 0.96, while the AP for the no_AS class was 0.89. Although 

FIGURE 7

Comparison of training set accuracy across multiple models.

FIGURE 8

Comparison of validation set accuracy across multiple models.
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a standard binary classification task typically yields a single PR curve 
by treating one class as positive, we intentionally plotted two separate 
PR curves by alternately setting “AS” and “no_AS” as the positive class. 
This approach was adopted to provide a more comprehensive 
evaluation of the model’s ability to correctly identify both categories. 
In clinical practice, accurately recognizing non-stenotic (no_AS) cases 
is equally important to avoid misdiagnosis or overtreatment. 

Therefore, this dual-curve analysis highlights that the proposed model 
not only excels in detecting AS but also performs well in ruling out 
AS, which enhances its reliability in real-world applications.

Since the dataset contains more AS samples than no_AS samples, 
the model tends to learn AS-class features more effectively, leading to 
slightly better recognition performance for AS compared to no_
AS. However, this performance gap has been minimized through data 
augmentation. Overall, the proposed RSMAS-Net model demonstrates 
high accuracy in distinguishing between AS and no_AS cases, 
confirming its effectiveness in the binary classification task for 
AS diagnosis.

The strong performance of RSMAS-Net demonstrates its potential 
clinical value in the diagnosis of AS. The model effectively extracts subtle 
and critical structural features from static echocardiographic images, 
improving recognition accuracy in early-stage or borderline cases, which 
are often difficult to assess in clinical practice. With fewer parameters 
and high computational efficiency, it is suitable for deployment in real-
time settings such as bedside examinations or portable devices. 
Additionally, RSMAS-Net maintains stable performance in both AS and 
no_AS classification, even under class imbalance, helping reduce 
misdiagnosis and unnecessary interventions while enhancing the overall 
reliability and generalizability of AS screening.

3.3.2 Further validation of AS diagnosis 
performance

The study further validated the AS classification performance of 
the model on the TMED-1 dataset. As shown in Figures 11A,B, the 
ROC curve indicates that the AUC of AS was 0.91. In the PR curve 
results, the AP for the no_AS class was 0.93, while the AP for the AS 
class was 0.91, demonstrating that the model maintains high precision 
even at high recall rates.

FIGURE 9

RSMAS-Net training and validation loss curves.

TABLE 2 Performance metrics of multiple models on the AS diagnostic 
classification task, with results obtained on the test split.

Model Accuracy Precision Recall F1-
score

SqueezeNet 88.69% 86.92% 90.21% 88.53%

VGG16 88.73% 86.95% 90.53% 88.70%

MobileNet 88.94% 87.96% 90.65% 89.28%

EfficientNetV2 91.98% 89.97% 94.12% 92.00%

ResNet50 92.23% 90.06% 94.78% 92.36%

RSMAS-Net 94.67% 91.93% 96.95% 94.37%

TABLE 3 Comparison of parameters and prediction time between the 
RSMAS-NET and non-lightweight models.

Model Parameters 
(millions)

Prediction time 
(ms)

ResNet-50 25.63 0.59

EfficientNetV2-S 21 0.66

VGG16 138 0.68

RSMAS-Net 17.6 0.50
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The confusion matrix analysis, presented in Figure 12A, shows 
that the model achieved a prediction accuracy of 78% for the no_AS 
class and 93% for the AS class. These results indicate that the model 
can still achieve accurate and sensitive diagnosis of AS even when 
applied to external data. This demonstrates the model’s strong 
generalization ability beyond the training dataset. External validation 
is a critical step in the clinical translation of AI-based medical models, 
as it helps verify their performance across diverse data sources and 
patient populations. The stable performance under class imbalance 
further highlights the robustness and reliability of the model for 
practical AS screening in real-world settings.

3.3.3 Model performance analysis for AS severity 
classification

To assess RSMAS-Net effectiveness in classifying the severity of AS, 
we  used ROC curves and confusion matrices for result analysis. 
Figure 13 shows the ROC curves, with the blue and orange curves 

representing the ROC curves for “MildtoMod_AS” and “Severe_AS,” 
respectively. Both curves have an AUC value of 0.93, suggesting that the 
model possesses a high discriminative capacity. The high AUC values 
for both categories indicate that the model performs excellently in 
correctly classifying mild to moderate and severe AS instances. 
Figure 12B shows the confusion matrix for the binary classification task 
of AS severity. True positives (mild to moderate correctly classified as 
mild to moderate), false positives (mild to moderate misclassified as 
severe), true negatives (severe correctly classified as severe), and false 
negatives (severe misclassified as mild to moderate). The matrix data 
shows that the model has a high classification accuracy for both 
categories, with 90% of mild to moderate AS samples and 87% of severe 
AS samples being correctly classified, resulting in a low overall 
classification error rate. Combining the ROC curve and confusion 
matrix evaluation metrics, the proposed model has demonstrated 
robust performance and accuracy in identifying AS severity and 
diagnosing AS.

FIGURE 10

ROC curve (A) and PR curve (B) of RSMAS-Net on the AS diagnostic classification.

FIGURE 11

ROC curve (A) and PR curve (B) of RSMAS-Net on AS diagnostic classification in TMED-1 validation.
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These results demonstrate that RSMAS-Net is capable not only 
of identifying AS but also of accurately classifying its severity, which 
is essential for risk stratification and treatment planning in clinical 
practice. Severity grading of aortic stenosis plays a critical role in 
determining clinical management strategies, such as the timing of 
surgical intervention or monitoring frequency. The high AUC 
values and classification accuracy for both mild-to-moderate and 
severe AS indicate that the model can effectively distinguish 
between different disease stages. This supports its potential role in 
assisting clinicians with more precise diagnosis and 
timely intervention.

4 Conclusion

In this study, we propose an improved deep learning model, 
RSMAS-Net, based on ResNet50, integrating SCConv and MDTA 
attention modules to accurately identify the presence of AS in 
multi-view echocardiography. Through extensive training and 
validation on the TMED-2 dataset, our model outperformed several 
popular deep learning models in AS classification across key 
performance metrics, including accuracy and F1-score. Notably, 
compared to the original ResNet50, our model achieved higher 
classification accuracy while reducing the number of parameters, 

FIGURE 12

Confusion matrix of the RSMAS-Net on the AS (A) diagnostic and (B) severity classification.

FIGURE 13

ROC curve results of the RSMAS-Net on the AS severity classification.
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demonstrating superior model efficiency. To further evaluate the 
generalization capability, we conducted additional testing on the 
TMED-1 dataset, where our model also achieved good classification 
performance. This result suggests that the proposed method is not 
only effective on TMED-2 but can also maintain strong robustness 
across different data distributions. Additionally, in the AS severity 
classification task, our model effectively distinguished mild-to-
moderate AS from severe AS, highlighting its clinical value in 
echocardiography-based disease grading. More importantly, our 
model demonstrates high accuracy, efficiency, and fast inference 
speed, enabling precise AS identification and assessment to assist 
clinicians in real-time computer-aided diagnosis (CAD). This 
advancement supports early intervention and treatment, improving 
patient outcomes.

While this study first introduces SCConv and MDTA modules 
into cardiac ultrasound analysis and verifies their effectiveness in 
handling complex and dynamic cardiac structures, several areas 
require further optimization:

 1. Enhancing performance on more complex or ambiguous 
ultrasound images: Our model performs well on high-quality 
echocardiographic images, but its classification accuracy 
decreases when dealing with artifacts, low signal-to-noise ratio 
(SNR), or variations in probe angles. This suggests that the 
model may be sensitive to data quality. Future research could 
incorporate adversarial training or image enhancement 
strategies to improve model robustness in challenging imaging 
scenarios. In addition, optimizing the decision threshold used 
to convert predicted probabilities into class labels may help 
balance sensitivity and specificity more effectively. Rather than 
relying on a fixed threshold, future work could explore adaptive 
thresholding strategies based on validation performance, ROC 
analysis, or specific clinical requirements. Such optimization 
may be  particularly beneficial in cases involving uncertain 
image quality or class imbalance, where threshold tuning can 
significantly impact diagnostic accuracy.

 2. Improving adaptability to diverse patient populations and 
extreme cases: Although the model has demonstrated good 
generalizability on TMED-1 and TMED-2, it has primarily 
been trained on a specific echocardiography dataset; to 
enhance cross-population adaptability, future studies should 
validate the model on more diverse datasets, including patients 
of different ethnicities, age groups, and medical histories; 
Approaches such as transfer learning and data augmentation 
could be explored to expand the model’s applicability across 
broader patient populations.

 3. Enhancing model interpretability for clinical applications: 
Although SCConv and MDTA improve feature extraction, 
clinicians require intuitive explanations for the model’s decision-
making process; Future research could integrate Explainable AI 
(XAI) techniques, such as Grad-CAM or attention-based 
visualization methods, to provide more interpretable decision 
rationales, improving clinical usability and trustworthiness.

 4. Further optimizing computational efficiency for real-time 
clinical applications: While our model already reduces 
parameter complexity compared to ResNet50, computational 
cost remains a concern in resource-constrained environments 
(e.g., portable ultrasound devices or edge computing 

platforms); Future optimizations may explore lightweight 
architectures (e.g., MobileNet, EfficientNet) or implement 
model quantization and pruning techniques to reduce 
inference time and enhance real-world deployability.

Overall, this study not only proposes an efficient and accurate 
echocardiographic analysis model but also pioneers the application 
of SCConv and MDTA modules in cardiac imaging. Future research 
will focus on model optimization, dataset diversification, and 
explainability enhancement to further improve the model’s clinical 
adaptability and scalability. We hope that the findings of this study 
will advance the automation of echocardiographic disease diagnosis, 
providing clinicians with more precise and efficient decision-support 
tools and ultimately driving the integration of AI into the medical 
and healthcare domain.
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