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Objective: In non-clinical safety evaluation of drugs, pathological result is one 
of the gold standards for determining toxic effects. However, pathological 
diagnosis might be  challenging and affected by pathologist expertise. In 
carcinogenicity studies, drug-induced squamous cell carcinoma (SCC) of the 
mouse stomach represents a diagnostic challenge for toxicopathologists. This 
study aims to establish a detection model for mouse gastric squamous cell 
carcinoma (GSCC) using deep learning algorithms, to improve the accuracy and 
consistency of pathological diagnoses.

Methods: A total of 93 cases of drug-induced mouse GSCC and 56 cases of 
normal mouse stomach tissue from carcinogenicity studies were collected. After 
scanning into digital slides, semi-automated data annotation was performed. All 
images underwent preprocessing, including tissue extraction, artifact removal, 
and exclusion of normal epithelial regions. The images were then randomly 
divided into training, validation, and test sets in an 8:1:1 ratio. Five different 
convolutional neural networks (CNNs)-FCN, LR-ASPP, DeepLabv3+, U-Net, 
and DenseNet were applied to identify GSCC and non-GSCC regions. Tumor 
prediction images (algorithm results shown as overlays) derived from the slide 
images were compared, and the performance of the constructed models was 
evaluated using Precision, Recall, and F1-score.

Results: The Precision, Recall, and F1-scores of DenseNet, U-Net, and 
DeepLabv3 + algorithms were all above 90%. Specifically, the DenseNet model 
achieved an overall Precision of 0.9044, Recall of 0.9291, and F1-score of 
0.9157 in the test set. Compared to the other algorithms, DenseNet exhibited 
the highest F1-score and Recall, demonstrating superior generalization ability.

Conclusion: The DenseNet  algorithm model developed in this study shown 
promising application potential for assisting in the diagnosis of mouse GSCC. 
As artificial intelligence (AI) technology continues to advance in non-clinical 
safety evaluation of drugs, CNN-based toxicological pathology detection 
models will become essential tools to assist pathologists in precise diagnosis 
and consistency evaluation.
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1 Introduction

Toxicologic pathology evaluation is a critical component of 
drug safety evaluation and serves as an essential basis for 
determining organ-specific alteration caused by drugs. The rapid 
development of digital whole-slide imaging (WSI) technology and 
AI technology in 2016–2017 has significantly advanced the field 
of pathology. Currently, several AI models have been established 
in the field of toxicological pathology abroad to address related 
tasks in toxicology (1), such as hepatocyte hypertrophy (2), retinal 
toxicity evaluation (3), and progressive cardiomyopathy (PCM) 
scoring (4), among others. As a result, AI algorithm models can 
provide decision support to pathologists in non-clinical studies.

Mice are commonly used rodents in carcinogenicity research, 
and the inter-group differences in the incidence of malignant 
tumors are one of the key indicators for evaluating the 
carcinogenic potential of drugs (5, 6). Most rodent species possess 
a complex gastric structure, which includes a cornified 
(nonglandular) squamous epithelial region known as the 
“forestomach,” and this is a specific feature of rodent anatomy (7). 
The squamous epithelium in the mouse forestomach can develop 
squamous cell carcinoma (8). The occurrence of GSCC in mice 
may be associated with the administration of certain compounds, 
such as N-methyl-N-nitro-N-nitrosoguanidine (MNNG) 
combined with a high-salt diet (9), and GSCC was identified 
through histopathological examination in this mouse model. In 
recent years, there has been extensive research on the application 
of deep learning in human gastric cancer cases, such as U-Net-
based gastric cancer gastroscopy image segmentation (10), typical 
AlexNet network-based hematoxylin–eosin (H&E)-stained 
sections image information extraction for gastric cancer 
recognition (11), and machine learning classification algorithms 
using dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) combined with immunohistochemistry (IHC), which 
can accurately predict the expression of CD3+, CD4+, and CD8+ 
tumor-infiltrating lymphocytes in gastric cancer (12). Algorithms 
based on Convolutional Neural Networks (CNN), such as FCN, 
LR-ASPP, DeepLabv3+, and DenseNet, have been used for 
detecting and classifying lesions in clinical images (WSI tissue 
images with different types of histological stains, such as H&E, 
IHC, Masson and so on) of the esophagus and larynx (13, 14), 
showing results nearly identical to those of pathologist diagnoses. 
Although there have been no reports on the use of AI-assisted 
diagnostic tools in gastric neoplasm detection and classification 
in the toxicological pathology field so far, applying CNN 
algorithms in non-clinical drug safety evaluation for gastric 
cancer auxiliary diagnosis holds the potential to reduce 
misdiagnosis and underdiagnosis caused by either pathologist 
limited experience or labor-intensive under time constraints 
extensive histopathologic examination. This approach might 
improve the consistency and accuracy for this specific 
histologic finding.

This study compares different deep learning algorithms based 
on different CNN architectures, constructs an auxiliary diagnostic 
model for mouse GSCC, and analyzes the performance and 
applicability of the model, aiming to support pathological 
evaluation in carcinogenicity studies and provide support for the 
application of AI technology in the field of drug safety evaluation.

2 Materials and methods

2.1 Data source

The mouse gastric tissue specimens used in this study were 
obtained from a mouse carcinogenicity study (N2018066) conducted 
at the National Center for Safety Evaluation of Drugs, National 
Institutes for Food and Drug Control, China. In this carcinogenicity 
experiment, 2-week-old C3H/HeN suckling mice were administered 
Aristolochic acid I and observed for 9 months after a single dose. 
Following this period, necropsy was performed, and organ tissues 
were processed into hematoxylin–eosin (HE)-stained tissue sections 
and examined for histopathological analysis. Among the stomach 
tissues, a total of 93 cases were diagnosed as GSCC, and 56 cases were 
diagnosed as normal gastric tissue. The tissue sections of both GSCC 
and normal tissue were independently diagnosed by two board-
certified veterinary pathologists, and the results showed diagnostic 
consistency/consensus. This animal study was approved by the 
Institutional Animal Care and Use Committee (IACUC) of NCSED 
(Approval No. IACUC-2018-K013).

2.2 Diagnostic criteria for gastric squamous 
cell carcinoma

The diagnostic criteria for GSCC was based on the International 
Harmonization of Nomenclature and Diagnostic Criteria for Lesions in 
Rats and Mice (15, 16). The criteria include: (1) Exophytic and/or 
endophytic growth. (2) Individual tumor cells or small clusters of 
tumor cells breaching the basement membrane. (3) Loss of cellular 
differentiation with evidence of anaplasia. (4) Potential invasion into 
the submucosa, muscularis propria, and serosa. (5) Well-differentiated 
type: Morphology resembling normal squamous epithelium with 
irregular papillary structures, often showing central hyperkeratosis 
(keratin pearls). Invasive areas may contain numerous polygonal and 
pleomorphic cells with varying degrees of keratinization. (6) Poorly 
differentiated type (anaplastic type): Solid sheets or trabecular 
arrangements of spindle cells, leading to varying degrees of 
desmoplastic features. And the difficulty in identifying keratinization. 
(7) The exhibition of varying sizes (typically larger than normal cells) 
and shapes by cells. The presence of hyperchromatic, enlarged nuclei 
with prominent nucleoli. (8) Increased mitotic figures. (9) Potential 
metastasis to the abdominal cavity, regional lymph nodes, or lungs. 
All tissue samples excluded benign proliferative lesions such as gastric 
squamous epithelial hyperplasia and gastric papilloma.

2.3 Study design

In this study, forestomach tissue (as described in 2.1) was used to 
develop CNN models for detecting GSCC in mice, following the 
workflow below: (1) Whole slide scanning using a digital slide 
scanner; (2) Automated identification of slide background and tissue 
regions through Tissue Detection-BF algorithm; (3) Automated 
identification and exclusion of tissue artifacts through QC Slide 
algorithm; (4) Recognition and elimination of normal epithelial 
regions; (5) Annotation of tumor and non-tumor regions in 
forestomach tissue; (6) Construction of tumor region identification 
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algorithm models; and (7) Performance evaluation of the algorithm 
models. The workflow is shown in Figure 1.

2.4 Data preprocessing

All 149 tissue samples were scanned using a digital slide scanner 
(NanoZoomer C13210-60, Japan) at a magnification of 40X, and the 
data was imported into a computer equipped with a 32-core 2.9 GHz 
Intel Xeon processor 6226R and an Nvidia Quadro RTX6000 graphics 
card. Data preprocessing was performed using the HALO software on 
a workstation equipped with an Intel Xeon W-2265 CPU and 64 GB 
RAM. First, the pre-built algorithm model (Tissue Detection-BF) 
provided by HALO AI (Version 3.6.4134,) was applied to identify the 
slide background and tissue regions within the images. Next, the QC 
Slide algorithm model was used to perform binary classification on 
the images, identifying artifacts such as bubbles, dust, debris, folds, 
out-of-focus, and pen-marker, ensuring quality control for all images. 
The QC Slide and Tissue Detection-BF algorithm models are part of 

the pre-configured database provided by HALO AI. The QC Slide 
model, based on the DenseNet architecture, includes a rich training 
database consisting of hundreds of different types of brightfield slide 
images, with thousands of annotated artifact regions. Additionally, the 
training process generates about 2,000 synthetic out-of-focus artifact 
regions. The QC Slide algorithm performs binary classification on the 
images, categorizing them into normal tissue and artifact regions. 
Artifacts include dust/debris, folds, coverslip, out-of-focus, 
pen-markers, and bubbles. This allows the algorithm to accurately 
identify normal tissue areas and exclude artifacts, thus enhancing the 
quality of digital pathology workflows. The Tissue Detection-BF 
algorithm model, on the other hand, automatically identifies the slide 
background and tissue areas within images without requiring further 
training, providing foundational support for subsequent pathological 
analysis and diagnosis.

Subsequently, the DenseNet AI algorithm model in the HALO AI 
image analysis software was applied to collect forestomach tissue slide 
image data containing both normal epithelium and neoplastic 
epithelium. This ensured that each sample in the dataset had a clear 
label indicating whether it was normal epithelium. In epithelial 
tumors, the tissue morphology and cytological features of normal 
squamous epithelium exhibit certain similarities with tumor tissue, 
which may lead to unclear boundaries between the tumor and normal 
epithelium, resulting in false positive or false negative tumor region 
identification. Therefore, the algorithm model was used for data 
preprocessing and annotation, ensuring image quality and label 
accuracy. The annotated regions were then imported into the 
DenseNet AI algorithm model for algorithm training, with 
adjustments to parameters such as Cross-Entropy and Iteration during 
the training process to optimize the model’s performance. Through 
these processes, the HALO-AI algorithm model was able to recognize 
regions of normal epithelial tissue in the tissue slides and exclude 
normal epithelium.

2.5 Pathological image annotation

To establish an automated tumor recognition deep learning 
model, two pathologists manually annotated the tumor regions 
(primarily refer to areas dominated by squamous epithelial tumor 
cells) and non-tumor regions (primarily refer to blank areas, stromal 
regions and necrosis areas) in selected samples of forestomach using 
the HALO AI Tissue Pathology Image Analysis System (V3.6.4134, 
Indica Labs, Inc., Albuquerque, NM). Subsequently, the HALO AI 
DenseNet model was used for training, with the resolution set to 
0.5 μm/pixel, and training was halted once the Cross-Entropy 
converged to 0.1. The model was then used to analyze the entire tissue 
sections, with the analysis results visually confirmed by pathologist 
experts. In cases where regions were misidentified by the automated 
recognition system, these areas were corrected or appropriately 
annotated. This process enabled the preliminary automatic 
identification of tumor regions, significantly reducing the burden of 
image annotation for pathologists.

Next, a new classifier was constructed using the DenseNet AI V2 
method, with categories including red (tumor), green (necrosis or 
stromal), and blue (others, i.e., blank). Once the classification was 
completed, the tumor tissue was automatically segmented, and the 
tissue boundaries were annotated accordingly. Based on the 

FIGURE 1

Workflow of the construction CNN models for detecting GSCC in 
mice.
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classification results, two pathologists (reviewers) manually refined 
the tumor regions. The entire tissue sections were designated with 
color-coded numerical labels: red for GSCC, green for necrosis or 
stromal components, and blue for blank areas.

2.6 Construction of tumor region 
recognition algorithm model

The 149 samples in this study were divided into a training set, 
validation set, and test set, with images from each set generating 4,944, 
827, and 537 patches, respectively (Table 1). The dataset was divided 
using an 8:1:1 ratio split. A random selection of 119 samples (80%) 
was assigned to the training set (75 cases of GSCC and 44 cases of 
normal gastric tissue), 16 samples (10%) were allocated to the test set 
(10 cases of GSCC and 6 cases of normal gastric tissue), and 16 
samples (10%) were assigned to the validation set (10 cases of GSCC 
and 6 cases of normal gastric tissue). Each algorithm model was 
trained using the labeled dataset. The validation set was used to 
evaluate the model’s performance, and model parameters were 
adjusted to avoid overfitting. The final performance of the model was 
evaluated on the independent test set.

The FCN, LR-ASPP, DeepLabv3 + and U-Net  algorithm 
models, based on the PyTorch deep learning framework, were 
trained and validated on the NVIDIA Quadro RTX 6000 GPU. The 
constructed algorithm model was applied in the test set to identify 
non-tumor and/or tumor regions in tissue. The FCN architecture 
is relatively simple, allowing for end-to-end training using a 
standard convolutional neural network without the need for post-
processing steps (17). LR-ASPP incorporates a mirrored ASPP 
module and a lightweight network structure, enabling performance 
to be maintained while reducing computational complexity (18). 
DeepLabv3 + enables multi-scale feature capture and provides 
good edge detection through its encoder-decoder structure and 
depth-wise separable convolutions (19). U-Net is a symmetric 
encoder-decoder structure that uses skip connections to directly 
transfer high-resolution features from the encoder to the decoder, 
helping to preserve image details and edge information, making it 
suitable for small datasets (20). FCN, LR-ASPP, U-Net, and 
DeepLabV3 + are used with Stochastic Gradient Descent (SGD) as 
the optimization method. The initial learning rate is set to 0.01 with 
an adaptive decay of 1e-4. A batch size of 16 is maintained 
throughout the training process, and the maximum number of 
epochs is set to 100.

The DenseNet AI (Plugin) algorithm model was trained and 
validated using the HALO AI platform and was designed to identify 
tumor and non-tumor regions in tissue. DenseNet is a densely 
connected deep neural network structure that maximizes information 
flow and feature reuse. In DenseNet AI, each layer is connected to the 
output of all previous layers, allowing the model to better utilize 
features from earlier layers, thereby improving accuracy. Unlike 
traditional CNNs, DenseNet enables efficient information flow and 
sharing across the network through its densely connected architecture, 
thereby enhancing feature reuse efficiency. Specifically, each 
convolutional layer receives input feature maps from all preceding 
layers (not just the immediate previous layer), as illustrated by the 
dense block connections in Figure  2 (21). This design not only 
mitigates the vanishing gradient problem but also facilitates feature 
propagation and optimization, significantly improving model 
performance on complex tasks. Additionally, DenseNet’s feature reuse 
mechanism drastically reduces the number of model parameters 
while boosting training efficiency. Due to this efficient feature 
utilization, it effectively lowers the risk of overfitting, making it 
particularly valuable in scenarios with limited data, such as medical 
image analysis and other data-constrained applications. The DenseNet 
AI algorithm model in this study was trained at a resolution of 1 μm/
pixel, minimum object size of 200 μm2 and underwent 46,600 
iterations, and training was halted once the Cross-Entropy 
converged to 0.1.

2.7 Performance evaluation of the 
algorithm models

The performance of the five different algorithm models developed 
in this study is evaluated using statistical metrics including Precision, 
Recall, and F1-Score (22, 23). Precision (Pr) refers to the proportion 
of positive samples among all the samples predicted as positive by the 
model, also known as the Positive Predictive Value. Recall (Re), also 
called True Positive Rate, refers to the proportion of samples correctly 
predicted as positive by the model among all the actual positive 
samples, reflecting the sensitivity of the algorithm. F1-Score is a 
valuable evaluation metric because it balances Precision and Recall. 
The performance of the models is assessed on an independent test 
set, including metrics such as Precision, Recall, and F1-Score, to 
validate the generalization ability and practical effectiveness of the 
models. The Equations 1–3 for calculating the evaluation metrics are 
as follows:

 
=

+
Pr TP

TP FP  (1)

 
=

+
Re TP

TP FN  (2)

 
× ×

=
+

2F1 Precision Recall
Precision Recall  (3)

where True Positive (TP), False Positive (FP), True Negative (TN), 
and False Negative (FN) represent cases when the model predicts the 

TABLE 1 Distribution of mouse gastric squamous cell carcinoma data in 
training, validation, and test sets.

Data Training 
set

Validation 
set

Test set

Tumor patches (individual) 4,825 817 519

Non-tumor patches 

(individual)
119 10 18

Tumor region area (μm2) 2228666624.66 38533264.66 23668576.25

Non-tumor region area 

(μm2)
958664239.31 136273649.37 121293506.69
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positive class as positive (i.e., TP) or as negative (i.e., FN) and predicts 
the negative class as positive (i.e., FP) or as negative (i.e., TN), 
respectively.

3 Results

3.1 Pathologists’ diagnosis for GSCC

Two pathologists performed diagnoses on the digital scanned 
slides of gastric tissue from 149 mice independently and the results 
showed diagnostic consistency/consensus. Based on the diagnostic 
criteria for GSCC, 56 cases of normal mouse gastric tissue and 93 
cases of GSCC were confirmed. The normal gastric tissue of the mice 
was categorized into the forestomach and glandular stomach. The 
normal forestomach is covered by squamous epithelium, consisting 
of stratified squamous epithelium, where the cellular structures of 
the basal layer, muscular layer, and keratinized layer are clear and 
normal (Figure 3A). Cases diagnosed as GSCC exhibit malignant 
tumor characteristics, including individual tumor cells or small 
clusters of tumor cells breaching the basement membrane and 
displaying invasive growth. There is a loss of cellular differentiation 
with pronounced atypia, hyperchromatic nuclei, increased cell 
volume, and distinct nucleoli. Mitotic figures are also observed 
(Figure 3B).

3.2 Preprocessing results of pathological 
image data

All pathological image data was processed using the algorithm 
model (Tissue Detection-BF) from the pre-configured database 
provided by HALO AI, which automatically identifies the slide 
background and tissue regions in the images (Figure 4), with the green 
markings indicating the results recognized by the BF algorithm. 
Subsequently, the QC Slide algorithm model provided by HALO AI 
was applied to eliminate artifacts within the tissue regions (Figure 5), 
and we  took dust as an example to demonstrate how QC Slide 
identified artifacts (Figure 6).

Subsequently, based on the DenseNet AI of HALO AI algorithm 
model, normal epithelial tissue regions were identified, correctly 
annotated, and preprocessed, removing regions automatically 
recognized as normal epithelium (marked in red) (Figure 7). The 
annotated regions were then included in the HALO AI DenseNet 
model for algorithm training.

3.3 Annotation of digital images by 
pathologists

Two pathologists manually refined the tumor annotations on all 
positive cases (93 GSCC images) based on semi-automatically 

FIGURE 2

A 5-layer dense block of DenseNet (21).
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annotated tumor regions by the annotators, creating accurate ground 
truth data, i.e., pathologist-revised labels (Figure 8). The annotated 
pathological image data was subsequently used for the construction 
of the algorithm models.

3.4 Validation and testing results of the 
algorithm models

To investigate the optimal deep learning algorithm for assisting 
the diagnosis of GSCC in mice during carcinogenicity studies, 
we compared five different algorithms based on different architectures: 
FCN, LR-ASSP, DeepLabv3+, U-Net, and DenseNet, for detecting 
GSCC. The above algorithms were trained on the training set, and 
their performances were ultimately evaluated on the independent 
test set.

During the training process, the total loss value of each model was 
monitored. Although the loss components calculated by different 
algorithms varied during training, the loss values for all five algorithms 
rapidly stabilized in the early stages of learning (Figure 9). As a result, 
each algorithm was successfully trained using the training dataset. The 
trained algorithm models effectively delineated the tumor regions of 
GSCC (Figure 10).

The performances of the five constructed algorithm models were 
evaluated on the test set as Precision, Recall and F1-Score (Table 2). 
On the test set, the DeepLabv3+, U-Net, and DenseNet models 
demonstrated higher overall performance, with F1-scores ≥90%. As 
shown in the Figure 11, the tumor regions predicted by these three 
models closely resembled the ground truth annotations, 
outperforming the predictions of the FCN and LR-ASPP models.

Precision indicates the proportion of correct predictions made 
by the model compared to the actual results. Recall reflects how 
closely the model’s predictions align with the actual cases of 
GSCC. In medical diagnostics, recall is particularly crucial as it 
indicates the model’s ability to identify true positives. The results 
of this study revealed that U-Net had a slightly lower Recall rate 
compared to DenseNet. However, despite the model’s strong 
predictive performance for tumors, there were instances where 
non-tumor regions were misclassified as tumor regions 
(Figure 11C) and tumor regions were misclassified as non-tumor 
regions (Figure 11D). The DenseNet model predicted the highest 
number of true positives (red regions) and the fewest false 
negatives (yellow regions), consistent with its highest recall rate 
(Figures  11B,D). Other models misclassified tumors within 
necrotic or stromal components as non-tumor regions, resulting 
in higher rates of false negatives.

FIGURE 3

Gastric tissue of C3H mice. (A) The normal gastric tissue of mice, including the forestomach (blue) and glandular stomach (yellow) (black arrow: basal 
layer; red arrow: muscular layer; blue arrow: keratinized layer). (B) Mouse gastric squamous cell carcinoma (blue arrow: atypical cells; red arrow: 
mitotic figures).

FIGURE 4

The background and tissue regions of slides were identified based on the HALO AI Tissue Detection-BF algorithm model. (A) The original pathological 
data image; (B) The result of the recognition based on Tissue Detection BF algorithm model, with the tissue area being green and the slide background 
being gray.
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4 Discussion

It has been reported that anthracycline-based antitumor drugs, 
antiarrhythmic drugs, non-steroidal anti-inflammatory drugs, and 
herbs such as Aristolochia can induce gastric cancer (24–26). 
According to the requirements of the International Council for 
Harmonization of Technical Requirements for Pharmaceuticals for 
Human Use (ICH) S1B (R1) guideline and OECD guideline for the 
testing of chemicals: carcinogenicity studies, carcinogenicity studies 
are performed to assess the carcinogenicity potential of numerous 
compounds such as pharmaceuticals and chemicals (27, 28). Rodents, 
particularly mice, are commonly used for carcinogenicity studies. 
GSCC can occur as spontaneous and drug-induced change in the 
forestomach of mice, and toxicologic pathologists primarily rely on 
microscopy to perform pathological diagnoses for hundreds of 
animals in the context of carcinogenicity studies to evaluate the 
carcinogenic potential of the tested compound. However, for a 
century, the working mode of pathologists has seen little advancement, 
as manual slide reading, a qualitative analysis method, is highly 

subjective. The accuracy of lesion diagnosis is greatly influenced by 
factors such as pathologists’ qualifications, educational background, 
work experience, and work conditions (29). Additionally, the large 
volume of pathological slide reading in rodent carcinogenicity studies 
and the tightness of drug development timeliness can lead to 
diagnostic drift. Therefore, the use of deep learning CNN algorithms 
for auxiliary diagnosis of GSCC in mice is of significant importance 
to improve the consistency and accuracy of toxicological pathology 
diagnoses (30, 31).

In recent years, AI technologies have made continuous 
breakthroughs in fields such as image recognition, dermatological 
lesion identification, and pathological slide analysis. The advent of 
deep learning has particularly overcome the limitations of manual 
feature extraction, which is often inefficient and incomplete. Deep 
learning has become the go-to method for medical image analysis, 
primarily employed in tasks such as image classification, object 
detection, segmentation, registration, and other related applications. 
It has been widely adopted across diverse medical domains, including 
neurological imaging, retinal scans, pulmonary diagnostics, digital 

FIGURE 5

Artifacts identified by QC slide. (A) Dust. (B) Folds. (C) Coverslip. (D) Out-of-focus. (E) Pen marker. (F) Bubble.
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pathology, breast imaging, cardiac studies, abdominal examinations, 
and musculoskeletal assessments (32). CNN, one of the representative 
architectures of deep learning, are inspired by the structure of the 
brain’s visual cortex and visual activity principles. CNNs consist of 
multiple image perceptrons, several neural network layers, 
continuous convolution layers, and pooling layers, which enable deep 
learning from raw image data to predict feature classifications and 
thus recognize medical images (33). CNN-based models are often 
seen as “black-box” models in many tasks, including semantic 
segmentation, meaning their decision processes are hard to 
understand. Explainability and visualization techniques have become 
important tools to solve the black-box nature of these models, i.e., 
Explainable Artificial Intelligence (XAI), including Feature 
Visualization, Class Activation Mapping, Saliency Mapping, 
Prediction Difference Analysis, Grad-CAM, Trainable Attention, 
Guided Grad-CAM, Deconvolution, Meaningful Perturbation, SHAP, 
Attention and so on (34). CNN is progressively transforming 
histopathology. Researchers have developed evaluation frameworks 
to assess the robustness of CNN-based cancer classification models 
against staining variations by testing them on WSI of breast, gastric, 
and colon cancers (35). AI and machine learning can reduce or 
eliminate pathologists’ error or inconsistency rate in describing 
microscopic histopathological features. Some models already match 

pathologists in WSI diagnosis. For example, AI-assisted pathologists 
achieve 99.5% accuracy in identifying metastatic breast cancer cells 
in lymph nodes, surpassing individual human (96%) or AI-only 
(92%) diagnoses (36). A study using CNNs for melanoma detection 
showed higher sensitivity, specificity, and accuracy than 11 
pathologists (37). Some previous studies have reported that in the 
detection or diagnosis of diseases such as colorectal adenoma, breast 
cancer, lung adenocarcinoma, gastric cancer, etc., the diagnostic or 
predictive results based on AI models may outperform or 
be comparable to the diagnoses made by pathologists, as shown in 
Table  3. Although some AI models now rival the diagnostic 
performance of pathologists, their application remains dependent on 
pathologists’ annotations and definitions of histopathological 
alterations. Therefore, the collaborative integration of pathologists’ 
advanced cognitive expertise with AI’s ability to perform repetitive 
tasks rapidly and accurately is expected to drive transformative 
advancements in toxicologic pathology. Consequently, integrating AI 
into pathology workflows does not replace pathologists but serves to 
enhance their efficiency and diagnostic accuracy. Recently, Scholars 
around the world have applied deep learning CNN models to classify 
gastric cancer (overall types), gastric adenocarcinoma, and 
precancerous lesions, demonstrating high sensitivity and specificity. 
These models can serve as an auxiliary diagnostic and screening 

FIGURE 6

The artifact regions were identified in tissues based on the HALO AI QC slide algorithm model. (A) The original pathological data images and dusts. 
(B) High-magnification micrograph of dusts. (C,D) The artifacts identified by HALO AI, with red areas indicating dust artifact.
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system for clinical gastric biopsy specimens (38, 39). However, the 
type of gastric cancer in mice differs from the common gastric 
adenocarcinoma found in humans. Because the forestomach (a 
rodent-specific region) is lined by squamous epithelium, it is 
predisposed to developing squamous cell carcinoma. Currently, there 
have been no reports on the use of deep learning CNN models for the 
auxiliary diagnosis of gastric cancer in mice.

This study applied five commonly used CNN models to identify 
mouse GSCC in a non-clinical research environment. Algorithm 
models were established through training and validation on 
multiple gastric tissue samples and evaluated by comparing the 
results with pathologist-annotated slide images. Our findings 
indicate that the DenseNet model achieved the highest Recall rate 
and F1-score, demonstrating superior performance. This confirms 

FIGURE 7

Automatic recognition of the normal epithelial tissue and other tissue based on DenseNet AI of HALO AI. (A–C) The original pathological images of 
three normal mouse gastric tissues. (D–F) Correspond to HALO automatically annotating images of three normal gastric tissues (A–C), respectively. 
Red represents the normal epithelial tissue automatically recognized by HALO, while green represents normal other tissues.

FIGURE 8

Tumors area manually annotated by pathologist. (A) The original pathological data image. (B) Green is tumor area and red is the tumor area 
automatically annotated by HALO AI. (C) Black is the tumor area manually revised and annotated by pathologist.
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that the DenseNet model exhibits strong generalization capabilities 
and practical efficacy in predicting both tumor and non-tumor 
regions in mouse GSCC. Before constructing the tumor recognition 
algorithm model, we  considered factors such as background 
interference, tissue artifacts, and normal normal epithelial tissue, 
which could affect the accurate identification of tumor regions. To 
improve the accuracy and efficiency of tumor identification/
classification, we  developed an automated tumor recognition 
strategy. This strategy utilizes the HALO AI-based Tissue 
Detection-BF algorithm, Slide QC algorithm, and 
DenseNet  algorithm to identify slide background and tissue 
regions, eliminate artifacts and benign tissues, and optimize 
parameters after data preprocessing, achieving precise localization 
and annotation of the GSCC regions in pathological tissue images.

In our test set, the Precision, Recall, and F1-scores of the 
DeepLabv3+, U-Net, and DenseNet AI models were all above 
90%, demonstrating good tumor region recognition performance 
similar to the true images annotated by pathologists. The U-Net 
model, originally designed for medical imaging, exhibited the 
highest precision in this study, demonstrating excellent tumor 
prediction ability, but its Recall rate was lower than that of the 
DenseNet model. Recall rate refers to the true positive rate, which 
is the proportion of positive samples predicted by the model 
compared to actual positive samples. A higher true positive rate 
indicates better performance in identifying positives, which is 
crucial for pathological diagnostic support. The 
DenseNet  algorithm model achieved the highest recall rate, 
reflecting its ability to predict fewer false negatives compared to 

FIGURE 9

Total training loss during training of different algorithm models. (A) The total loss function diagram of the FCN model. (B) The total loss function 
diagram of the LR-ASSP model. (C) The total loss function diagram of the DeepLabv3 + model. (D) The total loss function diagram of the U-Net model. 
(E) The total loss function diagram of the DenseNet model.
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other models. In other words, the DenseNet model helped 
correctly diagnose more positive samples as tumors, despite some 
false positives remained. Overall, this improved detection 
sensitivity. DenseNet outperforms FCN, U-Net, and 
DeepLabV3 + in terms of performance, primarily due to its 
unique dense connection structure. Compared to FCN, DenseNet 
improves model accuracy and stability by enhancing feature reuse 
and gradient propagation. Compared to U-Net, DenseNet’s dense 
connections facilitate smoother information flow, more efficient 
feature reuse, and prevent information loss, thus improving 
accuracy. Compared to DeepLabV3+, DenseNet’s stronger feature 
reuse and gradient propagation capabilities enable better 
generalization on tumor datasets, resulting in higher accuracy.

The DenseNet network model, proposed by Huang et al. (21), 
is a CNN that combines the advantages of ResNet and 
GoogLeNet algorithms. The main feature of DenseNet is its ability 
to address the vanishing gradient problem in deep CNN. It 
ensures that each feature layer in every Dense block is fully 

connected, allowing the input of each feature layer to be linked 
with the output of all previous layers. This fully represents both 
shallow and deep features, effectively mitigating gradient 
vanishing caused by deeper layers and enhancing the model’s 
resistance to overfitting. In this study, the DenseNet network 
model underwent 46,600 iterations, with a Cross-Entropy 
parameter of 0.397. The final F1-score of the model was 0.916. In 
the test set, the model still showed some false positives and false 
negatives. This may be due to the strong global characteristics of 
tumor regions, with malignant cells being either clustered or 
scattered. Well-differentiated tumor cells resemble normal 
epithelial cells in texture and color, and the lesions have irregular 
morphology with more detailed features. As a result, necrosis near 
the tumor region in some images was misclassified as tumor 
tissue, leading to an increase in false positives and lowering the 
precision of tumor region recognition.

5 Conclusion

This study represents an initial exploration of applying 
artificial intelligence technology in the auxiliary diagnosis of 
mouse GSCC. The DenseNet algorithm model established in this 
research can effectively identify tumor and non-tumor regions in 
mouse GSCC pathology images. The model’s performance 
evaluation also yielded favorable results, but there are still 
limitations, especially in terms of precise tumor region 
recognition, which requires further exploration. In subsequent 
research, we plan to increase the number of cases, expand the 
sample pool from multiple institutions, and improve the model’s 

FIGURE 10

Comparison of original, annotated, and algorithm predicted lesion results based on a GSCC image. In the picture, the red line marked by the 
pathologist outlines the area of gastric squamous cell carcinoma. (A) Original images. (B) Pathologist-labeled tumors. (C–G) The gastric squamous cell 
carcinoma predicted by FCN, LR-ASSP, DeepLabv3+, U-Net, and DenseNet was marked in red, respectively.

TABLE 2 Performance results of the five algorithm models.

Algorithm 
models

Precision 
(final model)

Recall 
(final 

model)

F1-score 
(final 

model)

FCN 0.8805 0.8749 0.8777

LR-ASSP 0.807 0.7954 0.8012

DeepLabv3+ 0.9027 0.9032 0.9029

U-Net 0.9347 0.8934 0.9136

DenseNet 0.9044 0.9291 0.9157
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generalization ability. Additionally, Research study will enhance 
data quality to ensure that pathology images with excellent slide 
preparation, staining, and accurate annotations are included in 
the training set, as high-quality data determines the upper limit 
of model performance (40). Furthermore, this study has focused 
solely on the determination of malignant tumors. In future 
research, we  will incorporate atypical hyperplasia pathology 
images and images of squamous cell carcinoma with varying 

degrees of differentiation will broaden the model’s applicability. 
Finally, the model’s performance needs further exploration and 
optimization to truly reach the diagnostic level of pathologists. 
Overall, the application of AI technology in non-clinical safety 
evaluation can assist toxicological pathologists in making rapid 
diagnoses, improving efficiency, precision, and consistency, 
reducing subjectivity in diagnoses, and supporting drug  
development.

FIGURE 11

The example of test results for the DenseNet AI algorithm model. (A) The tumor area manually annotated by pathologists. (B) The tumor region 
predicted by the algorithm models—tumor true positive. (C) The tumor region predicted by the algorithm models—tumor false positive. (D) The non-
tumor region predicted by the algorithm models-tumor false negative.
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