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Objective: Ultrasound imaging has emerged as the preferred imaging modality 
for ovarian tumor screening due to its non-invasive nature and real-time dynamic 
imaging capabilities. However, in many developing countries, ultrasound 
diagnosis remains dependent on specialist physicians, where the shortage 
of skilled professionals and the relatively low accuracy of manual diagnoses 
significantly constrain screening efficiency. Although deep learning has achieved 
remarkable progress in medical image segmentation in recent years, existing 
methods still face challenges in ovarian tumor ultrasound segmentation, including 
insufficient robustness, imprecise boundary delineation, and dependence on 
high-performance hardware facilities. This study proposes a deep learning-
based automatic segmentation model, Res-ECA-UNet++, designed to enhance 
segmentation accuracy while alleviating the strain on limited healthcare resources.

Methods: The Res-ECA-UNet++ model employs UNet++ as its fundamental 
architecture with ResNet34 serving as the backbone network. To effectively 
address the vanishing gradient problem in deep networks, residual modules are 
incorporated into the skip connections between the encoding and decoding 
processes. This integration enhances feature extraction efficiency while 
improving model stability and generalization capabilities. Furthermore, the 
ECA-Net channel attention mechanism is introduced during the downsampling 
phase. This mechanism adaptively emphasizes tumor region-related channel 
information through global feature recalibration, thereby improving recognition 
accuracy and localization precision for tumor areas.

Results: Based on clinical ultrasound datasets of ovarian tumors, experimental 
results demonstrate that Res-ECA-UNet++ achieves outstanding performance 
in clinical validation, with a Dice coefficient of 95.63%, mean Intersection over 
Union (mIoU) of 91.84%, and accuracy of 99.75%. Compared to the baseline 
UNet, Res-ECA-UNet++ improves these three metrics by 0.45, 4.42, and 1.57%, 
respectively. Comparative analyses of ROC curves and AUC values further indicate 
that Res-ECA-UNet++ exhibits superior segmentation accuracy and enhanced 
generalization capabilities on the test set. In terms of computational efficiency, 
the inference time of Res-ECA-UNet++ meets clinical real-time requirements on 
both high-end and low-end hardware, demonstrating its suitability for deployment 
on resource-constrained devices. Additionally, comparative experiments on the 
public OTU2D dataset validate the model’s superior segmentation performance, 
highlighting its strong potential for practical applications.
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Conclusion: The proposed Res-ECA-UNet++ model demonstrates exceptional 
accuracy and robustness in the segmentation of ovarian tumor ultrasound 
images, highlighting its potential for clinical application. Its ability to enhance 
segmentation precision and aid clinicians in diagnosis underscores broad 
prospects for practical implementation. Future research will focus on optimizing 
the model architecture to further improve its adaptability to diverse pathological 
types and imaging characteristics, thereby expanding its clinical diagnostic 
utility.
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1 Introduction

In recent years, ovarian cancer has demonstrated a persistent rise 
in both incidence and mortality rates, posing a significant threat to 
women’s health worldwide. With over 300,000 new cases of malignant 
ovarian tumors diagnosed annually, this disease has emerged as one 
of the most prevalent cancers affecting the female reproductive system 
globally (1). Marked disparities in ovarian cancer burden exist across 
nations of varying economic statuses. Low- and middle-income 
countries face disproportionate challenges due to constrained 
healthcare resources, resulting in elevated disease burden and 
suboptimal clinical outcomes (2). China mirrors this global pattern, 
where ovarian cancer incidence rates have exhibited a consistent 
upward trajectory in recent years (3). Due to the lack of specific 
symptoms and effective biomarkers in early-stage ovarian cancer, 
approximately 70–80% of patients are diagnosed at an advanced stage, 
leading to a sharp decline in the five-year survival rate to 30–45% (4, 
5). Studies indicate that early screening is a critical measure to reduce 
ovarian cancer mortality, as early diagnosis can elevate the five-year 
survival rate to over 90% (6, 7). Ultrasonic examination has become 
the preferred imaging modality for ovarian tumor screening due to its 
non-invasive nature, real-time imaging capabilities, and cost-
effectiveness (8).

However, traditional ultrasound diagnosis heavily relies on 
clinicians’ experience and is susceptible to subjective factors, leading to 
relatively low diagnostic consistency. In regions with limited medical 
resources, the shortage of specialized physicians further exacerbates the 
risks of missed diagnoses and misdiagnoses (9, 10). Although 
ultrasonography plays a significant role in ovarian tumor screening, 
these challenges have prompted the adoption of novel technological 
solutions. In this context, deep learning-based intelligent segmentation 
techniques for ovarian tumor ultrasound imaging have emerged (11). 
Compared with conventional ultrasound diagnostic methods, this 
technology demonstrates enhanced capabilities in improving diagnostic 
accuracy and reducing human errors. Furthermore, it provides technical 
support for establishing standardized screening protocols, thereby 
facilitating broader clinical implementation of ovarian tumor diagnosis.

2 Related work

Medical image segmentation techniques can be  primarily 
categorized into traditional machine learning methods and deep 
learning approaches.

2.1 Traditional machine learning methods

Traditional machine learning algorithms mainly utilize image 
processing techniques such as morphological operations and 
threshold segmentation to identify specific regions and edge 
features (12). For instance, Wu et  al. (13) developed an SVM 
classifier based on improved morphological features to achieve 
precise segmentation of breast tumor ultrasound images, achieving 
an accuracy of 95.24%. Poudel et al. (14) significantly enhanced 
thyroid ultrasound image segmentation accuracy through dynamic 
contour adjustment to optimize the segmentation framework. Zhu 
et al. (15) implemented accurate segmentation and recognition of 
hepatic cysts in ultrasound images using threshold algorithms. 
Gopalakrishnan et al. (16) employed multi-threshold methods for 
polycystic ovary syndrome ultrasound image segmentation, 
achieving outstanding results.

Although traditional methods perform well in specific tasks, their 
heavy reliance on manual feature extraction limits generalization 
capabilities and adaptability to complex variations in medical imaging. 
Additionally, these methods lack self-adaptive learning capacity, 
demonstrating significant limitations when handling ultrasound 
image artifacts such as noise and acoustic shadows.

2.2 Deep learning approaches

In contrast, deep learning approaches, particularly convolutional 
neural network (CNN)-based medical image segmentation 
techniques, exhibit superior adaptability and automatic feature 
learning capabilities. Unlike traditional methods, deep learning 
employs end-to-end training that avoids subjective bias in manual 
feature extraction while demonstrating strong processing capabilities 
for large-scale data (17–20). For example, Ma et al. (21) applied CNNs 
to thyroid nodule ultrasound image segmentation, with comparative 
experiments confirming their significant performance advantages 
over traditional machine learning methods. In recent years, 
researchers have proposed various innovative models based on CNNs. 
U-Net, as a classic architecture for medical image segmentation, 
demonstrates exceptional generalization capabilities in small-sample 
medical data tasks through its encoder-decoder structure and skip 
connections. By extracting multi-scale features through the encoder, 
recovering spatial information via the decoder, and compensating for 
information loss through skip connections, U-Net has been widely 
adopted in medical image analysis (22–24).
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2.3 Challenges and advances in ovarian 
tumor ultrasound image segmentation

In the field of ovarian tumor ultrasound image segmentation, deep 
learning methods remain in the exploratory stage. In recent years, 
numerous studies have proposed diverse architectures and 
methodologies to enhance segmentation accuracy. For instance, Ta et al. 
(25) introduced a Weighted Fusion Architecture that integrates multiple 
network frameworks within the U-Net structure, effectively improving 
segmentation precision, albeit at the cost of increased computational 
complexity. To address small-sized tumors, Luong et al. (26) developed 
SovaSeg-Net, which combines VGG16 and Spatial Pyramid Pooling 
Fusion (SPPF) modules. While this approach enhances tumor 
segmentation capabilities, it demands substantial training data and 
computational resources. In contrast, Siahpoosh et al. (27) innovatively 
fused the ConvMixer with a Pyramid Dilated Convolution (PDC) 
module, demonstrating superior performance in multi-scale feature 
extraction and global contextual information capture.

Beyond architectural innovations, studies have also focused on 
model optimization. Nguyen et  al. (28) optimized the traditional 
Segment Anything Model (SAM) by incorporating IoU, SSIM, and Focal 
Loss metrics, along with dual prompting strategies to guide model 
attention toward target regions. This method proves particularly effective 
for irregularly shaped tumors or low-quality images. Additionally, 
Shantharam et al. (29) utilized the UNet++ architecture, achieving higher 
segmentation accuracy through enhanced skip connections and 
hyperparameter tuning to optimize real-world performance.

Recent advancements in multimodal deep learning models have 
introduced novel perspectives for ultrasound image segmentation. For 
example, Wang et al. (30) proposed a framework combining ultrasound 
images, menopausal status, and serum tumor markers. Although this 
multimodal approach outperforms single- and dual-modal models in 
accuracy, its complexity and high computational requirements pose 
challenges for grassroots hospitals, particularly those in remote regions 
with limited infrastructure and technical support.

Despite recent progress in deep learning for medical image 
segmentation, numerous challenges persist in clinical applications. 
These include but are not limited to: the high morphological 
complexity of malignant ovarian tumors and inherent ultrasound 
imaging limitations such as speckle noise, acoustic shadows, and fuzzy 
boundaries that interfere with segmentation accuracy (31–33). 
Furthermore, resource-constrained settings often lack adequate 
hardware and specialized personnel, hindering the accessibility of 
deep learning technologies. Current segmentation methods have yet 
to fully resolve these challenges. Therefore, realizing widespread 
clinical application requires further research and technological 
innovation to provide more precise technical support for ultrasound-
assisted diagnosis.

3 Methods

3.1 UNet++ network

The traditional UNet model employs a direct concatenation 
strategy for feature fusion between encoder and decoder feature 
maps during its architecture design. While straightforward to 
implement, this approach is prone to boundary ambiguity in 

segmentation results, limiting its generalization capability in complex 
medical imaging tasks (34). Additionally, UNet exhibits depth 
sensitivity, requiring time-consuming manual hyperparameter 
tuning for different datasets, which increases computational costs. 
These limitations hinder UNet’s performance in multi-scale medical 
image segmentation. To address these challenges, researchers 
proposed UNet++, which optimizes feature fusion strategies and 
enhances generalization through dense skip connections and a deep 
supervision mechanism. Similar to UNet, UNet++ retains a 
U-shaped structure comprising an encoder, decoder, and skip 
connections (35). In the encoder, UNet++ performs downsampling 
via convolutional layers combined with ReLU activation functions 
and max-pooling operations. This process reduces spatial dimensions 
while increasing channel depth to capture richer semantic 
information. In the decoder, upsampling operations restore image 
resolution, localize features, and recover fine-grained details to 
generate the final output.

Compared to UNet’s single-layer skip connections, UNet++ 
adopts a dense skip connection strategy that establishes richer 
interconnections between feature layers at different scales. By linking 
multiple intermediate decoder nodes, the decoder can not only utilize 
feature information from the preceding layer but also directly access 
high-resolution features from lower-level encoders. This architecture 
effectively reduces the semantic gap between encoding and decoding 
stages, addressing UNet’s insufficient information fusion caused by 
direct encoder-decoder connections. The proposed mechanism not 
only enhances the capability of multi-scale feature fusion but also 
better preserves structural details and contextual semantic 
information, which plays a critical role in segmenting ovarian tumor 
ultrasound images characterized by ambiguous boundaries and 
complex morphological configurations.

Furthermore, UNet++ introduces deep supervision across 
multiple decoder levels, in contrast to UNet which only implements 
supervisory learning at the final output layer. This mechanism 
enhances network performance through two principal aspects: First, 
the incorporation of auxiliary loss terms at multi-scale decoding layers 
facilitates more efficient gradient propagation to shallow network 
layers, significantly accelerating model convergence while improving 
generalization capability. Second, the deep supervision mechanism 
compels the model to learn discriminative features across different 
spatial scales, thereby strengthening its adaptability to multi-scale 
anatomical structures. These synergistic advantages make UNet++ 
particularly effective in segmenting low-contrast, noise-prone 
ultrasound images where traditional architectures often struggle with 
boundary ambiguity and texture complexity.

However, despite its advanced feature fusion capabilities, UNet++ 
retains certain limitations. Partial detail loss may still occur during 
skip connections and upsampling, impacting segmentation precision 
(36, 37). Consequently, further optimizations, particularly those 
addressing boundary ambiguity and low-contrast tumor regions, 
remain necessary to enhance its adaptability.

3.2 Residual networks

The evolution of CNN architectures has driven advancements in 
computer vision and image recognition. As a classic deep CNN, 
VGGNet enhances model representation capabilities by increasing the 
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number of convolutional layers (38). However, merely expanding 
network depth does not indefinitely improve learning capacity. As 
depth increases, issues such as vanishing gradients and exploding 
gradients become more pronounced, leading to degraded overall 
model performance. To address these challenges, GoogleNet 
introduced the Inception module, which extracts multi-scale features 
by utilizing parallel convolutional kernels and pooling operations of 
varying scales across different receptive fields (39). While this strategy 
expands network depth and width to improve performance, it does 
not fundamentally resolve the training difficulties inherent to 
deep networks.

To overcome these limitations, He et al. (40) proposed Residual 
Network (ResNet) and introduced the residual block structure (as 
illustrated in Figure 1). The core innovation of residual blocks lies in 
their use of shortcut connections to directly propagate feature 
information, enabling the network to learn residual mappings rather 
than directly fitting target outputs. This design mitigates vanishing 
gradient issues in deep networks while enhancing trainability and 
convergence speed. In medical image segmentation tasks, UNet++ 
integrates ResNet-inspired residual blocks to enable deeper extraction 
of critical features from complex images, thereby improving 
segmentation accuracy. Furthermore, residual connections help 
preserve low-level spatial information during deep feature extraction, 
enhancing the robustness of segmentation models.

3.3 Attention mechanism

In ultrasound image segmentation, complex backgrounds and 
noise often hinder accurate feature extraction, compromising 
segmentation performance. To mitigate this, attention mechanisms, 
inspired by the human visual system’s selective processing, adaptively 
highlight salient features while suppressing irrelevant details. These 
mechanisms compute feature correlations to assign context-aware 
weights, proving especially effective for ultrasound images with 
ambiguous boundaries and low contrast. While methods like SE-Net 
(41) and CBAM (42) have been widely used in medical imaging, 
their reliance on fully connected (FC) layers introduces 
computational burdens and feature degradation risks. To address 
these limitations, ECA-Net emerges as a lightweight alternative that 
employs 1D convolution for local cross-channel interactions while 
eliminating dimensionality reduction (43). Its three-stage workflow 
comprises global feature aggregation through average pooling in the 
Squeeze phase, adaptive channel recalibration using 1D convolution 
during Excitation, and weighted feature fusion via sigmoid 
activation. This architecture achieves efficient attention computation 

with minimal parameter overhead. Compared to SE-Net and CBAM, 
ECA-Net preserves full channel representations while reducing 
computational costs, making it ideal for resource-constrained 
medical imaging applications (44, 45). The architecture and 
mathematical formulation of ECA-Net are detailed in Figure 2 and 
Equation 1.

 
( ) ( )

ψ
γ γ

= = +2

odd

log C bk C
 

(1)

Where W  is the width of the feature map, H  is the height of the 
feature map, C  is the number of channels, γ = 2, =1b , and the 
calculation formula for C  is: ( )γ ∗ −= 2 k bC , k represents the size of the 
one-dimensional convolution kernel and the frequency of local cross-
channel interaction. U  is the original feature and U  is the weighted 
feature. GAP represents the global average pooling operation.

To further validate the advantages of ECA-Net in ultrasound 
image segmentation tasks, this study conducts comparative 
experiments using SE-Net, CBAM, and ECA-Net as channel attention 
modules under identical network backbone architectures and 
experimental configurations.

As illustrated in Figure  3, ECA-Net demonstrates significant 
superiority in both model parameters and computational complexity. 
The parameter size of ECA-Net approximates 0.35 million, markedly 
lower than CBAM’s 1.6 million and SE-Net’s 3.5 million. Computational 
costs decrease from 3.8 GFLOPs for CBAM to 1.2 GFLOPs for ECA-Net, 
representing a nearly 70% reduction. This structural efficiency 
eliminates the requirement for additional spatial attention branches 
while maintaining lightweight characteristics. Such technical advantages 
position ECA-Net as a more practical solution for deployment in 
clinical environments with constrained computational resources.

3.4 Improved model

To further enhance the performance of UNet++ in segmentation 
tasks, we propose an improved model named Res-ECA-UNet++ that 
integrates ResNet and ECA-Net attention mechanisms, as illustrated 
in Figure  4. The proposed architecture employs ResNet34 as its 
backbone network, which incorporates convolutional layers and 
residual blocks. By leveraging skip connections to directly propagate 
features, the model alleviates gradient vanishing issues, strengthens 
feature extraction capabilities, and improves training stability.

In ResNet34 implementation, we design a 34-layer convolutional 
architecture with four residual blocks. Each residual block 

FIGURE 1

Diagram of the ResNet residual architecture.
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incorporates Batch Normalization layers to stabilize training. Notably, 
the first convolutional kernel size is adjusted from 7 × 7 to 3 × 3 to 
enhance the model’s capacity for capturing small target features. These 
design improvements enhance feature representation capabilities, 
providing richer foundational features for subsequent ECA-Net 
modules and ultimately improving segmentation performance.

To strengthen the model’s ability to extract critical information, 
we  integrate ECA-Net modules into the encoder path’s main 
convolutional layers ,0iX , positioned after each downsampling residual 
module. This module dynamically allocates channel-wise weights 
during feature compression, amplifying responses to tumor-related 
features while suppressing background noise and artifact interference.

Our design rationale for ECA integration in the encoder path 
considers three key factors: (1) The encoder stage handles semantic 
abstraction and global feature perception, serving as the core 
component for generating critical features. Introducing channel 
attention mechanisms at this stage enables early-stage focus on 
lesion-related high-response channels, particularly effective for 
addressing common ultrasound image challenges such as blurred 
boundaries and weak grayscale variations. (2) The decoder’s primary 
task involves spatial information recovery with emphasis on detail 
reconstruction and upsampling concatenation. Applying channel 
attention at this stage could introduce redundant computation and 
weaken high-resolution information from skip connections. (3) To 

FIGURE 2

Diagram of the ECA-Net attention mechanism.

FIGURE 3

Comparison of parameters and computational cost among different attention mechanisms.
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prevent over-compression or information suppression, we preserve 
the original decoder structure.

While ResNet34-extracted features may contain mixed tumor-
background noise, ECA-Net significantly enhances tumor-related 
feature responses. This enables dynamic focus on critical regions while 
effectively suppressing noise and irrelevant background interference, 
thereby providing higher-quality inputs to the decoder. This deep 
synergistic interaction strengthens both feature extraction and selective 
attention capabilities, ensuring stable processing of ovarian tumor 
ultrasound images with blurred boundaries and complex morphologies, 
ultimately achieving remarkable segmentation accuracy improvement.

In the network, i in node ,i jX  represents the number of 
downsampled layers of the encoder and j  represents the number of 
convolutional layers in the skip connection, as defined in Equation 2:

 

( )
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 =
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(2)

The conditional structure of this architecture reflects the dynamic 
nature of node input information. Instead of using simple activation 
functions, ( )⋅H  employs submodules comprising convolution, 
normalization, and nonlinear activation. This module enhances the 
model’s representational capacity. ( )⋅u  is the upsampling layer, and ⋅   
is the linking operation. When node = 0j , the node receives input 
exclusively from the encoder of the previous layer. When node > 0j , 
the node integrates multiple inputs including both features from the 

previous encoder layer and information from all preceding nodes in 
the path, establishing dense skip connections.

This design achieves effective integration of multi-scale features, 
mitigates semantic loss caused by downsampling, and enhances the 
model’s sensitivity to ambiguous boundaries in medical images. Such 
architecture proves particularly advantageous for precise 
segmentation of fine-grained targets like ovarian tumors, 
demonstrating superior performance in handling complex 
anatomical structures.

4 Experimental results and analysis

4.1 Experimental environment

The experiments were conducted on a 64-bit Linux 20.04 server 
to ensure result stability and reproducibility. Model training and 
testing were implemented using the PyTorch 2.0.0 deep learning 
framework within the PyCharm development environment. The 
hardware platforms used for the experiments included a high-end 
system with an RTX 3090 GPU (24GB VRAM), 64GB RAM, and an 
Intel i7-10700 8-core 16-thread processor, as well as a low-end system 
with an NVIDIA Jetson Nano for comparison. The maximum 
number of training iterations was set to 200 epochs to ensure 
sufficient convergence. To prevent overfitting, an early stopping 
mechanism was implemented: training would be  automatically 
terminated if no significant improvement in the Dice coefficient on 
the validation set was observed over 20 consecutive epochs. 
Hyperparameter configurations were determined based on 
preliminary experimental results and empirical knowledge. 

FIGURE 4

Network architecture of Res-ECA-UNet++.
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Considering the balance between training stability and GPU memory 
utilization, the batch size was set to 8. The initial learning rate was 
established at 0.001, employing a combined optimization strategy of 
AdamW optimizer with cosine annealing learning rate scheduling to 
enhance convergence speed and prevent entrapment in local optima. 
All hyperparameters underwent rigorous testing and fine-tuning on 
a dedicated validation subset to ensure optimal generalization 
capability and segmentation accuracy for ovarian tumor ultrasound 
image analysis tasks. Experimental results were visualized 
using Matplotlib.

4.2 Dataset description and processing

This study constructed an ovarian tumor ultrasound image dataset 
derived from patient imaging archives at the Third Affiliated Hospital of 
Southern Medical University between 2020 and 2023, comprising 350 
confirmed malignant ovarian tumor ultrasound images. The distribution 
of tumor categories in the dataset is presented in Table 1. The dataset 
comprises ultrasound images of ovarian tumors characterized by the 
following features: small object recognition challenges, irregular 
morphological presentations, ambiguous boundary delineation, and 
difficulty in segmenting low-contrast regions. The use of this dataset was 
approved by the hospital’s Ethics Committee and strictly adhered to 
privacy protection protocols.

All images were annotated and verified by two professional 
physicians, with labels including tumor size, morphology, boundaries, 
and precise locations to ensure annotation quality and consistency. 
Annotated images were paired with corresponding label files and 
resized to a uniform input dimension of (512, 512, 3). To address data 
scarcity, augmentation techniques including horizontal flipping, affine 
transformation, and contrast enhancement were applied, expanding 
the dataset to 2,000 images. The data were partitioned into training 
and test sets at an 8:2 ratio to ensure generalization capability. Example 
images from the dataset are shown in Figure 5.

4.3 Evaluation metrics

To comprehensively evaluate the segmentation performance 
of the model, we adopt the Dice Similarity Coefficient (Dice), 
mean Intersection-over-Union (mIoU), Accuracy and Hausdorff 
distance as evaluation metrics. Among these, Dice and mIoU 
primarily measure the alignment between segmented regions and 
ground truth target areas, serving as core metrics for evaluating 
prediction accuracy in tumor region delineation. These metrics 
remain unaffected by background noise interference. Accuracy 
reflects the overall correctness of pixel-level classification. To 
further assess the model’s classification capabilities, Sensitivity 
and Specificity were employed to quantify its performance in 
correctly identifying tumor regions and accurately excluding 
non-tumor areas, respectively.

The Dice coefficient is used to assess the similarity between the 
predicted results and the ground truth segmentation. Its value ranges 
from [0, 1], where a value closer to 1 indicates better segmentation 
performance. The formula is as follows (Equation 3):

 

∩
=

+

2
Dice

P G
P G  

(3)

P represents the segmentation region predicted by the model, and 
G  denotes the ground truth segmentation region. The notation ∩P G
indicates the number of pixels in the intersection area between the two 
regions. +P G  represent the number of pixels in the predicted and 
ground truth labels, respectively.

mIoU quantifies the overlapping degree between predicted 
regions and ground truth regions, calculated as the average of 
Intersection over Union (IoU) values across multiple classes. The 
formula is expressed as follows (Equation 4):

 
= = =
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k
ii
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The term ijp  denotes the number of true values for i that are 
predicted to be j, while +k 1 represents the number of categories. The 
term iip  denotes the number of true examples, and ijp  and jip  represent 
the False Positive and False Negative, respectively.

Accuracy is defined as the ratio of correctly predicted pixels 
to the total number of pixels in the image. Sensitivity represents 
the proportion of tumor pixels correctly identified by the model 
relative to the actual total number of tumor pixels. Specificity 
indicates the proportion of non-tumor pixels appropriately 
excluded by the model compared to all non-tumor pixels 
present. The formulas are as follows, as defined in Equations 5, 
6, and 7:

 

+
= ×

+ + +
p N

P N P N

T T
Accuracy 100%

T T F F  
(5)

 
=

+
p

P N

T
Sensitivity

T F  
(6)

TABLE 1 Category distribution in the ovarian tumor dataset.

Tumor type Number Proportion (%)

Serous carcinoma 219 62.57%

Mucinous carcinoma 21 6.00%

Borderline serous tumor 23 6.57%

Borderline mucinous 

tumor
16 4.57%

Adult granulosa cell tumor 15 4.29%

Immature teratoma 14 4.00%

Clear cell carcinoma 9 2.57%

Endometrioid carcinoma 8 2.29%

Malignant transformation 

of mature teratoma
8 2.29%

Mesonephric 

adenocarcinoma
6 1.71%

Mixed germ cell tumor 6 1.71%

Yolk sac tumor 5 1.43%

Total 350 100.00%
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Where pT  represents the True Positive, NF  represents the False 
Negative, PF  represents the False Positive, and NT  represents the 
True Negative.

The Hausdorff distance is a widely used metric for measuring 
similarity or distance between two sets. In image segmentation tasks, 
it quantifies the maximum deviation between predicted segmentation 
boundaries and ground truth boundaries. Given two point sets A and 
B , the Hausdorff distance is defined as (Equation 8):

 
( ) ( ) ( )

∈∈∈ ∈

 
=  

 
, max supinf , ,sup inf ,

a Ab Ba A b B
H A B d a b d a b

 
(8)

Where supdenotes the supremum, inf represents the infimum, 
( ),d a b is the Euclidean distance between points a and b.

4.4 Experimental results

4.4.1 Model performance comparison
To validate the segmentation performance of Res-ECA-UNet++, 

we  conducted a comparative analysis with UNet, UNet++, and 
Res-UNet++, evaluating model improvements across three key 
metrics: Dice coefficient, mIoU, and accuracy (as shown in Table 2). 
Experimental results demonstrate that Res-ECA-UNet++ achieves 
superior performance compared to other models in terms of global 
segmentation accuracy, boundary recognition capability, and 

computational stability. Specifically, Res-ECA-UNet++ outperforms 
UNet, UNet++, and Res-UNet++ by 0.45, 0.17, and 0.11% in accuracy, 
4.42, 1.44, and 1.29% in mIoU, and 1.57, 0.83, and 0.73% in Dice 
coefficient, respectively. These results indicate that the integration of 
residual modules and attention mechanisms in Res-ECA-UNet++ 
effectively enhances the model’s focus on critical tumor regions, 
optimizes segmentation boundary precision, and significantly 
improves overall segmentation performance.

Figure  6 compares the ROC curves of UNet, UNet++, 
Res-UNet++, and Res-ECA-UNet++ on the test set. The Receiver 
Operating Characteristic (ROC) curve illustrates the relationship 
between True Positive Rate and False Positive Rate under varying 
classification thresholds. Notably, the ROC curve of Res-ECA-UNet++ 
consistently resides above those of other models, demonstrating its 
superior performance across different thresholds and faster 
convergence rate. The Area Under the Curve (AUC) metric, where 
values approaching 1 indicate better discrimination between positive 
and negative samples across thresholds, further confirms this 
advantage. With an AUC value of 0.94, Res-ECA-UNet++ significantly 
outperforms comparative models, establishing its optimal 
classification capability.

4.4.2 Computational efficiency and lightweight 
strategy analysis

To evaluate the deployment potential of Res-ECA-UNet++ in 
resource-constrained regions, we tested its computational efficiency 
on both high-end (RTX 3090 GPU) and low-end (NVIDIA Jetson 
Nano) devices, comparing it with UNet, UNet++, and Res-UNet++. 
Evaluation metrics included inference time (ms/image), parameter 
count (millions), and FLOPs (GigaFLOPs), with detailed results 
presented in Table 3.

FIGURE 5

Examples from the ovarian tumor ultrasound dataset.
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Res-ECA-UNet++ demonstrated an inference time of 25 ms/
image on RTX 3090, marginally higher than UNet++'s 22 ms/image. 
On Jetson Nano, it required 190 ms/image compared to UNet++'s 
165 ms/. This performance gap primarily stems from increased model 
complexity due to the integration of ECA-Net and ResNet 
architectures, which enhance feature representation and generalization 
capabilities at the cost of elevated computational demands and 
parameter count.

Notably, Res-ECA-UNet++ maintains a favorable balance between 
performance and efficiency, with 10.8  M parameters and 21.3G 
FLOPs. This configuration preserves high diagnostic accuracy while 

maintaining practical computational efficiency. The 190 ms/image 
inference time on Jetson Nano approaches clinical real-time 
requirements, enabling rapid medical image processing for clinical 
decision-making. However, further optimizations remain necessary 
to better adapt to the hardware constraints of portable devices and 
meet more stringent application scenarios.

To further reduce computational demands, we explored model 
lightweighting strategies, including network pruning and INT8 
quantization. The pruning process, based on L1-norm criteria, 
removed 30% of low-contribution channels in both ResNet34 and 
ECA-Net architectures, effectively reducing computational load and 

TABLE 2 Performance comparison of different models on ovarian tumor ultrasound image segmentation.

Model Accuracy (%) mIoU (%) Dice (%) Hausdorff 
distance (pixels)

Sensitivity (%) Specificity (%)

UNet 99.30 87.42 93.06 12.42 92.11 97.82

UNet++ 99.58 90.40 94.80 10.22 93.62 98.41

Res-UNet++ 99.64 90.55 94.90 9.10 94.04 98.63

Res-ECA-UNet++ 99.75 91.84 95.63 7.96 95.23 98.92

FIGURE 6

Comparison of ROC curves for different models.

TABLE 3 Comparison of computational efficiency.

Model Inference time (ms/
image, RTX 3090)

Inference time (ms/
image, Jetson Nano)

Parameters (M) FLOPs (G)

UNet 20 150 7.8 15.2

UNet++ 22 165 9.2 18.5

Res-UNet++ 24 180 10.5 20.1

Res-ECA-UNet++ 25 190 10.8 21.3
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TABLE 5 Performance comparison of Res-ECA-UNet++ and other models on the OTU2D dataset.

Model IoU (%) mIoU (%) Dice (%) Hausdorff 
distance (pixels)

Sensitivity (%) Specificity (%)

UNet 79.91 86.82 88.91 15.98 87.53 96.81

UNet++ 80.53 87.51 89.32 15.13 88.12 97.13

PSPNet (47) 82.01 89.41 90.11 13.98 89.22 97.82

TransUNet (48) 81.31 89.01 90.01 14.42 88.74 97.54

SegFormer (49) 82.46 89.88 90.22 13.52 89.56 98.02

NSBR-Net (33) 82.47 89.89 90.29 13.32 89.81 98.16

Res-ECA-UNet++ 82.51 89.91 90.41 13.11 90.21 98.29

storage requirements. INT8 quantization converted the model from 
FP32 precision to INT8 format, significantly decreasing memory 
consumption and computational overhead, particularly beneficial for 
low-end devices. Comprehensive lightweighting experiments were 
conducted on the test set, with evaluation metrics encompassing Dice 
coefficient, mIoU, accuracy, Hausdorff distance, inference time, and 
parameter count, as detailed in Table 4.

After pruning, the model achieved a parameter reduction to 
7.6 M and FLOPs reduction to 15.0G, while maintaining a high Dice 
coefficient with only 0.53% degradation. The inference time on 
Jetson Nano accelerated to 165 ms per image. Subsequent INT8 
quantization further optimized performance, reducing inference 
time to 140 ms per image and FLOPs to 14.8G, with the Dice 
coefficient experiencing a marginal 0.83% decrease and Hausdorff 
distance slightly increasing to 4.9 pixels - both metrics remaining 
superior to baseline model performance. Notably, INT8 quantization 
not only reduced memory requirements but also enhanced inference 
speed through optimized floating-point to integer conversion. 
Although these lightweighting strategies incurred acceptable 
precision losses, they achieved significant computational efficiency 
improvements. The optimized model demonstrates particular 
suitability for deployment on resource-constrained devices in 
low-resource environments, balancing operational efficiency with 
maintained diagnostic accuracy.

4.4.3 Comparative experiments on improved 
networks using the OTU2D dataset

To further validate the superiority of the improved network 
architecture, we conducted comparative experiments on the public 
OTU2D dataset (46), ensuring both comparability of results and 
methodological rigor. The experimental outcomes presented in 
Table 5 reveal that the optimized model achieves superior performance 
in medical image segmentation tasks, demonstrating strong potential 
for practical clinical applications.

4.4.4 Clinical integration and implementation 
strategies

To optimize the clinical utility of the proposed model, we developed 
a systematic integration framework aligned with existing clinical 
workflows. The Res-ECA-UNet++ architecture is embedded within 
ultrasound imaging systems to enable real-time tumor segmentation, 
providing clinicians with instantaneous visualization of tumor 
boundaries and morphological features, thereby reducing diagnostic 
time while ensuring high precision. For seamless interoperability, the 
model generates DICOM-compliant outputs and integrates with 
Picture Archiving and Communication Systems via RESTful APIs, 
facilitating standardized data storage, cross-device retrieval, and 
efficient sharing of medical imaging data. Furthermore, the system 
automates the extraction of tumor biomarkers to generate standardized 
diagnostic reports that interface directly with Electronic Medical 
Record platforms, enhancing documentation accuracy and supporting 
evidence-based therapeutic planning. To ensure clinical adaptability, a 
web-based interface allows manual refinement of segmentation results, 
balancing algorithmic efficiency with physician oversight. All 
components are designed for deployment within conventional clinical 
infrastructures, prioritizing implementation feasibility, regulatory 
compliance, and scalability across diverse healthcare settings. This 
integrated approach addresses critical challenges in workflow 
optimization while maintaining clinician-centric adaptability.

4.4.5 Error analysis of the model
While the improved model demonstrates enhanced accuracy in 

tumor region segmentation, we  conducted a visual comparative 
analysis using representative ovarian cases from our proprietary 
dataset to further elucidate performance differences across various 
lesion types. As illustrated in Figure 7, when processing lesions with 
irregular tumor boundaries, although U-Net series models achieve 
adequate coverage of major tumor regions, their edge delineation 
appears coarser with unstable fitting characteristics, particularly 

TABLE 4 Lightweight experiment results (model: Jetson Nano).

Model Variant Accuracy 
(%)

mIoU 
(%)

Dice 
(%)

Hausdorff 
distance 
(pixels)

Inference 
time (ms/

image)

Parameters 
(M)

FLOPs (G)

Res-ECA-UNet++ (Original) 99.75 91.84 95.63 7.96 190 10.8 21.3

Res-ECA-UNet++ (Pruned) 99.70 91.24 95.13 8.13 165 7.6 15

Res-ECA-UNet++ (Pruned+INT8) 99.65 90.86 94.80 8.42 140 7.6 14.8
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showing boundary displacement in low-contrast regions. In 
comparison, Res-ECA-UNet++ exhibits superior performance in 
handling most lesion types, though minor boundary deviations persist 
when processing complex marginal details, indicating potential for 
improvement in precisely modeling irregular-edged lesions.

Furthermore, the models demonstrate a tendency for over-
segmentation when encountering background interference or 
ambiguous boundary regions, suggesting insufficient structural 
representation capability at lesion margins. Particularly in areas with 
regular contours and homogeneous echogenicity, boundary fitting 
errors reveal the models’ limited robustness in handling transitional 
boundary ambiguity. Despite Res-ECA-UNet++'s exceptional 
performance in large lesion identification and boundary precision, 
optimization potential remains for processing indistinct-bordered 
lesion types. Future research directions may consider implementing 
multi-scale modeling mechanisms or boundary enhancement 
modules to improve the model’s adaptability and robustness when 
handling highly variable targets.

5 Conclusion

With the rapid development of deep learning technologies, U-Net 
and its derivative models have demonstrated significant clinical value 
in the field of medical image analysis. This study proposes an improved 
segmentation model, Res-ECA-UNet++, which addresses gradient 
vanishing issues and preserves shallow-layer detail features through 
the integration of residual learning modules and skip connections. The 
increased network depth enhances both training efficiency and 
segmentation accuracy. Furthermore, the incorporated ECA-Net 
channel attention mechanism utilizes 1D convolution to achieve 
cross-channel interactions, enabling dynamic feature weight 

adjustment that enhances focus on tumor regions and significantly 
improves segmentation precision. Experimental results on an ovarian 
tumor ultrasound dataset demonstrate that Res-ECA-UNet++ 
surpasses U-Net++ in key metrics including Dice and mIoU, showing 
notable improvements in segmentation performance. These findings 
validate its potential for semantic segmentation tasks in ovarian tumor 
imaging. Regarding computational efficiency, while the model’s 
increased complexity leads to longer inference times, Res-ECA-
UNet++ maintains practical applicability on both high-end and 
low-end hardware. Through lightweight optimization strategies, the 
model achieves enhanced inference speed and reduced computational 
demands while preserving accuracy, demonstrating adaptability for 
deployment in resource-constrained environments.

While the proposed model demonstrates promising performance, 
it has several limitations. First, the dataset was collected from a single 
medical center, which may impact the model’s stability in cross-
institutional applications. Second, the current model primarily focuses 
on common ovarian tumor types and lacks comprehensive validation 
on rare subtypes, atypical lesions, and complex pathological 
morphologies—limitations that could affect its generalization in more 
challenging clinical cases. Additionally, the training protocol relies solely 
on 2D B-mode grayscale ultrasound images, without sufficiently 
incorporating structural and functional information from 
multimodal imaging.

Therefore, future research will focus on the following improvements: 
(1) Collaborating with multiple medical institutions to collect multicenter 
data for enhanced generalization; (2) Integrating multimodal ultrasound 
information and exploring cross-modal transfer learning strategies to 
improve diagnostic accuracy and robustness in multisource data fusion; 
(3) Introducing multiscale modeling mechanisms and boundary 
enhancement modules to refine model robustness, alongside lightweight 
designs such as network pruning and knowledge distillation for real-time 

FIGURE 7

Visual comparison of segmentation results from different models.
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applications, thereby reducing computational demands and facilitating 
deployment on ultrasound devices.

This research provides an efficient and scalable solution for 
intelligent ovarian tumor screening. The proposed future 
enhancements aim to advance the clinical translation and practical 
adoption of this methodology.
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