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Background: Diagnosing tuberculous pleural effusion (TPE) is challenging.

There is a lack of cross-sectional lateral comparisons among TPE

prediction models.

Objectives: We aimed to develop and validate a novel TPE prediction model and

compare its diagnostic performance with that of existing models.

Methods: Patients with pleural effusion were included in the training, testing,

and external validation sets. Variable selection strategies included LASSO and

logistic regression. The discriminability, calibration, and clinical efficacy of the

prediction model were estimated in the three sets. The performance of the

model was compared with that of two existing prediction models.

Results: Fever, tuberculosis interferon-gamma release assays, pleural adenosine

deaminase, the pleural mononuclear cell ratio, the ratio of pleural lactate

dehydrogenase to pleural adenosine deaminase, pleural carcinoembryonic

antigen, and pleural cytokeratin 19 fragment were selected to establish the

prediction model. The AUCs were 0.931 (0.903–0.958), 0.856 (0.753–0.959),

and 0.925 (0.867–0.984) in the training, testing, and external validation sets,

respectively. The AUCs of the two existing prediction models were 0.793 (0.737–

0.850) and 0.854 (0.816–0.892). The calibration curves revealed that this model

had good consistency. Decision curve analysis revealed the acceptable clinical

benefit of this model.

Conclusion: Compared with the existing models, the TPE prediction model

developed in this study demonstrated good diagnostic performance.

KEYWORDS

tuberculosis, tuberculous pleural effusion, clinical prediction model, diagnosis,
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1 Introduction

Tuberculosis remains the leading cause of death among
infectious diseases globally, ranking 13th among the main
causes of death globally (1). According to the World Health
Organization, approximately 25% of the world’s population is
infected with Mycobacterium tuberculosis. The global burden of
disease (GBD) in 2021 estimated 9.4 million new tuberculosis
cases and 1.35 million deaths (2). Pleural tuberculosis is the
most common type of extrapulmonary tuberculosis and the main
cause of pleural effusion. The European Respiratory Society
reported that 6% of pleural effusion among adults is attributed to
tuberculous pleural effusion (TPE) (3). However, this proportion
varies significantly across different tuberculosis-endemic regions.
Available documentation indicates that in South Africa, India,
China, and Nigeria, the proportions of TPE among all pleural
effusion cases are 82.4, 23.5, 40, and 32.9%, respectively. In contrast,
this proportion ranges from 0% to 5.9% in non-endemic areas
(4). A nationwide survey on the causes of pleural effusion in
hospitalized patients in China revealed that 12.3% of pleural
effusion was attributable to tuberculosis (5). The China tuberculosis
surveillance system indicates that the incidence rate of tuberculosis
is higher in rural, central, and western regions than in urban
and eastern regions, which also reflects regional differences in
TPE epidemiology (6, 7). TPE may result in complications such
as empyema, pleural thickening, pleural calcification, chylothorax,
or bronchopleural fistula, all of which can impair respiratory
function and quality of life. In addition, a US study followed
141 military personnel with a positive tuberculin skin test and
pleural effusion from 1940 to 1944. Although the pleural effusion
resolved spontaneously within 2–4 months without treatment, 65%
of the patients developed active tuberculosis within 2 years (8, 9).
Therefore, it is crucial to identify TPE early.

Early detection of TPE may reduce the risk of the above
complications. The diagnosis of TPE relies on acid-fast staining,
Mycobacterium tuberculosis culture, or pleural biopsy through
thoracoscopy, which have limitations such as extended duration,
a low positive rate, and invasiveness. Studies have reported that
the diagnostic sensitivity of thoracoscopy can reach 90%–100%,
whereas the sensitivity of pleural effusion acid-fast staining and

Abbreviations: TPE, tuberculous pleural effusion; GBD, Global Burden
of Diseases; TB-IGRA, tuberculosis interferon-gamma release assays; ADA,
adenosine deaminase; LDH, lactate dehydrogenase; MPE, malignant pleural
effusion; PPE, parapneumonic pleural effusion; STROBE, Strengthening the
Reporting of Observational Studies in Epidemiology; HGB, hemoglobin;
PLT, platelet; WBC, white blood cell; NLR, neutrophil/lymphocyte ratio;
PCT, procalcitonin; CRP, C-reactive protein; IL-6, interleukin-6; BNP, B-type
natriuretic peptide; ESR, erythrocyte sedimentation rate; FDP, fibrinogen
degradation products; lnRMMPE, logarithm of the ratio of pleural effusion
mononuclear cells to multinuclear cells; TP, total protein; s/p CEA,
serum and pleural carcinoembryonic antigen; s/p CA125, serum and
pleural effusion carbohydrate antigen 125; s/p CA199, serum and pleural
effusion carbohydrate antigen 19-9; s/p CA153, serum and pleural effusion
carbohydrate antigen 153; s/p CYFRA21-1, serum and pleural effusion
cytokeratin 19 fragment; s/p NSE, serum and pleural effusion neuron-
specific enolase; LASSO, least absolute shrinkage and selection operator;
ROC, receiver operating characteristic curves; PR AUC, area under the
precision-recall curves; DCA, decision curve analysis; CIC, clinical impact
curve; PLR, positive likelihood ratio; NLR, negative likelihood ratio; PPV,
positive predictive value; NPV, negative predictive value; HL, Hosmer–
Lemeshow test; NRI, net reclassification improvement; IDI, integrated
discrimination improvement.

mycobacterial culture ranges from 10% to 20% and 20% to
45%, respectively (10–13). However, the clinical applicability of
thoracoscopy is relatively low because of its cost and invasiveness.
Some biochemical indicators, such as tuberculosis interferon-
gamma release assays (TB-IGRA), pleural effusion adenosine
deaminase (pADA), pleural effusion lactate dehydrogenase
(pLDH), the pLDH/pADA ratio, and pleural effusion cytological
categorization, may serve as auxiliary diagnostic markers.
However, the sensitivity and specificity of utilizing a single marker
to differentiate TPE patients from non-TPE patients require
improvement. Furthermore, different types of PEs may exhibit
similar pathophysiologies and laboratory indicator changes,
so multiple indicators are needed to classify PEs from various
perspectives to improve diagnostic accuracy.

Clinical prediction models are statistical models that use
multiple variables to predict diseases, prognoses, or other medical
conditions (14). There are several TPE prediction models based on
single clinical and combined biomarkers (15–17). However, owing
to differences in research populations and modeling approaches,
these models exhibit significant heterogeneity. Additionally,
lateral comparisons among these models are lacking. Therefore,
this study intends to develop a combined diagnostic model
based on laboratory and clinical features and validate current
prediction models on the basis of our data to compare their
prediction performance.

2 Materials and methods

2.1 Derivation population and study
design

We retrospectively collected data from patients with pleural
effusion at West China Hospital from January 2020 to December
2022. The inclusion criteria were as follows: (1) ≥ 18 years of
age and (2) pleural effusion diagnosed by either ultrasonography
or chest CT. The exclusion criteria were as follows: (1) unknown
etiology of PE, (2) transudative pleural effusion according to Light’s
criteria, and (3) incomplete clinical data. The diagnostic criteria for
TPE were as follows: (1) a pleural effusion or pleural biopsy sample
that was positive for acid-fast staining/culture of Mycobacterium
tuberculosis or (2) the discovery of a caseous necrotizing granuloma
in the pleural biopsy sample (10). Patients were classified into TPE
and non-TPE groups. Non-TPE included pleural effusion caused
by infection, cancer, or other reasons according to well-accepted
criteria (18). The derivation population was randomly divided into
a training set and a testing set at a ratio of 8:2.

This report is compliant with the Strengthening the Reporting
of Observational Studies in Epidemiology (STROBE) statement.
The STROBE checklist is provided in Supplementary material 1.
This study was approved by the institutional Ethics Committee
of West China Hospital (WCH 2024–1108) and was conducted
in accordance with the Helsinki Declaration. Written informed
consent was exempted by the ethics committee because this study
was retrospective without any risks to the patients.
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2.2 External validation population

We retrospectively collected data from patients with pleural
effusion at West China Hospital from January 2023 to October 2024
to validate the model performance externally. The same laboratory
examination testing protocol was used for both the training and
the external validation cohorts. The inclusion criteria, exclusion
criteria, and diagnostic criteria of the external validation set were
the same as those of the derivation population.

2.3 Data collection

The laboratory examination method was consistent and
standardized across all patients and timepoints. The following
clinical data were extracted from the hospital information system
of West China Hospital: (1) demographic characteristics: age,
sex, and smoking history, (2) disease characteristics: clinical
symptoms (fever, cough with sputum, chest pain, hemoptysis,
and dyspnea), and (3) laboratory examination: TB-IGRA,
serum hemoglobin concentration (HGB), platelet count (PLT),
white blood cell count (WBC), neutrophil count, lymphocyte
count, neutrophil/lymphocyte ratio (NLR), procalcitonin
(PCT), C-reactive protein (CRP), interleukin-6 (IL-6), B-type
natriuretic peptide (BNP), erythrocyte sedimentation rate (ESR),
fibrinogen degradation products (FDP), D-dimer, pleural effusion
mononuclear and multinuclear cell ratio, logarithm of the ratio
of pleural effusion mononuclear cells to multinuclear cells
(lnRMMPE), the concentration of pADA, serum and pleural
effusion total protein (s/p TP), lactate dehydrogenase (s/p LDH),
carcinoembryonic antigen (s/p CEA), carbohydrate antigen
125 (s/p CA125), carbohydrate antigen 19–9 (s/p CA199),
carbohydrate antigen 153 (s/p CA153), cytokeratin 19 fragment
(s/p CYFRA21-1), and neuron-specific enolase (s/p NSE). The
ratio of indicators in the pleural effusion fluid to those in the serum
and the ratio of pLDH to pADA were also calculated (19, 20).
The continuous variable pADA concentration was transformed
into a binary variable on the basis of the generally accepted cutoff
value of 40 U/L (21). Multiple imputation by chained equations
(MICE) was used to handle variables with less than 20% missing
data. Four variables with more than 20% missing data were
excluded: BNP (missing rate of 30.9%), ESR (missing rate of
76.2%), sCA153 (missing rate of 59.3%), and pCA153 (missing
rate of 62.4%).

2.4 Statistical analysis

Continuous variables were tested for normality via the Shapiro–
Wilk test. Normally distributed continuous variables are expressed
as the mean ± standard deviation, and the difference between
groups was estimated by an independent sample t-test. Abnormally
distributed continuous variables are expressed as medians with
first and third quartiles, while the Mann–Whitney U test was
used for comparisons between groups. Categorical variables are
expressed as frequencies, and the chi-square test was used for
comparisons between groups.

In the training set, univariate logistic regression analysis
was used to screen the potential variables according to a
two-sided P < 0.05. Least absolute shrinkage and selection
operator (LASSO) regression analysis was used to further
select prediction parameters without multicollinearity and to
prevent overfitting. The continuous variables were converted into
binary variables to facilitate clinical application and statistical
optimization according to the cutoff value corresponding to the
maximally selected Wilcoxon rank statistics method (MSRS).
The selected variables were incorporated into the nomogram.
Receiver operating characteristic (ROC) curves, precision–recall
(PR) curves, calibration curves, decision curve analysis (DCA), and
clinical impact curve (CIC) analyses were performed to determine
the discrimination, consistency, and practicability of the models.
The area under the precision–recall curve (PR AUC) was used to
assist in evaluating the discrimination of the model in the case
of class imbalance. The Hosmer–Lemeshow (HL) test was used
to assess the goodness-of-fit of the model, with a p-value greater
than 0.05 indicating goodness of fit. Two existing TPE models
were applied to our dataset to compare the model performance
(16, 17). All the statistical analyses were performed via R 4.3.2.
The R packages used included moonBook, autoReg, mice, caret,
glmnet, foreign, rms, pROC, Hmisc, rmda, nomogramFormula,
nomogramEx, PRROC, and shiny.

3 Results

3.1 Clinical characteristics of the
derivation population

In total, 537 patients (101 TPE patients and 436 non-TPE
patients) were included in the derivation dataset. Among the non-
TPE patients, 233 had MPE, 181 had PPE, and 22 had exudate
pleural effusion caused by other reasons. The inclusion flowchart
is shown in Supplementary material 2. The derivation dataset was
randomly divided into a training set (N = 432) and a testing
set (N = 105) at a ratio of 8:2. No significant difference was
observed between the two sets of variables (Supplementary material
3). The baseline characteristics of the derivation population are
shown in Table 1, and the details of all the variables are shown in
Supplementary material 4.

3.2 Variable selection for the TPE
prediction model

A total of 28 variables were significantly important in the
univariate logistic analysis (Supplementary material 5) and were
subsequently included in the LASSO binary logistic regression.
Seven variables with non-zero coefficients were selected when
the log(λ) mean squared error reached 1 standard error (SE)
after 10-fold cross-validation (Figures 1A,B): fever, TB-IGRA,
pADA, the mononuclear cell ratio, pLDH/pADA, pCEA, and
pCYFRA21-1 concentration. According to the cutoff value based
on the MSRS, four continuous variables, the mononuclear cell ratio
and pLDH/pADA, pCEA, and pCYFRA21-1 concentrations, were
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TABLE 1 Baseline characteristics of derivation population.

Variables Training set Testing set

non-TPE
(n = 346)

TPE (n = 86) p non-TPE
(n = 90)

TPE (n = 15) p

Sex 0.176 0.872

Female 136 (39.31%) 27 (31.40%) 38 (42.22%) 6 (40.00%)

Male 210 (60.69%) 59 (68.60%) 52 (57.78%) 9 (60.00%)

TB-IGRA 0.000 0.000

Negative 316 (91.33%) 25 (29.07%) 82 (91.11%) 8 (53.33%)

Positive 30 (8.67%) 61 (70.93%) 8 (8.89%) 7 (46.67%)

Fever 0.000 0.128

No 302 (87.28%) 54 (62.79%) 75 (83.33%) 10 (66.67%)

Yes 44 (12.72%) 32 (37.21%) 15 (16.67%) 5 (33.33%)

pADA ≥ 40 (U/L) 0.000 0.000

No 311 (89.88%) 63 (73.26%) 87 (96.67%) 10 (66.67%)

Yes 35 (10.12%) 23 (26.74%) 3 (3.33%) 5 (33.33%)

Age (years) 64.00 (53.00–72.00) 57.50 (46.00–74.00) 0.153 64.00 (54.00–69.00) 56.00 (46.50–65.00) 0.140

pADA (IU/L) 8.95 (6.60–14.10) 24.75 (10.10–42.90) 0.000 10.10 (7.70–15.20) 25.70 (9.10–46.70) 0.030

pLDH (IU/L) 320.00
(182.00–639.00)

229.00
(146.00–400.00)

0.014 287.00
(200.00–557.00)

234.00
(169.50–314.00)

0.171

pLDH/pADA 36.33 (22.82–58.33) 12.41 (7.53–21.73) 0.000 32.03 (20.00–64.42) 11.00 (8.55–22.37) 0.000

Mononuclear cell (%) 75.00 (32.00–90.00) 89.00 (75.00–95.00) 0.000 72.50 (40.00–90.00) 90.00 (71.50–96.00) 0.014

sCEA (ng/mL) 3.08 (1.66–9.75) 1.31 (0.90–2.37) 0.000 2.59 (1.28–5.90) 1.72 (1.01–2.82) 0.071

sCYFRA21-1 (ng/mL) 3.84 (2.19–9.09) 1.88 (1.29–2.81) 0.000 3.91 (2.27–7.61) 1.82 (1.32–2.16) 0.002

pCEA (ng/mL) 3.48 (0.98–93.19) 0.90 (0.56–1.59) 0.000 2.83 (0.87–68.60) 0.89 (0.60–1.78) 0.015

pCYFRA21-1 (ng/mL) 41.70 (14.80–188.00) 16.90 (8.11–39.90) 0.000 46.72 (13.80–178.00) 24.50 (18.10–58.25) 0.094

p < 0.05 is considered to have significant statistical difference. TB-IGRA, tuberculosis interferon-gamma release assays; pADA, pleural effusion adenosine deaminase; pLDH, lactate
dehydrogenase; CEA, carcinoembryonic antigen; CYFRA21-1, cytokeratin 19 fragment.

converted into binary variables at cutoff values of 80%, 13.39, 3.58,
and 89.2 ng/mL, respectively.

3.3 Construction of the TPE nomogram
prediction model and scoring system

The seven variables above were included to construct
a nomogram model to discriminate high-risk individuals
(Figure 2A). According to the ROC analysis of the nomogram
model, the optimal cutoff point and risk were 15.687 points
and 15.96%, as determined by the maximum Youden index,
with a sensitivity of 0.860 (0.787–0.934), specificity of 0.861
(0.825–0.898), and AUC of 0.931 (0.903–0.958) (Figure 3A). For
convenient risk assessment, the R package “nomogramFormula”
outputted integer scores for each variable on the nomogram,
with subsequent analyses using 16 points as the cutoff threshold
(Figure 2B).

We also assessed the predictive performance of pADA, TB-
IGRA, and their combination for TPE, and the AUCs were 0.811,

0.731, and 0.830, respectively, suggesting the superiority of the
established model.

3.4 Internal evaluation of the new model

First, ROC and PR analyses were conducted to clarify the
discriminative ability of the model. In the testing set, the
AUC was 0.856 (0.753–0.959), and the sensitivity and specificity
were 0.667 (0.428–0.905) and 0.867 (0.796–0.937), respectively,
when a cutoff point of ≥ 16 was used (Table 2). Owing to
the prevalence rate imbalance in the dataset, the PR AUC
values were 0.808 (0.726–0.871) and 0.622 (0.340–0.827) in the
training and testing sets, respectively (Figure 3B). Second, the
HL test confirmed the good consistency of the model, with
p-values of 0.723 and 0.064 in the training and testing sets,
respectively. As shown by the bootstrap (n = 1000) calibration
curve, the predicted risk was relatively close to the observed
risk (Figure 4A). The model achieved a brier score of 0.076 in
the training set and 0.088 in the testing set, with calibration
curve slopes of 1.000 and 0.647, intercepts of 0.000 and −0.590,
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FIGURE 1

LASSO regression curves with 10-fold cross validation. (A) binomial deviance curve versus log(λ) based on the minimum criteria (left dotted line,
λ = 0.004) and 1 SE criteria (right dotted line, λ = 0.035), (B) the coefficient profile plot against log(λ).

FIGURE 2

Establishment of the TPE scoring system in the training set. (A) Nomogram for TPE prediction of a patient with risk factors and the cutoff point was
16, (B) simplified scoring system and corresponding points of each variable.
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FIGURE 3

Discrimination of the model. (A) ROC analyses showing the AUC and 95% CI, (B) PR analyses showing the PR AUC and 95% CI.

TABLE 2 Diagnostic performance of new model, model 1, and model 2.

Metrics New model Model 1 Model 2

Training set Testing set Validation set

Cutoff 16 points 60% risk 11.038 points

ROC-AUC 0.931
(0.903–0.958)

0.856
(0.753–0.959)

0.925
(0.867–0.984)

0.793
(0.737–0.850)

0.854
(0.816–0.892)

Sensitivity 0.860
(0.787–0.934)

0.667
(0.428–0.905)

0.893
(0.778–1.000)

0.396
(0.301–0.491)

0.416
(0.320–0.512)

Specificity 0.861
(0.825–0.898)

0.867
(0.796–0.937)

0.868
(0.803–0.932)

0.970
(0.954–0.986)

0.954
(0.934–0.974)

Accuracy 0.861
(0.861–0.862)

0.838
(0.836–0.841)

0.873
(0.872–0.875)

0.862
(0.862–0.863)

0.853
(0.852–0.853)

NPV 0.961
(0.940–0.983)

0.940
(0.889–0.991)

0.968
(0.933–1.004)

0.874
(0.844–0.904)

0.876
(0.846–0.905)

PPV 0.607
(0.520–0.693)

0.455
(0.246–0.663)

0.641
(0.490–0.792)

0.755
(0.639–0.871)

0.677
(0.561–0.794)

NLR 0.162
(0.096–0.274)

0.385
(0.187–0.790)

0.123
(0.042–0.361)

0.623
(0.531–0.730)

0.612
(0.519–0.723)

PLR 6.203
(4.707–8.174)

5.000
(2.645–9.452)

6.760
(4.081–11.197)

13.283
(7.384–23.892)

9.065
(5.573–14.746)

NRI – – – −1.036
(−1.227 to −0.844),

p< 0.001

−0.906
(−1.102 to −0.710),

p< 0.001

IDI – – – −0.216
(−0.265 to −0.168),

p< 0.001

−0.217
(−0.269 to −0.164),

p< 0.001

ROC, receiver operating characteristic curves; AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value; NLR, negative likelihood ratio; PLR, positive
likelihood ratio; NRI, net reclassification improvement; IDI, integrated discrimination improvement.

and log-likelihood ratios of 217.643 and 21.024, respectively.
Third, when the high-risk threshold was between 0.04 and
0.90 in the training set or between 0.06 and 0.80 in the

testing set, this model demonstrated positive net benefits with
a low curve slope (Figure 4D). The CIC showed that the TPE
number determined by the nomogram was highly matched to

Frontiers in Medicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2025.1589406
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1589406 July 15, 2025 Time: 18:38 # 7

Liu et al. 10.3389/fmed.2025.1589406

FIGURE 4

Consistency and practicability evaluation of TPE models. (A–C) Calibration curves for the new model, Model 1, and Model 2. A p-value < 0.05 in the
HL test indicates a significant bias between the predicted and observed risk. (D) DCA comparison between the new model and two existing models
on the basis of standardized net benefit. The high-risk thresholds for positive net benefits were 0.04–0.90 in the training set, 0.06–0.80 in the
testing set, 0.09–0.90 in Model 1, and 0.06–0.80 in Model 2.

the actual TPE number when the risk threshold exceeded 0.2
(Figures 5A,B).

3.5 Comparison between the new model
and existing models

TPE prediction models have been reported in several studies,
but few studies have compared different models. This study
compared the new model with two other TPE models on the basis
of discrimination, consistency, and practicability. Model 1 included
four parameters, namely, age, TB-IGRA, lnRMMPE, and pADA,
with a cutoff risk of 60% (17). Model 2 included six variables,
namely, age, sex, absence of cancer, TB-IGRA, pADA, and CRP,
with a cutoff point of 11.038 (16). As shown in Figures 3A,B and

Table 2, in this research population, Model 1 had an AUC of 0.793
(0.737–0.850), a PR AUC of 0.623 (0.527–0.711), a sensitivity of
0.396 (0.301–0.491), and a specificity of 0.970 (0.954–0.986). Model
2 had an AUC of 0.854 (0.816–0.892), a PR AUC of 0.598 (0.498–
0.707), a sensitivity of 0.416 (0.320–0.512), and a specificity of 0.954
(0.934–0.974). In Model 1, the HL test yielded p = 0.001, and the
calibration plot revealed bias between the predicted probability and
the observed probability (Figure 4B). In Model 2, the p-value of the
HL test was 0.141, and the calibration plot showed good consistency
(Figure 4C). The brier scores were 0.115 and 0.109, the calibration
slopes were 1.024 and 1.000, the intercepts were −0.487 and 0.000,
and the log-likelihood ratios were 519.200 and 143.603 in Model
1 and Model 2, respectively. The high-risk threshold for positive
net benefits was 0.09–0.90 in Model 1 and 0.06–0.80 in Model 2
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FIGURE 5

CIC analysis to show the gap between the predicted and observed TPE numbers at different high-risk thresholds. (A) Training set, (B) testing set,
(C) Model 1, (D) Model 2. The TPE number determined by the models was highly matched to the actual TPE number when the risk threshold
exceeded 0.2 in the three models.

(Figure 4D). The CIC did not differ from that of the new model
(Figures 5C,D).

The net reclassification improvement (NRI) measures the
improvement in classification accuracy of the target model, whereas
the integrated discrimination improvement (IDI) quantifies the
overall enhancement in predictive probability discrimination,
together validating the discrimination improvement of the target
model. The NRI and IDI were calculated to confirm the accuracy
improvement in predicting TPE outcomes. Compared with our
new model, Model 1 resulted in a continuous NRI of −1.036
(−1.227 to −0.844, p < 0.001) and an IDI of −0.216 (−0.265 to
−0.168, p < 0.001), whereas Model 2 resulted in a continuous NRI
of −0.906 (−1.102 to −0.710, p < 0.001) and an IDI of −0.217
(−0.269 to −0.164, p< 0.001) (Table 2).

3.6 External validation of the prediction
model

A total of 134 patients (28 TPE patients and 106 non-
TPE patients) were included in the external validation set.
Among the non-TPE patients, 44 had MPE, and 62 had exudate
pleural effusion caused by PPE or other reasons. The clinical
characteristics of the patients in the external validation set are
presented in Supplementary material 6. A comparison of the

clinical characteristics between the training and external validation
sets is shown in Supplementary material 7. TB-IGRA, sCEA,
sCYFRA211, and pCYFRA21-1 showed statistically significant
differences between the two datasets. In the external validation
set, as shown in Figure 6A, the AUC was 0.925 (0.867–0.984),
and the sensitivity and specificity were 0.893 (0.778–1.000) and
0.868 (0.803–0.932), respectively (Table 2). The p-value of the HL
test was 0.603. The model demonstrated a brier score of 0.079,
calibration slope of 1.036, intercept of −0.193, and log-likelihood
ratio of 65.700. Figure 6B showed that the calibration curve of the
prediction model roughly overlaps with the ideal calibration curve
in the validation set. The model demonstrated positive net benefits
when the high-risk threshold was between 0.03 and 0.83 in the
validation set (Figure 6C). The CIC showed that the TPE number
determined by the new model was closely matched to the actual
TPE number in the validation set, especially when the risk threshold
exceeded 0.2 (Figure 6D).

3.7 Decision threshold analysis and
online risk calculator

The model performance in the training set at different
thresholds was calculated, revealing that increased thresholds lead
to decreased sensitivity and improved specificity, as shown in
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FIGURE 6

External validation of the TPE prediction model. (A) ROC curve, (B) calibration plot, (C) DCA showed that the high-risk threshold for positive net
benefits was 0.03 to –0.83 in the external validation set, (D) CIC showed that the TPE number determined by the new model closely matched the
actual TPE number in the external validation set.

TABLE 3 Decision threshold analysis at different cutoff points in the training set.

Cutoff 14 points 15 points 16 points 17 points 18 points 19 points

Sensitivity 0.884
(0.816–0.951)

0.872
(0.802–0.943)

0.860
(0.787–0.934)

0.826
(0.745–0.906)

0.791
(0.705–0.877)

0.791
(0.705–0.877)

Specificity 0.815
(0.774–0.856)

0.827
(0.787–0.866)

0.861
(0.825–0.898)

0.864
(0.828–0.900)

0.893
(0.861–0.926)

0.905
(0.874–0.936)

Accuracy 0.829
(0.828–0.829)

0.836
(0.835–0.836)

0.861
(0.861–0.862)

0.856
(0.856–0.857)

0.873
(0.872–0.873)

0.882
(0.881–0.882)

NPV 0.966
(0.945–0.987)

0.963
(0.941–0.984)

0.961
(0.940–0.983)

0.952
(0.929–0.976)

0.945
(0.920–0.970)

0.946
(0.921–0.970)

PPV 0.543
(0.460–0.625)

0.556
(0.472–0.639)

0.607
(0.520–0.693)

0.602
(0.513–0.690)

0.648
(0.556–0.739)

0.673
(0.582–0.765)

NLR 0.143
(0.079–0.256)

0.155
(0.089–0.269)

0.162
(0.096–0.274)

0.202
(0.127–0.320)

0.234
(0.155–0.354)

0.231
(0.153–0.349)

PLR 4.778
(3.780–6.038)

5.029
(3.941–6.418)

6.203
(4.707–8.174)

6.078
(4.580–8.065)

7.394
(5.351–10.217)

8.290
(5.888–11.674)

NPV, negative predictive value; PPV, positive predictive value; NLR, negative likelihood ratio; PLR, positive likelihood ratio.
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FIGURE 7

The confusion matrices with directly calculable sensitivity, specificity, false positive rate, false negative rate, positive predictive value, and negative
predictive value. (A) Training set, (B) testing set, (C) external validation set, (D) Model 1, (E) Model 2.

Table 3. Figures 7A–E showed the confusion matrices of the
new model, Model 1, and Model 2 at the optimal threshold.
To facilitate the risk calculation for individuals, a user-friendly
online risk calculator was developed, which is available at https:
//tperiskprediction.shinyapps.io/TPE_risk_model/.

4 Discussion

TPE is a disease with a high incidence and disability rate
that is difficult to diagnose. In this study, we constructed a
simple and accessible new TPE model with good discrimination
ability, consistency, and clinical effects on the basis of clinical
characteristics, as well as biochemical indicators of serum and
pleural effusion. The prediction performance of the new model was
not inferior to that of the existing models.

The levels of the tumor markers CEA and CYFRA21-1 in
pleural effusion fluid are often used to predict malignant pleural
effusion (MPE) (22–25). Owing to the similar pleural effusion
and serum biochemical indicators, as well as clinical symptoms,
distinguishing between TPE and MPE is challenging. The use of
tumor markers in pleural effusion fluid is a non-invasive way
to differentiate TPE from MPE with improved accuracy. Ren
et al. (26) used four machine learning algorithms to construct
a TPE prediction model and found that pCEA is a significant
predictor. Liu et al. (27) discovered that pCEA and pCYFRA21-1
are important features in the diagnosis of TPE.

ADA is a purine degradation enzyme present mostly in
the lymphatic system and is linked to immune function and
intracellular infections (28, 29). LDH is a cytoplasmic enzyme
found in virtually all major organ systems. An elevated level of
LDH in pleural effusion fluid typically indicates lung or pleural
tissue damage and endothelial injury (30). The pLDH/pADA ratio
is lower and the pADA is greater in TPE patients than in non-
TPE patients, which has long been applied to distinguish TPE
patients effectively from non-TPE patients (20, 29, 31). These
studies employed pLDH/pADA cutoff thresholds within the range
of 15–20, and the AUCs were between 0.94 and 0.97. Additionally,
a systematic review recommended a pLDH/pADA cutoff value of
15 (32). Our study adopted a pLDH/pADA cutoff value of 13.39,
which was basically consistent with prior studies.

In this study, the AUCs of the single variables pADA and
TB-IGRA and their combination for predicting TPE were lower
than those of the model based on seven variables. This suggested
that neither the individual indicator nor their combination alone
was optimal, necessitating the establishment of a multi-indicator
integrated TPE model. Lei et al. (17) established a model with an
AUC of 0.845–0.903, a sensitivity of 0.700–0.770, and a specificity
of 0.880–0.920. Wu et al. (16) built a scoring model with an
AUC of 0.992, a sensitivity of 0.937–0.929, and a specificity of
0.968–0.933. When these two prediction models were applied to
our samples, the IDI and NRI confirmed that the new model
obtained greater positive prediction accuracy. Compared with these
two prediction models, the new model had better sensitivity, false
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negative rate, NPV, and NLR, but worse specificity, false positive
rate and PLR. However, the disparity may be due to population
characteristics, prevalence, and statistical methods, given that there
was no significant difference in age, sex, or CRP in our data, which
were the main predictors of Model 1 or Model 2.

Regarding the clinical implications of the model, the improved
sensitivity and false negative rate of the new model suggest a
lower missed diagnosis rate in tuberculosis-endemic or resource-
limited regions, enhancing the detection rate of TPE. In a
primary care setting where thoracoscopy is unavailable, this
model could help identify candidates for empirical tuberculosis
treatment. Additionally, a high NPV and lower NLR suggest
that TPE is useful for ruling out TPE, making it suitable
for initial screening in high-prevalence regions and areas with
limited diagnostic access, where it can effectively identify low-
risk patients who do not require further invasive examinations,
thereby avoiding unnecessary procedures. Therefore, this model
could be particularly helpful in community hospitals where
invasive biopsy is not readily available. However, the increased
false positive rate and reduced specificity leading to misdiagnosis
may heighten healthcare burdens. Different endemic areas and
healthcare resource settings can select appropriate risk thresholds
on the basis of their specific circumstances to balance sensitivity
and specificity for optimal screening efficacy.

Prediction models based on indicators from other studies also
showed good diagnostic performance. Liu et al. (15, 27) utilized
a large pleural effusion cohort to develop TPE models via logistic
regression and a support vector machine, with AUCs of 0.937 and
0.914, sensitivities of 0.890 and 0.947, and specificities of 0.895
and 0.807, respectively. Ren et al. (26) developed a random forest
model with an AUC of 0.965, a sensitivity of 0.906, and a specificity
of 0.923 but lacked DCA and the CIC. Shu et al. (33) analyzed
cytotoxic T lymphocyte-related cytokines and established a TPE
diagnostic model on a small sample dataset, with an AUC of
0.920, a sensitivity of 0.829, and a specificity of 0.867. Although
machine learning models exhibit higher AUCs, the nomogram
model offers greater transparency with interpretable variables,
facilitating clinical implementation. Since our data did not include
the variables corresponding to these models, direct comparison
with these models was difficult.

This study also has several limitations. First, the data
were obtained retrospectively and from a single medical
center, which may not be representative of the pleural effusion
population in all regions. Additionally, including only Chinese
populations may limit the model’s generalizability across regions
with different demographic and genetic characteristics. Large
multicenter prospective studies involving healthcare institutions
of varying levels and ethnic groups will be essential to enhance
the generalizability of our model. Second, the degradation in
calibration and goodness-of-fit across both the testing set and the
external validation set may be attributed to small sample sizes,
insufficient positive events, and prevalence deviance. While LASSO
regression was used to mitigate overfitting risks, a larger-scale
dataset is essential for further validation of model performance.
Third, owing to the inconsistency in patient examination items,
the study did not collect enough laboratory indicators to validate
additional models. In terms of statistical analysis, binarization of
continuous variables may result in the loss of variable information
and reduce the prediction accuracy of the model. The subgroup

analyses are absent. Future research should conduct subgroup
and stratification analyses by age, sex, MPE vs. PPE, etc., to
further investigate the model’s predictive performance across
different populations.

5 Conclusion

In summary, this study established a novel TPE model based on
seven variables, fever, TB-IGRA, pADA, the mononuclear cell ratio,
pLDH/pADA, pCEA, and pCYFRA21-1 concentration, with good
diagnostic value and clinical efficacy. This approach may yield good
clinical benefits and increase the detection rate of TPE.
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