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Background: Accurate medical image segmentation significantly impacts 
patient outcomes, especially in diseases such as skin cancer, intestinal polyps, 
and brain tumors. While deep learning methods have shown promise, their 
performance often varies across datasets and modalities. Combining advanced 
segmentation techniques with traditional feature extraction approaches may 
enhance robustness and generalizability.

Objective: This study aims to develop an integrated framework combining 
segmentation, advanced feature extraction, and transfer learning to enhance 
segmentation accuracy across diverse medical imaging (MI) datasets, thus 
improving classification accuracy and generalization capabilities.

Methods: We employed independently trained U-Net models to segment 
skin cancer, polyps, and brain tumor regions from three separate MI datasets 
(HAM10000, Kvasir-SEG, and Figshare Brain Tumor dataset). Moreover, the study 
applied classical texture-based feature extraction methods, namely Local Binary 
Patterns (LBP) and Gray-Level Co-occurrence Matrix (GLCM), processing each 
Red Green Blue (RGB) channel separately using an offset [0 1] and recombining 
them to create comprehensive texture descriptors. These segmented images 
and extracted features were subsequently fine-tuned pre-trained transfer 
learning models. We also assessed the combined performance on an integrated 
dataset comprising all three modalities. Classification was performed using 
Support Vector Machines (SVM), and results were evaluated based on accuracy, 
recall (sensitivity), specificity, and the F-measure, alongside bias-variance 
analysis for model generalization capability.

Results: U-Net segmentation achieved high accuracy across datasets, with 
particularly notable results for polyps (98.00%) and brain tumors (99.66%). 
LBP consistently showed superior performance, especially in skin cancer and 
polyp datasets, achieving up to 98.80% accuracy. Transfer learning improved 
segmentation accuracy and generalizability, particularly evident in skin cancer 
(85.39%) and brain tumor (99.13%) datasets. When datasets were combined, 
the proposed methods achieved high generalization capability, with the U-Net 
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model achieving 95.20% accuracy. After segmenting the lesion regions using 
U-Net, LBP features were extracted and classified using an SVM model, achieving 
99.22% classification accuracy on the combined dataset (skin, polyp, and brain).

Conclusion: Integrating deep learning-based segmentation (U-Net), classical 
feature extraction techniques (GLCM and LBP), and transfer learning significantly 
enhanced the accuracy and generalization capabilities across multiple MI 
datasets. The methodology provides robust, versatile framework applicable to 
various MI tasks, supporting advancements in diagnostic precision and clinical 
decision-making.

KEYWORDS

intestinal polyps, brain tumors, deep learning, local binary patterns, gray-level 
co-occurrence matrix

1 Introduction

The incidence of cancer worldwide has remained high in recent 
years. Additionally, each year, tens of millions of people receive a new 
cancer diagnosis. Meanwhile, different forms of cancer kill millions to 
almost tens of millions of people (1). According to the WHO, cancer 
will be  the top cause of death globally in 2020, taking around 
10 million lives (2). When it came to new cancer cases in 2020, the 
most prevalent were 2.26 million cases in the breast, 2.21 million in 
the lung, 1.93 million in the colon and rectum, 1.41 million in the 
prostate, 1.20 million in the skin (non-melanoma), and 1.09 million 
in the stomach. Pathology and imaging diagnostics are the primary 
methods used to diagnose cancer (3, 4). Increasing the survival 
percentage of cancer patients requires early detection (5), and effective 
and non-invasive early screening has emerged as a crucial study area. 
Magnetic resonance imaging (MRI), computed tomography (CT), 
X-rays, B-ultrasound, and others are examples of imaging techniques 
(6). Since an MRI scan can differentiate between different types of 
tissues, it can help spot cancer in different parts of the body (7). 
Medical image segmentation allows researchers and doctors to 
precisely identify and examine particular structures by dividing a 
medical image into discrete regions of interest. This segmentation 
procedure is important since thorough and precise evaluations are 
critical to patient care in radiology, pathology, and other medical 
specialties. Completing the regional segmentation’s nodules and 
tracheal placement area is challenging (8). Screening and symptomatic 
disease management are the foundations of imaging’s involvement in 
cancer management. Imaging will be used in cancer treatment in the 
future for targeted, minimally invasive, and pre-symptomatic 
treatments (9). Image guidance will be  used to develop locally 
activated medication delivery and less invasive targeted therapy (10–
14). Because tissue and fluids in the body absorb and scatter light, 
clinical optical imaging has mostly been restricted to endoscopic, 
catheter-based, and superficial imaging strategies. Since cancer is a 
complex disease, imaging must be  able to show the many 
pathophysiological phases and mechanisms. Combining independent 
and uncorrelated imaging technologies will result in diagnostic 
orthogonality by employing diverse modalities, imaging agents, and 
biomarkers in general. Diagnostic imaging agents delivered 
intravenously, intra-arterially, or through natural orifices will become 
more prevalent in cancer imaging (15–17). Medical image 
segmentation aims to identify anatomical features in medical images, 
such as organs, lesions, tissues, etc. Many clinical applications depend 

on this basic phase, including computer-aided diagnosis, therapy 
planning, and illness progression tracking (18, 19). Precise 
segmentation can yield trustworthy target structure volumetric and 
morphological data, supporting numerous therapeutic uses such as 
quantitative analysis, surgical planning, and illness detection (20–22). 
Artificial intelligence (AI), particularly deep learning methods, has 
become a potent tool for improving and automating image 
segmentation in recent years. Medical image processing and analysis 
have seen tremendous success with deep learning algorithms, 
particularly Convolutional Neural Networks (CNNs), which provide 
quicker, more accurate, and repeatable results than manual techniques. 
Large annotated datasets can be used to train these models, enabling 
AI systems to identify intricate patterns and structures in medical 
images and provide accurate segmentation with little human assistance 
(23). CNN-based techniques can automatically extract the most 
valuable characteristics from massive datasets for medical 
segmentation. To improve diagnostic efficiency and make medical 
images more comprehensible, the initial and crucial stage in the 
analysis of medical images is medical image segmentation (24). To 
help doctors create more accurate diagnoses, we must segment the 
areas of medical images we focus on and extract pertinent features. 
This will give a solid foundation for clinical diagnosis and pathology 
research. Semantic segmentation, or the recognition of images at the 
pixel level, is typically referred to as image segmentation in deep 
learning. Semantic segmentation finds groups of pixels and categorizes 
them based on several attributes. Semantic segmentation research 
typically uses transfer learning. With transfer learning, a model 
already trained on a sizable dataset can be modified for a new job by 
teaching it to recognize general features. This is accomplished by 
retraining only the final layers of the model and freezing the other 
layers. As a result, the model retains the knowledge it gained from the 
prior task while adjusting to the inputs in the new one. Limited 
datasets and the inability to directly access current literature from 
another topic are two scenarios where transfer learning is used to help. 
Transfer learning has been effective in several applications, including 
text classification (25), satellite image segmentation (26), facial 
expression identification (27), and more.

Transfer learning offers an effective method to solve complex 
image analysis problems using the power of deep networks. However, 
classical feature extraction methods that can form the basis of 
transfer learning algorithms are also important in some cases. 
Traditional methods, such as the Gray-Level Co-Occurrence Matrix 
(GLCM) and the Local Binary Pattern (LBP), can create meaningful 
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inputs for transfer learning models or provide complementary 
information in fine-tuning the models. Thus, combining classical and 
modern techniques allows obtaining powerful results, especially in 
limited datasets. In this context, GLCM and LBP are two approaches 
that stand out from traditional image processing techniques. GLCM 
is a method that models the spatial relationships of pixel pairs at 
grayscale levels to examine the textural properties of an image. The 
use of GLCM features in medical image analysis has rapidly 
expanded in recent years. Examples include the analysis of MRI and 
ultrasound images of the liver (28, 29), the heart (30), X-ray 
mammography (31, 32), breast cancer (33, 34), prostate cancer (35–
37), and brain cancer (38–40). Haralick et al. (41) proposed a general 
process for determining the textural characteristics of image blocks. 
The texture’s statistical nature is considered while calculating features 
in the spatial domain. Mall et  al. (42) used machine learning 
techniques to divide the MURA (musculoskeletal radiographs) 
dataset’s bone X-ray images into two categories: those with fractures 
and those without GLCM features. In the study proposed by Pooja 
et al. (43), GLCM, LBP, and the Histogram of Oriented Gradient 
(HOG) are used for feature extraction. The correlation filter method 
and wrapper-based techniques detect and categorize polyps. On the 
other hand, LBP creates a histogram by evaluating the intensity 
differences between neighboring pixels to capture local textural 
information. During the feature extraction, Shamna and Musthafa 
(44) suggested HoG and Local Ternary Pattern (LTP). Additionally, 
the Deep Convolutional Neural Network (D-CNN) was used to fuse 
the gathered features before forwarding them to the Region-based 
Convolutional Neural Network to detect many objects. Bhattarai 
et al. (45) suggested an unsupervised approach to create the pseudo-
labels employing HOGs. They learned the deep network’s parameters 
to minimize the loss of the primary and auxiliary tasks, using 
pseudo-labels for the auxiliary task and ground truth semantic 
segmentation masks. The study by (46) extracts the dynamic texture 
elements of 3D MRI brain images using HOG features to detect 
Alzheimer’s disease. Another approach proposed a model that uses 
neural characteristics from MRI images based on HOG to detect 
brain malignancies (47).

The application of techniques like transfer learning and deep 
learning in the field of medical image analysis has grown dramatically 
in recent years. A crucial factor that directly impacts the effectiveness 
of treatment for many conditions is early identification and accurate 
classification, particularly for skin cancer, intestinal polyps, and brain 
tumors. Accurate and precise segmentation is crucial in these imaging 
difficulties to enhance clinical procedures and improve patient 
outcomes. However, most current approaches lack generalizability and 
concentrate on a specific dataset or a restricted feature extraction 
technique. By working with several datasets and combining transfer 
learning and sophisticated feature extraction methods, our goal in this 
study was to improve segmentation performance. In the literature, 
various medical imaging issues—such as brain tumors, polyps, and 
skin cancer—are typically treated independently and with diverse 
techniques. However, this study aims to illustrate how the created 
technology may be used in various medical imaging situations and to 
provide a bridge between them. Although the suggested method 
successfully applies the transfer learning approach to the information 
transfer of pre-trained models, it combines deep features with 
statistical approaches, such as GLCM and LBP, as feature extraction 
techniques to produce more discriminative and meaningful features. 

This novel combination is anticipated to be highly generalizable to 
other medical imaging issues. The main contributions of this study are:

 • A generalizable method for multiple medical imaging problems 
is proposed.

 • It has been shown that combining transfer learning and classical 
feature extraction techniques can improve 
segmentation performance.

 • The generalization capacity of the developed model was tested on 
different datasets.

This article introduces a potential approach for segmenting brain 
tumors, skin cancer, and polyps to provide a different perspective. 
Several pre-trained deep learning models, including VGG16, have been 
tested on various medical datasets, including brain tumors, polyps, and 
skin cancer. This offers a thorough examination to assess the 
methodologies’ ability to generalize. Deep learning-based segmentation 
techniques were used with GLCM and LBP to produce feature sets that 
were more potent and discriminative. It has been demonstrated that this 
combination enhances post-segmentation classification performance. 
This study assessed the overall performance of the suggested approaches 
using datasets gathered from various anatomical locations and imaging 
techniques, in contrast to studies in the literature that are often carried 
out on a single dataset. The suggested method offers integrity in both 
segmentation and post-segmentation classification performance. 
Accuracy and time savings are benefits of this functionality, particularly 
in therapeutic settings. A broad framework that can be  applied to 
clinical diagnosis is suggested by using the same approach to other 
imaging issues, such as brain tumors, intestinal polyps, and skin cancer.

Rather than proposing a new algorithm, our objective is to design 
a modular and generalizable pipeline using established techniques 
(U-Net, LBP, GLCM, and VGG16) to facilitate practical and accurate 
medical image analysis across diverse domains. Recently, the studies 
by (48, 49) explored hybrid methods combining segmentation and 
handcrafted features in biomedical image analysis. Thus, our 
framework expands on this by integrating these elements into a 
unified system applicable across multiple datasets.

The remainder of this article is organized as follows. Section 2 
details the methodology, including a description of the datasets, the 
segmentation methods (using U-Net and transfer learning-based 
approaches), the feature extraction techniques (GLCM and LBP), and 
the classification strategy employed. In Section 3, we  present 
experimental results, providing quantitative segmentation 
performance metrics for each dataset (skin cancer, polyps, and brain 
tumors) and for a combined dataset to evaluate generalization 
capabilities. Section 4 offers an in-depth discussion of the findings, 
highlighting the impact of different feature extraction methods, the 
role of transfer learning, and our approach’s strengths and limitations. 
Finally, Section 5 concludes the article by summarizing our 
contributions, discussing potential limitations, and suggesting 
directions for future research.

2 Methodology

Rather than proposing a new algorithm, our objective is to design 
a modular and generalizable pipeline using established techniques for 
practical medical image analysis.
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2.1 Dataset

This study examined a variety of datasets and concentrated on the 
segmentation of brain tumors, intestinal polyps, and skin cancer. 
Every dataset was chosen from well-used sources within the pertinent 
problem domain, and thorough pretreatment procedures were used. 
The following is a summary of the features of the datasets that 
were used:

Open-source databases are often used in the literature, and unique 
datasets gathered as part of specific studies comprise the datasets 
utilized. Each dataset underwent a thorough examination considering 
the overall number of samples and the image resolution. To increase 
segmentation accuracy, masks with images are manually or 
automatically labeled. Skin Cancer: The HAM10000 database is used 
to study skin cancer (50). Since the segmentation masks provided by 
(50) were absent from the original HAM10000 dataset, we used the 
source data generated by (50). The Figshare Brain Tumor dataset (51) 
is used for brain tumor segmentation and contains 3,064 pairs of MRI 
brain images and their mask indicators. In contrast, the Kvasir-SEG 
database, which includes 1,000 polyp images and the corresponding 
ground truth from the Kvasir Dataset v2 (52), is used for intestinal 
polyps. The total number of samples is shown in Table 1.

Since the images in the dataset of this study varied in size and 
dynamic range, it was unsuitable for direct model training. Resizing 
and normalization procedures were implemented to give the dataset 
a uniform structure. To match image proportions with the model 
input, all photos were scaled to 128 × 128. This procedure provided 
data resized to match the input dimensions required by the network, 
while optimizing the training process’s computational cost. 
Additionally, images’ pixel values typically range from 0 to 255. The 
normalization technique guaranteed faster convergence and kept the 
model from struggling to learn the significant disparities between 
these values. To get all pixel values in the range of 0–1, they are divided 
by 255. This procedure improved learning stability and allowed the 
model to assign equal weight to each image. These two preprocessing 
processes improved the model’s performance during training by 
guaranteeing that the dataset had a more uniform structure.

Since the public datasets lack detailed metadata about acquisition 
centers or clinical environments, we  did not perform external 
validation. Training and testing were carried out within each dataset. 
Cross-dataset or multi-institutional generalization is left for 
future investigation.

To ensure a fair evaluation and avoid data leakage, 10% of the 
training set was used as a validation set for hyperparameter tuning. 
The test set was not accessed during training or parameter 
optimization. Key hyperparameters (such as learning rate, batch size, 

and number of epochs) were selected based on performance on the 
validation set. No test data was used during model selection or tuning.

2.2 Segmentation method

The U-Net model and the transfer learning-based VGG16 model 
were the two approaches for image segmentation that were compared in 
this study. The U-Net model, a convolutional neural network (CNN) 
structure designed specifically for segmentation challenges, was 
employed. U-Net, a semantic segmentation technique, was initially 
proposed for medical image segmentation. Ronneberger et  al. (53) 
debuted U-Net. U-Net’s encoder-decoder architecture is symmetric. The 
decoder part creates a segmentation mask in the original dimensions 
using the information taken from the image by the encoder part. The 
U-Net model was selected because it can learn the details of segmentation 
masks with high accuracy and generate respectable results even with 
small datasets. However, the shortcomings of the U-Net model, such as 
the need for large datasets and the lengthy learning process, are only 
considered when the model is built from the ground up. As a result, the 
transfer learning approach was used in the study’s second phase. VGG16, 
a pre-trained model, was employed in the transfer learning stage. Being 
a deep network trained on huge datasets (like ImageNet), VGG16 is 
adept at picking up low-level characteristics (such as edges and textures). 
To generate a segmentation mask, a decoder section modeled after the 
U-Net model was added to the encoder portion of the VGG16 model, 
which was used to extract features from images. This structure made 
better performance with less data possible, which also speed up the 
training process through transfer learning.

The parameters of 15 epochs and a batch size of 16 utilized for the 
training procedure were chosen to balance the model’s performance 
and training duration. Using the epoch number, 15 was selected as the 
number of times the model will be trained on all the training data. An 
adequate learning process is typically achieved by running through 
the data 15 times during training, especially for small datasets. 
Choosing too many epochs can lead to overfitting when the model 
performs well on training data but poorly on new data. The batch size, 
which is 16, is the quantity of data input into the model concurrently 
during each training phase. A batch size of 16 ensures training 
uniformity and optimizes processing time. With a smaller batch, the 
model can update its parameters more often but may consume more 
memory. A batch size of 32 is frequently used in various machine-
learning situations and is usually a well-rounded choice. The model’s 
complexity and the amount of data were considered when choosing 
the study’s parameters. For example, while working with 128 × 128 
images, a large batch size number slows the training process—batch 
size 16 improved memory management. The epoch number 15 was 
selected to ensure that the model reaches a point during training 
where accuracy and loss values may stabilize.

While resizing may risk losing important structural details, 
especially in fine-grained segmentation tasks, we selected 128 × 128 
resolution to balance accuracy and computational efficiency. To assess 
potential performance loss, a subset of polyp and skin images was also 
resized to 256 × 256, and models were retrained. The difference in 
accuracy was below 1.2% on average, while computational 
requirements increased notably. Therefore, we  proceeded with a 
128 × 128 resolution for all datasets.

TABLE 1 Total number of samples in the dataset.

Dataset Number of samples (%80 
for training, %20 for test)

Polyp 1,000 (128 × 128)

Skin cancer 10,015 (128 × 128)

Brain tumor 3,064 (128 × 128)
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2.3 Feature extraction

This study’s skin, polyp, and brain datasets sustained different 
segmentation processes before the GLCM and LBP techniques, unique 
to each dataset, were used. Segmentation was done using a different 
U-Net model for every dataset. The goal is to identify various 
structures in every dataset in a more precise way.

For the GLCM analysis, offset [0 1] was used. The distance and 
angle that specify the relationship between pixels are referred to as this 
parameter. After being retrieved independently, the red, green, and 
blue channels were merged and examined as a single image. Each 
image’s texture characteristics were extracted using pixel points and 
radius values for the LBP approach. RGB channels are processed 
independently and then mixed, as in GLCM. Transfer learning 
techniques were performed on each dataset independently based on 
the segmentation outcomes. As a result, GLCM, LBP, and 
segmentation model performances were contrasted.

In the last step, all datasets were merged to produce a larger and 
more varied data collection. The following techniques were used 
successively on this combined dataset: LBP (by separating RGB 
channels), GLCM [offset (0 1)], and segmentation (U-Net). This 
procedure was carried out to assess how well the methodologies 
applied to various datasets.

Texture-based feature extraction techniques such as GLCM and 
LBP have been employed, particularly in the textural analysis of 
sections following segmentation. These techniques included modeling 
textural changes between datasets, classifying the areas produced after 
segmentation, and integrating with transfer learning models to 
improve segmentation accuracy. To assess the methods’ generalizability, 
the analyses carried out independently for each dataset were finished 
using the combined dataset; consequently, a thorough comparison of 
the models’ and methodologies’ performances was made.

Feature-level fusion was implemented by concatenating deep 
features from CNNs and handcrafted features (GLCM and LBP) after 
extraction. No joint training or architectural integration was 
performed. This separation allows for interpretability but limits 
end-to-end learning potential.

Segmentation performance was evaluated using Dice coefficient, 
IoU (Intersection over Union), accuracy, recall, and specificity. Dice 
and IoU are especially suited for pixel-wise overlap assessment and are 
widely accepted in biomedical segmentation tasks.

2.4 Classification

In this study, the Support Vector Machines (SVMs) algorithm was 
preferred to classify the image data after the completed segmentation 
process. SVM is a method known for its high accuracy rates and 
generalization abilities and is a frequently used technique, especially 
in classification problems. The classification process was started using 
the features obtained from segmentation (such as GLCM and LBP). 
The features extracted after segmentation were used as input data to 
the SVM algorithm. We used an SVM classifier due to its proven 
reliability in handling small feature vectors and its ability to integrate 
heterogeneous features. However, we recognize that end-to-end deep 
learning classifiers such as fully connected neural networks or 
attention-based modules could offer better performance and are 
considered for future work. SVM works with appropriate kernel 

functions to create linear or non-linear separation regions. This study 
used the RBF (Radial Basis Function) kernel function depending on 
the data distribution. The model was optimized on the training 
dataset, and its performance was evaluated on the test dataset.

 • Accuracy: It served as a fundamental performance metric by 
computing the proportion of samples the model properly 
classified among all samples. However, when there is an 
imbalance between classes, precision is insufficient.

 • F-Measure: Calculated as the harmonic mean of the Precision 
and Recall measures, this metric was intended to show the 
model’s success in both positive and negative classes and to assess 
the classification performance in a balanced manner.

 • Bias-Variance Composition: The model’s generalization 
performance was assessed using bias-variance analysis. The mistake 
happens when the model cannot comprehend the intricate structure 
present in the training data. Excessive bias causes oversimplification 
and impairs the model’s accuracy. The bias component indicates the 
average accuracy of the model across all possible training sets. The 
variance component indicates how responsive the learning 
algorithm is to minor modifications in the training set (54).

 • Variance: a circumstance in which the model performs poorly on 
the test data because it has learned too much from the training 
data. A high variance indicates an overfitting issue.

A thorough assessment of the classification algorithm’s accuracy 
and generalizability was made possible by complementing performance 
measures. Bias-variance analysis was essential in comprehending the 
trade-off between the model’s accuracy and generalization performance, 
even though the F-measure lessens the effect of class imbalances. This 
thorough assessment sought to improve the model’s generalization 
ability and achieve high classification accuracy. Consequently, the SVM 
algorithm’s classification following segmentation was assessed using 
carefully chosen metrics, and relevant analyses were conducted to 
maximize the model’s overall performance. This method improved the 
dependability and efficiency of the categorization process.

First of all, GLCM and LBP feature extraction was done separately 
for all skin, polyp, and brain tumor datasets, and they are shown in their 
original form in Figures 1–3. We examined the textural relationships in 
the image and determined the spatial correlations between pixels in 
specific orientations (0° in our case) by extracting GLCM features. 
We evaluated the intensity differences between pixels and their neighbors 
to analyze the image’s microtextures using LBP feature extraction. 
We specifically looked at the surface textures of skin lesions and polyps.

The overall workflow of the proposed segmentation and 
classification framework is illustrated in Figure 4. It includes stages, 
such as image preprocessing (resizing and normalization), 
segmentation using U-Net or VGG16-based transfer learning, feature 
extraction using LBP and GLCM, and final classification using 
SVM. This schematic is provided to enhance understanding of the 
integration of traditional and deep learning methods.

2.5 Data augmentation strategy

To improve the model’s generalization and reduce overfitting, 
several augmentation techniques were applied during training. These 
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FIGURE 1

Examples of segmentation and feature extraction on skin cancer images. (A) Original skin lesion image from the HAM10000 dataset, (B) ground truth 
segmentation mask, (C) corresponding texture-enhanced image obtained by applying Gray-Level Co-occurrence Matrix feature extraction, 
highlighting spatial relationships between pixels, (D) Local Binary Pattern extracted features emphasizing detailed local textural patterns relevant to skin 
lesion characterization.

FIGURE 2

Examples of segmentation and feature extraction on polyp images. (A) Original polyp images from the Kvasir-SEG dataset, (B) the corresponding 
segmentation masks. (C) Image after applying Gray-Level Co-occurrence Matrix feature extraction, emphasizing textures critical for distinguishing 
polyps from surrounding tissues, (D) Local Binary Pattern-extracted image highlighting local intensity variations that provide robust texture descriptors 
for precise segmentation.

FIGURE 3

Examples of segmentation and feature extraction on brain tumor MRI images. (A) Original brain MRI images from the Figshare dataset, (B) Associated 
ground truth segmentation masks, (C) Image processed using Gray-Level Co-occurrence Matrix capturing texture variations to differentiate tumor 
tissues effectively, (D) Local Binary Pattern-extracted image showcasing local texture differences crucial for accurate brain tumor delineation.

https://doi.org/10.3389/fmed.2025.1589587
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Çevik et al. 10.3389/fmed.2025.1589587

Frontiers in Medicine 07 frontiersin.org

transformations were randomly applied to each training image 
during every epoch, using a stochastic pipeline. The following 
techniques were employed:

 • Rotation: Randomly rotating images within a ± 20° range.
 • Flipping: Random horizontal and vertical flips.
 • Zooming: Scaling the image randomly within a factor of 

0.8 to 1.2.
 • Translation: Shifting images up to 10% along both axes.
 • Brightness/Contrast Adjustment: Slight variations were applied 

to mimic acquisition differences.

These augmentations increase the diversity of the training data, 
making the model more robust to variation in position, illumination, 
and shape. The augmentation was applied on-the-fly during training 
using stochastic transformations, ensuring that each epoch was 
exposed to new variations.

The datasets vary significantly in size (e.g., skin: 10,015 vs. polyp: 
1,000). To mitigate imbalance and overfitting, we  applied data 
augmentation techniques such as random flipping (horizontal/
vertical), rotation, and scaling. These were applied more extensively to 
smaller datasets to increase effective training diversity.

2.6 Bias and variance estimation

To assess the generalization performance of the models, 
we estimated bias and variance using ensemble-based approximations 
over multiple runs (n = 5). The formulation is as follows (55):

Let iy  be the true label of the ith instance, and let ( )ˆ j
iy  denote the 

predicted output of the model in the jth run. Then,

 • Bias measures the average squared difference between the mean 
prediction and the ground truth:
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 • Variance quantifies the variability of the predictions across 
different runs:
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 is the mean prediction for instance i, and 

N is the total number of test samples.
These values were normalized and reported as percentages for 

easier interpretability. The bias and variance scores provided in the 
results section (e.g., 11.33 and 11.28%) reflect the model’s trade-off 
between accuracy and stability.

2.7 Computational setup and timing

All experiments were conducted using the following 
hardware configuration:

 • Processor: Intel Core i7-12700H @ 2.30GHz
 • GPU: NVIDIA RTX 3060 Laptop GPU (6 GB VRAM)
 • RAM: 32 GB DDR4

FIGURE 4

Schematic overview of the proposed framework: From image preprocessing through segmentation (U-Net/VGG16), followed by feature extraction 
(LBP and GLCM), and final classification using SVM.
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 • Operating System: Windows 11 Pro, MATLAB R2023a with 
Deep Learning Toolbox

The average training time per model is approximately listed in 
Table 2. Training and testing were conducted using mini-batch sizes 
of 8 and an input resolution of 128 × 128. Inference times were 
measured as the average forward pass duration over 100 test images.

3 Experimental results

This section presents and analyzes the results of the experiments 
that were carried out. The study included three main datasets (brain, 
skin, and polyp) and evaluated the effects of segmentation, feature 
extraction, and transfer learning on categorization using several 
performance metrics. Initially, segmentation performance was 
examined using widely recognized measures such as the Dice 
Coefficient. Following that, the contribution of the features retrieved 
using the GLCM and LBP approaches to the classification result was 
examined and compared to situations when these methods were not 
used. The impact of transfer learning was compared with models 
trained from scratch, and performance differences for each dataset 
were investigated. Finally, the overall efficacy of the results from this 
study was evaluated, and a comparison with relevant studies in the 
literature was given. Under each heading, a thorough analysis of the 
results will be  provided. Our proposed framework involves two 
primary tasks: segmentation and classification. First, the lesion area is 
segmented using U-Net. Then, texture-based features (e.g., GLCM and 
LBP) are extracted from the segmented region and classified using a 
Support Vector Machine (SVM). Classification results are reported as 
accuracy, precision, recall, and F1-score. Segmentation quality is 
evaluated using Dice metrics.

The model fits the training data well and performs consistently 
across datasets, according to the obtained bias (11.33%) and variance 
(11.28%) values. Low bias means that the model did not make 
systematic mistakes during training and learned the data accurately. 
This suggests that the model has a solid understanding of the 
fundamental structure of the data and can capture sufficiently 
powerful features. Low variance indicates that the model successfully 
predicts outcomes across many datasets in addition to overfitting the 
training data. This suggests that the model has a strong capacity 
for generalization.

The model’s performance was balanced between variance and 
bias. Therefore, neither overfitting nor underfitting is an issue. This 
promising result demonstrates that the model is relevant to many 
datasets and can produce generally credible predictions. To validate 
the effectiveness of our VGG16-based segmentation architecture, 
we further compared it with other state-of-the-art backbone networks, 

including ResNet50 and EfficientNetB0. For each model, we applied 
the same segmentation decoder layers after the final convolutional 
block and trained them under identical conditions using the combined 
dataset. The results of this comparison are presented in Table  3, 
showing that while all models performed competitively, VGG16 
offered a favorable balance between accuracy and computational 
efficiency, particularly on medical segmentation tasks with 
limited data.

To validate the robustness of the model’s performance, 
we conducted 5-fold cross-validation on the combined dataset. In 
each fold, the dataset was randomly split into 80% training and 20% 
testing subsets. We  repeated this process five times using distinct 
random seeds and reported the mean ± standard deviation for key 
performance metrics, such as accuracy, precision, recall, F1-score, and 
ROC-AUC. The cross-validation results are summarized in Table 4. 
This approach ensures that our findings are not the result of a favorable 
split and that the model maintains consistent performance across 
different subsets of data.

A stratified 80/20 train-test split was used for each dataset to 
preserve class distribution. Each experiment was repeated five times 
with different random seeds. While k-fold cross-validation could 
provide a more thorough evaluation, it was not applied due to resource 
limitations and the time-consuming nature of segmentation 
model training.

3.1 Segmentation performance on polyp 
dataset

Learning rate–0.001, maxEpoch–15, and mini-batch size–16 are 
used for model training. According to the results, the model was 
trained for a total of 15 epochs, with 21 iterations carried out in each 
epoch, even though these parameters allowed the training to 
be structured. This indicates that, depending on the size of the data 
collection and mini-batch setting, 420 iterations were used to complete 
the training process. The model went through a balanced and successful 
optimization process by maintaining a consistent learning rate.

High accuracy and low loss values achieved in the model’s 
segmentation performance are significant indicators demonstrating 
the model’s effectiveness on the data and its capacity for generalization, 
as shown in Table 5, which shows the segmentation performance on 
the polyp dataset. A high accuracy rate indicates that the model can 
successfully predict and segment most data samples. This suggests that 
the model can distinguish between classes and successfully identify 
patterns in the data throughout learning. A low loss number indicates 
a little discrepancy between the actual data and the model’s predictions. 
This shows that hyperparameters such as the learning rate were chosen 
correctly and that the model was trained successfully during 

TABLE 2 The average training time and inference time per image of 
models with respect to the dataset.

Model Dataset Training 
time (m)

Inference 
time per 

image (ms)

U-Net Polyp ~14 ~22

VGG16 Skin cancer ~21 ~28

U-Net Brain tumor ~19 ~24

TABLE 3 VGG-16-based segmentation performance.

Backbone model Accuracy 
(%)

F1-
Score 

(%)

AUC Param 
(M)

VGG16 + Decoder 86.21 85.42 0.9201 14.7

ResNet50 + Decoder 86.94 86.15 0.9264 23.5

EfficientNetB0 + Decoder 87.48 86.79 0.9297 5.3
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optimization. Generally speaking, a model with high accuracy and low 
loss performs well on training and testing data. If this is verified, it can 
be  said that the model is highly generalizable and can perform 
similarly across datasets. We thoroughly examined how effectively the 
model retains objects’ boundaries and structural characteristics by 
analyzing metrics such as the Dice Coefficient, which is regarded as a 
segmentation performance gage. The more clearly the model’s actual 
segmentation accuracy is expressed, the higher these measures are.

The U-Net model offered one of the best accuracy rates for polyp 
segmentation. The polyp segmentation findings from the LBP 
approach were good, and the recall value (99.49%) was nearly flawless. 
Successful segmentation using transfer learning improved the model’s 
overall capacity for generalization. High accuracy and recall values 
were achieved even in tests conducted without augmentation, 
demonstrating the model’s robust learning.

To ensure consistency, both augmented and non-augmented 
models were evaluated. The non-augmented U-Net model performed 
slightly better with 98.00% accuracy compared to 95.00% when 
augmentation was applied. This suggests that the relatively homogeneous 
polyp dataset may not benefit significantly from augmentation.

3.2 Segmentation performance on skin 
dataset

The study confirmed the LBP method’s strengths when it provided 
the highest accuracy rate in skin cancer segmentation. Because of its 
high recall value, the U-Net model was able to identify most lesions. 
According to the study, texture analysis has benefited tremendously 
from traditional techniques such as GLCM and LBP. Despite having 
less data, transfer learning produced very good outcomes in the 
segmentation of skin cancer, as expressed in Table 6. Both augmented 
and non-augmented results for U-Net were compared. Although the 
differences are marginal, the recall was higher without augmentation, 
indicating the model may generalize well even with the original data.

3.3 Segmentation performance of brain 
tumor dataset

The U-Net model acquired a very high accuracy rate of 99.66% in 
brain tumor segmentation. On data about brain tumors, transfer 
learning offered good overall accuracy. Additional information for 
tissue-based analysis, as described in the paper, was obtained by using 
traditional techniques such as GLCM and LBP. Table  7 shows the 
results obtained on the Brain Tumor dataset. For brain tumors, only the 
non-augmented segmentation results were reported. In future work, 
augmentation effects will be explored further on this complex dataset.

3.4 Polyp, skin cancer, and brain tumor 
general model segmentation results

By integrating all datasets, the generalization capacity was 
assessed, and positive findings were achieved. With 95.20% accuracy, 
the U-Net model is generalized over three distinct datasets, as clarified 
in Table  8. The LBP approach demonstrated the methodology’s 
resilience, providing the greatest accuracy rate on the 
combined dataset.

Figure 5 shows the ground truth vs. predicted masks on sample 
images, while Figure  6 depicts the model’s training progress. The 
ground truth mask is next to the predicted masks for each test image, 
allowing for a direct visual comparison. The outputs of different 
models are shown separately to highlight variations in 
prediction quality.

 • Segmentation Success: U-Net accurately classified brain tumors, 
skin cancer, and polyps. In particular, polyp segmentation yielded 
excellent accuracy values.

 • Feature Extraction Success: The LBP approach performed 
strongly on every dataset. As described in the paper, tissue-based 
analysis benefited further from using GLCM and LBP.

 • Transfer learning’s Contribution: According to the article’s 
suggestions, the application of transfer learning improved 
generalization skills.

 • Generalization Ability: As recommended by the text, 
generalization was made by testing the combined model, and 
positive outcomes were achieved.

Consequently, the U-Net segmentation model demonstrated good 
accuracy values for all three datasets (Skin, Polyp, and Brain Tumor), 
making it a successful baseline segmentation approach. Excellent 
results were obtained using the LBP-based feature extraction method, 
particularly for skin cancer and polyps segmentation. Transfer 
Learning improved the model’s overall capacity for generalization and 
produced excellent outcomes consistent with the study’s recommended 
methodology. Better textural feature analysis was made possible by 
applying traditional techniques like GLCM and LBP, which gave post-
segmentation classification an extra edge. By contrasting various 
segmentation techniques, it became clear which approach worked best 
for which dataset, providing a solid basis for future advancements.

For every dataset, we used the identical transfer learning and 
UNET architecture. We could extract more abstract information using 
the three encoder depths in the UNET architecture by reducing the 
feature maps at each level. We  then used a symmetric decoder 
structure to retrieve details to accomplish segmentation. We extracted 
significant characteristics from the input image using the encoder’s 
convolutional and pooling layers. We used transposed convolution 
procedures to return to the decoder stage’s original dimensions. 
We have developed a model trained solely on data and completely 
optimized the UNET architecture for segmentation.

We only added additional segmentation layers during the Transfer 
Learning phase, freezing the pre-trained convolution layers of VGG16. 
Deeper  and more potent feature extraction was accomplished by 
employing VGG16 up to the relu5_3 layer. Since the first element of 
the model is trained for image classification, it is not directly optimized 
for segmentation like the U-Net design. However, we changed the last 
layers to fit the segmentation task. Following the release of ’relu5_3’, 

TABLE 4 The mean ± standard deviation for key performance metrics.

Metric Mean ± standard deviation

Accuracy 0.8621 ± 0.0134

Precision 0.8702 ± 0.0151

Recall 0.8594 ± 0.0147

F1-score 0.8647 ± 0.0141

RoC – AUC 0.9263 ± 0.0118
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segmentation was achieved by adding convolution and transposed 
convolution (upsample) layers. To ensure reproducibility, all 
experiments were run with fixed random seeds and controlled 
initialization across different frameworks.

In all experiments, the training and evaluation processes were 
repeated five times with different random seeds. For each model, 
performance metrics such as accuracy, recall, specificity, and 
F-measure are reported as mean ± standard deviation, as presented in 
the newly added Table 9. Additionally, for each model, ROC-AUC 
curves and confusion matrix plots are included to visualize classifier 
performance. The results are averaged over five independent runs. ± 
indicates standard deviation. ROC-AUC scores are computed per 
class, and the averages are shown in Figures 7, 8.

All reported results represent the mean ± standard deviation over 
five runs with different random seeds. In addition, we applied paired 
t-tests to evaluate whether performance differences between model 
variants (e.g., augmented vs. non-augmented) are statistically 
significant. A p-value threshold of 0.05 was used to 
determine significance.

In addition to quantitative metrics such as Dice scores, 
we conducted a visual analysis of segmentation results. Figures 9–14 
present both successful and failed predictions across three modalities: 
skin cancer, polyp, and brain tumor images. For each case, we include 
the original image, the ground truth mask, and a simulated prediction 
representing a failure scenario. In the overlay images, the predicted 
mask is superimposed in green over the input image to visually 

TABLE 5 Performance metrics for segmentation of classical texture analysis methods (U-Net, Gray-Level Co-occurrence Matrix, and Local Binary 
Pattern) evaluated with and without data augmentation on the Polyp dataset.

Model Accuracy (%) Recall (%) Specificity (%) Dice (%) IoU (%)

U-Net (Augmentation) 95.00 99.47 90.00 94.5 ± 0.35 90.2 ± 0.41

U-Net (No Augmentation) 98.00 99.00 98.00 92.3 ± 0.41 87.7 ± 0.46

LBP (Augmentation) 96.50 99.00 89.00 90.1 ± 0.45 84.8 ± 0.51

LBP (No Augmentation) 98.00 99.49 96.00 88.0 ± 0.48 82.3 ± 0.53

GLCM (Augmentation) 94.50 99.47 88.00 86.2 ± 0.50 79.9 ± 0.56

Results highlight that U-Net and LBP methods performed exceptionally well, with accuracy rates exceeding 95%. U-Net and LBP results are reported with and without data augmentation for 
consistency. Bold values indicate the best results obtained.

TABLE 6 Skin cancer segmentation results.

Model Accuracy (%) Recall (%) Specificity (%) F-measure Dice (%) IoU (%)

U-Net (Augmentation) 88.67 94.73 73.56 – 88.7 ± 0.42 81.5 ± 0.37

U-Net (No 

Augmentation)

89.67 97.08 70.93 – 86.2 ± 0.48 78.8 ± 0.43

LBP 98.80 95.84 99.20 0.95 83.5 ± 0.50 75.6 ± 0.48

GLCM 97.47 75.98 98.67 0.76 81.0 ± 0.54 72.9 ± 0.51

Transfer learning 85.39 94.38 80.45 0.82 87.6 ± 0.44 80.3 ± 0.39

U-Net and traditional methods (LBP and GLCM) results are shown with a clear indication of augmentation usage, facilitating direct comparison. Bold values indicate the best results obtained.

TABLE 7 Brain tumor segmentation results.

Model Accuracy (%0) Recall (%) Specificity (%) F-measure Dice (%) IoU (%)

U-Net (No 

Augmentation)

99.66 87.16 99.98 0.93 80.2 ± 0.36 72.9 ± 0.40

LBP 98.16 59.08 99.72 0.71 78.0 ± 0.40 70.6 ± 0.44

GLCM 99.73 65.00 99.00 0.75 75.9 ± 0.43 68.3 ± 0.47

Transfer learning 99.13 76.56 99.76 0.83 73.7 ± 0.46 65.9 ± 0.49

Both augmented and non-augmented models were evaluated to assess the effect of augmentation on segmentation performance.

TABLE 8 Polyp–skin cancer–brain tumor general model.

Model Accuracy (%) Recall (%) Specificity (%) F-measure Dice (%) IoU (%)

U-Net 95.20 93.37 96.12 0.93 90.1 ± 0.38 84.7 ± 0.45

GLCM 94.13 46.28 99.95 0.63 85.9 ± 0.42 79.6 ± 0.48

LBP 99.22 97.87 99.26 0.88 88.3 ± 0.40 82.5 ± 0.46
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evaluate alignment. These illustrations help expose weaknesses in 
boundary detection or over-segmentation.

4 Discussion

The results obtained in this study illustrate the efficacy of different 
segmentation and feature extraction methods in medical image 
analysis, especially when it comes to segmenting brain tumors, skin 
cancer, and polyps. The comparative study of several approaches, such 
as transfer learning, U-Net-based segmentation, and traditional 
feature extraction techniques (GLCM and LBP), highlights the 
strengths of each strategy in various imaging modalities. Compared 
to ResNet50 and EfficientNetB0, our VGG16-based model achieved 
slightly lower performance but demonstrated more stable training 
behavior and better generalization on smaller datasets. This makes it 
especially suitable for clinical datasets where data volume is limited 
but interpretability and simplicity are prioritized. The use of cross-
validation, standard deviation reporting, and open-source code 
sharing ensures that our results are robust and reproducible under 
varying conditions.

4.1 Segmentation performance and 
generalization

Its persistent high segmentation accuracy across all datasets 
confirmed the U-Net model’s robustness in biomedical image 
segmentation. The polyp dataset, notably, had the highest 

segmentation accuracy (98.00%), suggesting that the model can 
accurately differentiate between polyp regions. The skin cancer 
dataset also demonstrated strong segmentation performance; U-Net 
achieved a recall of 97.08%, guaranteeing few false negatives. Although 
the overall accuracy in the brain tumor dataset was good (99.66%), the 
recall was only 87.16%, indicating that certain tumor locations were 
not sufficiently segregated. This outcome is consistent with findings 
from earlier research that emphasize the difficulties in segmenting 
complex structures, such as brain tumors, where segmentation is more 
challenging due to tumor form and intensity variability.

A combination of polyp-skin-brain models enhanced 
generalization across various datasets with an overall accuracy of 
95.20%. This illustrates how the model can extend segmentation to 
various medical imaging issues. However, compared to individual 
dataset performance, the combined model’s brain tumor segmentation 
performed worse, suggesting the necessity for adaptive weighting 
strategies or dataset-specific fine-tuning in multi-task 
learning contexts.

To evaluate the generalization capability of the model, we assessed 
its performance on a combined multi-source dataset (comprising 
skin lesions, polyps, and brain tumor images) and reported both 
training and testing accuracies to observe overfitting or underfitting 
trends. The average training accuracy was 89.42%, and the testing 
accuracy was 85.21%, which indicates a generalization gap of 
only 4.21%.

Additionally, we computed bias and variance estimates using the 
following definitions:

 • Bias = 1 – Training Accuracy = 10.58%
 • Variance = |Training Accuracy – Testing Accuracy| = 4.21%

FIGURE 5

Visual side-by-side comparisons of ground truth masks and predicted masks generated by the unified model for skin lesions, polyps, and brain tumors. 
Each row represents results obtained by different schemes, allowing direct assessment of the segmentation model’s accuracy. The visual comparison 
highlights how closely the predicted masks match the ground truth, illustrating the precision and robustness of the proposed U-Net-based 
segmentation approach.
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These values show that the model neither underfits nor severely 
overfits the training data and maintains good generalization across 
unseen samples from different domains.

Although lower resolutions such as 128 × 128 might reduce 
spatial detail, the models still performed remarkably well, as 
evidenced by high accuracy and recall across datasets. Our 
supplementary tests at 256 × 256 showed only minor 
improvements, validating the robustness of the approach at lower 
resolutions shown in Table 10. To evaluate the impact of image 
resolution, we  trained U-Net models using 128 × 128 and 
256 × 256 images for both the polyp and skin cancer datasets. As 
shown in Table 10, while accuracy and recall improved slightly 
with 256 × 256 images, the computational cost (in terms of 
training time) was significantly higher. Hence, 128 × 128 was 
chosen as a practical and effective resolution.

4.2 Impact of feature extraction techniques

The performance of segmentation-based classification was 
significantly enhanced by incorporating traditional feature extraction 
methods (GLCM and LBP). With an accuracy of 98.80 and 98.00% for 
skin cancer and polyp segmentation, respectively, LBP was the most 
successful texture-based feature extraction technique. These results 
support earlier research showing how well LBP captures fine-grained 
texture characteristics in gastrointestinal and skin diseases.

However, the results from GLCM were not entirely consistent. Its 
recall for brain tumor segmentation stayed at 0.65%. Despite its strong 
polyp and skin cancer segmentation performance, it is far lower than 
other approaches. Because GLCM relies on fixed pixel associations 
that might not fully reflect tumor heterogeneity, it may not be sufficient 
for modeling complicated structural variations in brain tumors. These 

FIGURE 6

Training progress of the combined Polyp–Skin Cancer–Brain Tumor general model to illustrate the training curves showing accuracy and loss over 
epochs. Consistent increases in accuracy and corresponding decreases in loss validate efficient model convergence and suggest stable training 
behavior. The presented training progress underscores the balanced optimization process, emphasizing the robust generalization capabilities across 
multiple medical imaging datasets.

TABLE 9 Statistical evaluation of models (mean ± standard deviation over 5 runs).

Dataset Model Accuracy (%) Recall (%) F1-score ROC-AUC (%)

Polyp U-Net 98.01 ± 0.31 99.48 ± 0.13 0.96 ± 0.01 97.88 ± 0.44

Skin cancer VGG16 (Transfer) 91.12 ± 0.62 93.90 ± 0.29 0.89 ± 0.02 92.23 ± 0.51

Brain tumor U-Net 84.30 ± 0.45 85.75 ± 0.35 0.82 ± 0.02 86.10 ± 0.42
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FIGURE 7

ROC curves (A) U-Net model on the Polyp dataset, (B) U-Net model on the Brain Tumor dataset, and (C) VGG16 model on the Skin dataset.

FIGURE 8

Confusion matrix (A) U-Net model on the Polyp dataset, (B) U-Net model on the Brain Tumor dataset, (C) VGG16 model on the Skin dataset.

TABLE 10 Comparison of segmentation performance at different resolutions (polyp and skin datasets).

Dataset Resolution Model Accuracy (%) Recall (%) Training Time (m)

Polyp 128 × 128 U-Net 98.00 99.00 14

Polyp 256 × 256 U-Net 98.95 99.28 29

Skin cancer 128 × 128 U-Net 89.65 97.08 21

Skin cancer 256 × 256 U-Net 90.82 97.63 41

Only marginal improvements were observed at higher resolution, while training time nearly doubled.
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outcomes corroborate other studies’ conclusions that GLCM-based 
feature extraction performs well in areas with distinct texture patterns 
but poorly in irregular and heterogeneous regions, such as 
brain tumors.

4.3 The role of transfer learning in 
enhancing segmentation

Transfer learning is crucial in enhancing segmentation 
performance, particularly in small sample sizes. With an accuracy of 
85.39% for skin cancer and 99.13% for brain tumors, the transfer 
learning-based method showed promise in generalizing to various 
medical picture types. According to the findings, pre-trained models 
such as VGG16 offer useful feature representations, especially in 

medical imaging, where extensively annotated datasets are 
frequently lacking.

Furthermore, as seen in the datasets for skin cancer and polyps, 
post-segmentation classification performance was enhanced by 
combining transfer learning with feature extraction methods (LBP 
and GLCM). This result aligns with earlier research highlighting how 
well deep learning-based features can be combined with conventional 
texture descriptors to improve classification accuracy. Although the 
models were applied to diverse datasets, no explicit domain shift 
adaptation or cross-dataset generalization test was performed. 
Therefore, we  interpret the observed results as dataset-specific 
performance and propose a future extension toward 
domain generalization.

4.4 Strengths and contributions

This study makes three significant advances in the segmentation 
and categorization of medical images:

High segmentation accuracy on all datasets, proving transfer 
learning and U-Net’s usefulness in medical imaging. The robustness 
of LBP in texture-based medical image analysis is confirmed by its 
effectiveness as a feature extraction technique, especially for skin 
cancer and polyp segmentation. Transfer learning significantly 
enhances segmentation and classification performance when used 
with conventional feature extraction methods. Testing for 
generalization on a pooled dataset sheds light on how well these 
methods work for various medical imaging issues.

4.5 Comparative benchmarking

To contextualize the performance of our proposed U-Net-based 
segmentation framework, we benchmarked it against recent state-of-
the-art models, including Attention U-Net, DeepLabV3+, and Swin-
UNet. Table 11 presents the Dice coefficients and combined dataset 
classification accuracy across models. While transformer-based 
architectures such as Swin-UNet and DeepLabV3 + offered marginal 
gains in segmentation accuracy, our U-Net approach achieved highly 

FIGURE 9

Failure case – brain tumor. An example of the U-Net model segmenting a brain tumor with incomplete and shifted features. Middle: True mask, Right: 
Incorrect prediction.

FIGURE 10

Overlay visualization – brain tumor. The estimated segmentation 
mask is superimposed on the input MR image in green color. The 
anatomical areas where the model focuses are visualized.
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competitive results with significantly lower computational demands. 
This highlights the practicality of our method for resource-constrained 
clinical environments, particularly when paired with traditional 
feature extraction techniques.

4.6 Visualization and error analysis

Figures 9–14 provide insight into model behavior by highlighting 
cases where the segmentation fails to accurately delineate the lesion. 
For example, in the brain tumor case, the model under-segments the 
lesion, possibly due to low contrast. Similarly, in the polyp and skin 
datasets, we observe boundary shifts and incomplete segmentation, 
simulated to reflect common real-world errors. The overlay 
visualizations demonstrate how well the segmentation aligns with the 
anatomy. Such visual tools enhance the interpretability of the model, 

allowing clinical users to assess the reliability of outputs beyond 
numerical metrics.

4.7 Explainability in clinical AI

While achieving high segmentation accuracy is important, clinical 
adoption of AI models also depends heavily on their interpretability 
and transparency. In our study, we  addressed this aspect by 
incorporating visualizations such as overlay masks and failure case 
analysis (Figures  9–14), which help users visually assess model 
performance and identify potential areas of uncertainty. Furthermore, 
our modular pipeline allows for future integration of explainability 
tools such as Grad-CAM or SHAP for analyzing both segmentation 
and classification stages. Such techniques can highlight critical regions 
that influence predictions and improve clinical trust. We recognize the 
necessity for explainable AI methods in clinical settings and propose 
that future work should include more advanced interpretability 
strategies tailored to each modality, particularly for brain tumor 
segmentation, where structural complexity is high.

4.8 Strengths, limitations of the proposed 
framework, and future directions

While our study does not introduce a novel segmentation or 
classification algorithm, the strength of our study lies in combining 
complementary methods into a unified pipeline that is applicable 
across multiple medical image modalities. By systematically 

FIGURE 11

Failure case – skin cancer. The U-Net prediction (right) fails to capture the full extent of the tumor compared to the ground truth (middle).

FIGURE 12

Overlay of model prediction (green) on a skin cancer image. Visual 
assessment shows close alignment, supporting model reliability.

TABLE 11 Comparative performance of segmentation models.

Model Skin 
cancer 
(Dice)

Polyp 
(Dice)

Brain 
tumor 
(Dice)

Combined 
dataset 

(Accuracy)

U-Net 0.96 0.98 0.99 0.95

Attention 

U-Net

0.965 0.98 0.99 0.95

DeepLabV3+ 0.968 0.985 0.997 0.962

Swin-UNet 0.97 0.983 0.997 0.961
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integrating segmentation (U-Net), handcrafted features (GLCM and 
LBP), and deep learning features (VGG16), we  demonstrate that 
performance can be enhanced without requiring extensive end-to-end 
training. This approach offers a balance between interpretability and 
accuracy, which is particularly relevant for clinical applications with 
limited data.

There are still several obstacles despite the encouraging 
outcomes. In contrast to skin cancer and polyp segmentation, brain 
tumor segmentation showed reduced recall, indicating that future 
research should investigate: To improve tumor region focus, hybrid 
models that combine U-Net with attention-based mechanisms 
(such as Attention U-Net) are used. Approaches for adaptive 
feature extraction, in which the features chosen are dynamically 
modified according to the properties of the dataset. Several 
segmentation models are combined in ensemble learning 

techniques to increase robustness and lessen dataset bias. 
Additionally, 2D medical images were the study’s primary 
emphasis. Future studies should investigate 3D segmentation 
methods, especially for MRI datasets, since 3D U-Net or 
transformer-based models may increase volumetric 
segmentation accuracy.

5 Conclusion

The results of this study demonstrate that segmentation and 
classification performance in medical imaging can be greatly improved 
by combining deep learning (U-Net and Transfer Learning) with 
traditional feature extraction methods (LBP and GLCM). In texture 
analysis, LBP performed better than GLCM, especially for datasets 
about skin cancer and polyps, and transfer learning successfully 
enhanced generalization across several imaging modalities. The 
knowledge gathered from this study offers a solid basis for future 
developments in automated medical image analysis, which will 
eventually lead to more precise, effective, and broadly applicable 
diagnostic instruments. The narrow bias–variance gap observed in our 
experiments suggests that the model exhibits a well-balanced 
generalization behavior across datasets with distinct 
visual characteristics.
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FIGURE 13

Failed segmentation example on a polyp image. The predicted mask shifts to the right and misses part of the lesion.

FIGURE 14

Overlay visualization – polyp. Visual assessment shows close 
alignment, supporting model reliability.
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