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Accurate segmentation of the prostate in T2-weighted MRI is critical for e�ective

prostate diagnosis and treatment planning. Existing methods often struggle with

the complex textures and subtle variations in the prostate. To address these

challenges, we propose RaNet (Residual Attention Network), a novel framework

based on ResNet50, incorporating three key modules: the DilatedContextNet

(DCNet) encoder, the Multi-Scale Attention Fusion (MSAF), and the Feature

Fusion Module (FFM). The encoder leverages residual connections to extract

hierarchical features, capturing both fine-grained details andmulti-scale patterns

in the prostate. The MSAF enhances segmentation by dynamically focusing on

key regions, refining feature selection and minimizing errors, while the FFM

optimizes the handling of spatial hierarchies and varying object sizes, improving

boundary delineation. The decoder mirrors the encoder’s structure, using

deconvolutional layers and skip connections to retain essential spatial details. We

evaluated RaNet on a prostate MRI dataset PROMISE12 and ProstateX , achieving

a DSC of 98.61 and 96.57 respectively. RaNet also demonstrated robustness

to imaging artifacts and MRI protocol variability, confirming its applicability

across diverse clinical scenarios. With a balance of segmentation accuracy and

computational e�ciency, RaNet is well suited for real-time clinical use, o�ering

a powerful tool for precise delineation and enhanced prostate diagnostics.

KEYWORDS

RaNet, deep learning, refine feature selection, medical image segmentation, prostate

cancer, feature fusion

1 Introduction

Medical image segmentation is vital for disease diagnosis, lesion localization,

treatment planning, and surgical navigation. Traditional methods, requiring manual

feature extraction, are often computationally expensive and lack flexibility across different

clinical scenarios. In contrast, deep learning, especially convolutional neural networks

(CNNs), has revolutionized segmentation by enabling end-to-end learning directly

from data, eliminating the need for manual feature design (1–3). Among the deep

learning architectures, U-Net (4) has gained prominence due to its efficient encoder-

decoder structure, which integrates semantic features for precise segmentation. Recent
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advancements, including dilated convolutions (5), attention

mechanisms (6), and multi-scale feature extraction (7), have

further enhanced U-Net’s capabilities, addressing challenges

like ambiguous boundaries and complex anatomical structures.

Despite these advancements, CNNs still struggle with modeling

long-range spatial dependencies, which are critical for resolving

complex structures, especially in medical images with subtle

contrast variations and adjacent tissue influences. This limitation

has prompted the exploration of transformer-based models (8, 9),

which excel at capturing global context, improving segmentation

accuracy. However, incorporating long-range dependencies

remains an ongoing challenge for segmentation tasks where

contextual information is essential.

Prostate cancer is one of the leading causes of cancer-

related deaths in men, making accurate prostate segmentation on

T2-weighted magnetic resonance imaging crucial for diagnosis,

treatment planning, and disease monitoring. While manual

segmentation by radiologists is the gold standard, it is time-

consuming and prone to inter-observer variability. Automated

prostate segmentation has proven difficult due to complex

anatomical textures, subtle contrast differences, and imaging

artifacts such as motion blur and inhomogeneity (10, 11).

Despite advancements in MRI technology, automated prostate

segmentation remains challenging due to the region’s complex

anatomical textures, subtle contrast variations with adjacent tissues,

and imaging artifacts such as motion blur or inhomogeneity.

While machine learning (ML) and deep learning (DL) methods

have shown promise, conventional models often fail to capture

the PZ’s intricate patterns (12). Standard convolutional neural

networks (CNNs), constrained by fixed-size kernels, struggle to

model long-range spatial dependencies essential for resolving

ambiguous boundaries (13). Furthermore, variability in MRI

acquisition protocols, patient anatomy, and artifact profiles limits

the model’s robustness to MRI artifacts and generalizability across

different clinical settings, as demonstrated by the experimental

results in later sections (14). Despite significant advancements in

medical image segmentation, several challenges remain. Existing

segmentation models struggle to capture complex patterns and

subtle variations in medical images, particularly in challenging

regions like the prostate. Additionally, they often fail to effectively

focus on relevant regions and refine feature maps at multiple

scales, leading to reduced accuracy. Variability in semantic and

spatial information from multiple decoder layers also limits

segmentation performance.

To address these limitations, we propose RaNet, a novel

ResNet50-based framework enhanced with dynamic attention

mechanisms. By integrating attention modules into skip

connections, RaNet adaptively prioritizes relevant regions in

T2-weighted MRI, suppressing noise while refining feature

extraction for precise prostate localization. This approach aims

to overcome the shortcomings of fixed-receptive-field CNNs and

variability-induced performance degradation, offering a robust

solution for accurate and generalizable prostate segmentation.

The key contributions of this paper are as follows:

• Introduce a robust encoder-decoder architecture that utilizes

residual connections to effectively extract hierarchical features

while preserving spatial details, allowing the model to capture

complex patterns and subtle variations in medical images,

particularly in the prostate.

• Propose a novel MSAF that acts as an attention mechanism

at skip connections, enabling the model to focus on

relevant regions and refine feature maps at multiple

scales. This refinement improves segmentation accuracy and

reduces errors.

• Integrate a FFM that fuses outputs from multiple decoder

layers using bilinear upsampling. This module effectively

combines both semantic and spatial information, leading to

more accurate and robust segmentation results.

• Extensive experiments on a large MRI dataset demonstrate

the superior performance of the proposed model, achieving a

Dice similarity coefficient of 0.92. The model also reduces false

positive and false negative rates, outperforming conventional

segmentation methods.

This article is structured into several key sections that address

our research on prostate segmentation. Section 2 reviews related

work, highlighting various modular approaches. Section 3 outlines

our automated segmentation framework, detailing its innovative

components. Section 4 describes the dataset, implementation

details, and evaluation metrics, Section 5 along with experimental

results supported by ablation studies and explain the comparative

studies with other state-of-the-art methodologies. In Section 6,

critically discuss the findings and their implications within the

existing literature. Finally, Section 7 summarizes the key insights

and suggests directions for future research.

2 Related work

Prostate segmentation, particularly in T2-weighted MRI,

presents significant challenges due to complex anatomical textures,

subtle contrast variations, and the influence of surrounding

tissues. In recent years, various advancements in deep learning

architectures have been proposed to address these challenges and

improve segmentation accuracy. The related work in this area is

categorized into three key sections: encoder architectures, attention

mechanisms in skip connections, and multi-scale feature fusion.

These approaches have contributed significantly to enhancing the

robustness and performance of prostate segmentation models, as

outlined in the sections below.

2.1 Encoder architectures for medical
imaging

The success of deep learning in medical segmentation is

anchored in encoder-decoder architectures such as U-Net (4),

which employs a symmetric structure to hierarchically extract

features through its contracting path (encoder) and reconstruct

precise segmentations via its expanding path (decoder), bridged

by skip connections to retain spatial details. Building on this

foundation, He et al. (15) introduced ResNet50, which addresses

vanishing gradients in deep networks through residual blocks
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that enable stable training by learning residual mappings via

shortcut connections. Recent adaptations of ResNet variants for

prostate MRI segmentation have further optimized this backbone:

Gurkan et al. (16) integrated ResNet50 as the encoder within a

Mask R-CNN framework, leveraging its feature reuse capabilities

to improve segmentation of anatomically distinct prostate zones

by aligning region proposals with high-resolution feature maps.

Similarly, Li et al. (17) enhanced ResNet50’s context capture

by replacing standard convolutions with dilated convolutions in

deeper layers, strategically expanding the network’s receptive fields

without increasing computational overhead a critical advantage for

resolving subtle intensity variations in T2-weighted MRI. Talaat

et al. (18) integrates ResNet50 with Faster R-CNN and dual

optimizers, aiming to improve prostate cancer detection accuracy.

This model demonstrates significant performance improvements

in detecting and localizing prostate lesions in MRI images.

Another study focuses on utilizing ResNet50 for feature extraction,

achieving high classification accuracy in detecting prostate cancer

lesions, and providing a robust solution for automated cancer

detection (19). Furthermore, the MM-UNet architecture combines

a modified ResNet50 encoder with Mamba blocks, refining feature

extraction and enhancing segmentation precision in prostate MRI

scans. This model not only improves segmentation accuracy but

also aids in resolving complex boundaries within the prostate zone

(20). These targeted modifications demonstrate how ResNet50’s

residual learning principles can be tailored to balance model depth

and efficiency while preserving the precision required for prostate

zonal anatomy segmentation.

2.2 Attention mechanisms in skip
connections

Attention gates refine the propagation of features between the

encoder and decoder by adaptively suppressing irrelevant regions

in skip connections. The seminal Attention U-Net (21) introduced

channel-wise attention mechanisms, where feature maps from

the encoder are weighted using attention coefficients derived

from the decoder’s higher-level features, enabling the model to

focus on salient regions like pancreatic tumors while ignoring

background noise. For prostate MRI segmentation, Nash et al.

(22) extended the use of attention mechanisms by incorporating

spatial attention into skip connections. This approach generates

pixel-wise attention maps that focus on anatomically plausible

boundaries of the prostate, leveraging learned spatial correlations

between the encoder and decoder features. Building on this,

Zhang et al. (23) further improved robustness against MRI

intensity inhomogeneity by integrating self-attention mechanisms

with deformable convolutions in the skip connections. The self-

attention captures long-range dependencies to resolve ambiguous

edges, while deformable convolutions adjust the receptive fields

to better accommodate irregular prostate shapes. Federico et al.

(24) proposes Long-Range 3D Self-Attention to capture multi-

scale features in MRI scans, improving segmentation accuracy.

Another introduces a pseudo-3D Global–Local Channel Spatial

Attention mechanism to enhance segmentation of prostate zones

in T2-weighted MRI, significantly improving accuracy for both

the transition and peripheral zones (25). Building on these

advancements, our hybrid channel-spatial attention modules

unify channel-wise and spatial attention within skip connections,

dynamically amplifying discriminative prostate features (e.g., subtle

intensity gradients) while suppressing confounding background

signals through joint optimization of channel relevance and

spatial saliency.

2.3 Multi-scale feature fusion

Effective fusion of hierarchical features is critical for

segmenting small, ambiguous structures like the prostate,

where local texture details and global anatomical context must be

cohesively integrated. Zhao et al. (26) introduced Feature Pyramid

Networks (FPNs), which merge multi-scale encoder outputs

through lateral connections, creating a pyramid of features that

combines high-resolution shallow layers (rich in spatial details)

with semantically strong deeper layers (capturing contextual

information). For prostate MRI segmentation, Santhirasekaram

et al. (27) adapted this approach by incorporating geometric

constraints into the fusion process, penalizing segmentations

that violate anatomical priors (e.g., irregular prostate topology)

through a loss term that enforces smoothness and connectivity in

the fused feature maps. Li et al. (28) further advanced multi-scale

fusion by introducing learnable weights to dynamically adjust

the contribution of ResNet50’s intermediate features during

aggregation, enabling the model to prioritize scales resilient

to common MRI artifacts such as motion blur or intensity

inhomogeneity emphasize multi-scale feature fusion for prostate

segmentation in MRI. AGMSF-Net integrates a multi-scale

attention mechanism and 3D transformer module, improving

segmentation accuracy and achieving a DSC of 93.68% on a local

dataset (29). Another approach uses a multistream fusion encoder

with spatial attention maps, enhancing accuracy, particularly

for small lesions, and achieving improved performance on the

ProstateX dataset (30).

3 Methodology

The RaNet model (Figure 1), designed for medical image

segmentation tasks, follows an encoder-decoder architecture

enhanced with attention mechanisms and feature fusion

techniques. The encoder consists of convolutional blocks with

residual connections to preserve spatial integrity while extracting

high-level features. The attention mechanism, implemented

through the MSAF, refines feature maps by focusing on relevant

regions using varying kernel sizes and dilation rates, improving

segmentation accuracy. The decoder mirrors the encoder with

deconvolutional layers and skip connections to retain essential

spatial details for accurate boundary delineation. Additionally,

the Feature Fusion Module (FFM) merges outputs from multiple

decoder layers using bilinear upsampling, ensuring robust and

precise segmentation. The final segmentation mask is computed

by combining these refined features, supporting accurate diagnosis

and treatment planning. This architecture optimizes feature

retention and relevance, significantly enhancing segmentation
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FIGURE 1

Proposed RaNet framework with MSAF and FFM on left and right respectively.

TABLE 1 Summary of model components.

Component Description

DCNet Modified ResNet50 with dilated convolutions and removed

initial max-pooling.

MSAF Multi-scale attention fusion with varying kernel sizes and

dilation rates.

FFM Bilinear upsampling to merge decoder outputs, enhancing

segmentation accuracy.

Fusion strategy Combines outputs from multiple layers to retain both spatial

and semantic info.

Loss function Hybrid loss combining Dice, weighted cross-entropy, and

boundary loss.

performance in medical imaging. Overall component summary of

the RaNet is given in the Table 1.

3.1 DilatedContextNet

In this paper, we enhance the ResNet50 architecture by

making three key modifications to the encoder (the feature

extraction part) of the network. These modifications aim to

preserve spatial information, improve feature extraction for

segmentation tasks, and introduce uncertainty modeling. In the

original ResNet50, a max-pooling layer is applied immediately after

the first convolutional layer. However, max-pooling reduces the

spatial resolution of the feature maps, which is undesirable for

segmentation tasks where fine-grained spatial details are critical.

To address this issue, we remove the initial max-pooling layer,

preserving the spatial dimensions of the input image as it passes

through the network. Let the input to the encoder be represented as:

X0 ∈ R
H0×W0×C0 (1)

where H0, W0, and C0 represent the height, width, and number

of channels of the input image. In the original ResNet50, the

max-pooling operation would reduce the spatial dimensions as:

X1 = MaxPool(X0) (2)

However, in the modified version, we remove this step and directly

pass X0 through the first convolutional layer:

X1 = Conv(X0) (3)

Thus, we avoid any early downsampling, allowing the network to

retain the original spatial resolution.

The bottleneck block in the fourth layer has a stride of 2,

which reduces the spatial resolution of the feature maps too

aggressively for segmentation. To address this, we replace the

stride-2 bottleneck block with a regular convolutional block with

stride 1. This ensures that the spatial resolution is maintained in the

fourth layer, allowing the network to retain more detailed features.

The regular convolution operation is mathematically

represented as:

X2 = Conv(X1, stride = 1) (4)

where X1 is the output from the previous layer and the stride is set

to 1 to preserve spatial dimensions.

To further improve the ability of the network to capture

larger contextual information while maintaining spatial resolution,

we introduce a dilated convolution in the second block of the

fourth layer. Dilated convolutions increase the receptive field by

introducing gaps between the convolutional kernel’s elements,
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allowing the network to capture larger contextual information

without downsampling the feature maps.

The dilated convolution operation with dilation rate r is

expressed as:

DilatedConv(X, r) =

k
∑

i=1

wiXi·r (5)

where wi represents the convolutional kernel, Xi·r represents the

dilated input, and r is the dilation rate. By using a dilated

convolution in the second block of the fourth layer, we prevent

spatial information loss while capturing a broader context.

Thus, the output from the dilated bottleneck block is:

X3 = DilatedConv(X2, r) (6)

where X2 is the output from the previous regular

convolutional block.

To transform the DCNet into a Bayesian neural network,

we incorporate dropout layers after each block. Dropout is a

regularization technique that randomly deactivates a proportion

of neurons during training, helping the model generalize better

by preventing overfitting. In a Bayesian context, dropout can be

interpreted as a way to approximate the posterior distribution of the

network’s weights, making the network more robust and capable of

modeling uncertainty.

Mathematically, the output of a neuron with dropout is

given by:

ŷi =

{

yi with probability p

0 with probability (1− p)
(7)

where p is the probability of keeping the neuron active

(typically p = 0.5).

For each block in the encoder, dropout is applied as follows:

X′
i = Dropout(Xi, p) (8)

where Xi represents the output from the i-th block, and p is the

dropout rate.

This DCNet architecture aim to enhance prostate

segmentation, crucial for prostate cancer diagnosis. Removing the

initial max-pooling layer preserves fine spatial details essential for

accurate boundary detection. Replacing the stride-2 bottleneck

with a regular convolution and introducing dilated convolutions

retain spatial resolution while expanding the receptive field to

capture broader tissue context. Incorporating dropout layers

converts the model into a Bayesian neural network, improving

generalization and robustness.

3.2 Multi-scale attention fusion

The architecture of the MSAF is depicted in Figure 1. During

the feature map learning phase from the encoder, convolution

operations are performed simultaneously before being directly

connected to the decoder. The resulting feature maps are then

concatenated. To reduce the number of channels, a transition

block consisting of a convolution layer followed by a ReLU

activation function (Conv + PreLU) is added. Various methods

for concatenating convolutional layers with different kernel sizes

and dilation rates were explored. The optimal MSAF architecture,

chosen from experimental comparisons and shown in Figure 1,

incorporates a 1 × 1 Conv + PreLU block, a 3 × 3 Conv + PreLU

block with dilation rate 1, a 3× 3 Conv + PreLU block with dilation

rate 2, a 3 × 3 Conv + PreLU block with dilation rate 3, and

an image pooling layer. The overall procedure of MSAF can be

mathematically expressed as:

XN = f (Concat(K1(X
O),K3(X

O, D = 1),K3(X
O, D = 2),

K3(X
O, D = 3),GI(X

O))) (9)

where XO represents the features from the encoder, XN denotes

the new features generated by MSAF, which are then passed to the

decoder. Ki refers to the convolution operations with kernel size i,

and GI stands for the global image pooling operation. The function

f (·) is the transition operation that adjusts the number of channels

in XN to match that of XO.

The MSAF structure bears similarities to the X-ception

module, which provides several advantages, such as the ability

to capture multi-scale information through different convolution

kernel sizes. This is particularly useful for real-world applications

where target segmentation requires handling scale variance.

Additionally, as demonstrated in GoogleNet, the use of multiple

kernel sizes can facilitate faster convergence by decomposing sparse

matrices into dense matrix operations. To further enhance the

model’s performance, a global image average pooling operation is

incorporated, which has been shown to effectively capture global

context information in several studies.

3.3 Feature fusion module

In U-Net-based models, probability maps are generated by the

final layer of the decoder. Since feature maps in convolutional

networks cannot simultaneously retain both semantic and spatial

information, robust and accurate probability maps are obtained by

fusing the outputs from different decoder layers. This process can

be formulated as follows:

Fo =

5
∑

i=2

Uu(Fi) (10)

where Fo represents the fused feature map generated by the

FFM, and Fi corresponds to the feature map produced by decoder

layer Di (for i = 2, 3, 4, 5). The function Uu denotes bilinear

upsampling, which is used to adjust the probability map size to

match the original image dimensions.

The final segmentation mask is computed as:

Mask = Sigmoid(F1 + Fo) (11)

where F1 is the feature map from the last decoder layer D1, and the

segmentation mask is obtained by applying the sigmoid function to

the sum of F1 and Fo.
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3.4 Loss function

To address the challenges of segmenting the prostate in MRI,

which exhibits ambiguous boundaries and class imbalance between

foreground and background, we design a hybrid loss function.

The total loss Ltotal combines three components: a region-based

Dice loss (LDice), a distribution-aware weighted cross-entropy loss

(LWCE), and a boundary-focused loss (Lboundary) to refine edge

delineation. The combined loss is defined as:

Ltotal = λ1LDice + λ2LWCE + λ3Lboundary, (12)

where λ1, λ2, and λ3 are weighting coefficients balancing the

contributions of each term.

Dice loss (LDice) The Dice loss (31) mitigates class imbalance

by maximizing the overlap between the predicted segmentation

mask ŷ and ground truth y:

LDice = 1−
2
∑

i yiŷi + ǫ
∑

i yi +
∑

i ŷi + ǫ
(13)

where ǫ is a smoothing factor to avoid division by zero.

Weighted cross-entropy loss (LWCE) To penalize

misclassifications in underrepresented prostate regions, we

use a weighted cross-entropy loss (4):

LWCE = −
∑

i

w ·
[

yi log(ŷi)+ (1− yi) log(1− ŷi)
]

(14)

where w is a class weight inversely proportional to the foreground

pixel frequency.

Boundary loss (Lboundary) To improve segmentation accuracy

along poorly defined prostate edges, we adopt a boundary loss (32)

that computes the symmetric Euclidean distance between the

contours of y and ŷ:

Lboundary =
∑

p∈∂y

min
q∈∂ ŷ

‖p− q‖2 +
∑

q∈∂ ŷ

min
p∈∂y

‖q− p‖2 (15)

where ∂y and ∂ ŷ denote the contours of the ground truth and

prediction, respectively.

4 Dataset and pre-processing

4.1 Dataset

4.1.1 PROMISE12
The prostate MRI data used in this study are sourced from the

PROMISE12 Challenge dataset (33). The PROMISE12 Challenge

dataset is designed for studying MRI prostate segmentation and

comprises 50 T2 MRI scans of the prostate region from 50

patients. The data were collected from multiple hospitals, ensuring

representation of a clinical setting with diverse vendors and

acquisition protocols. Specifically, the dataset includes 50 MRI

volumes with corresponding training labels and 30 MRI volumes

for testing, which lack ground truth images. A few image samples

are shown in Figure 2.

4.1.2 ProstateX
The ProstateX dataset, originally part of the PI-CAI dataset, did

not include segmentation masks for anatomical regions. However,

a subsequent study by Cuocolo et al. (34) annotated 204 cases from

the original ProstateX dataset, providing both lesion masks and

anatomical region masks. This enhanced dataset is valuable for

research in lesion detection and anatomical region segmentation in

prostate imaging. Example images from this dataset are shown in

Figure 2.

4.2 Evaluation metrics

The performance of the proposed RaNet model for segmenting

the prostate zones in T2-weighted MRI is evaluated using the

Dice coefficient, Intersection over Union (IoU), and accuracy. The

Dice coefficient measures the similarity between the predicted

segmentation mask of the prostate zones and the ground truth

mask, while IoU assesses the overlap between these masks.

Accuracy represents the proportion of correctly predicted pixels in

the segmentation task.

DSC =
2 · intersection(A,B)

size(A)+ size(B)
(16)

IoU =
intersection(A,B)

union(A,B)
(17)

Accuracy =
intersection(A,B)

union(A,B)
(18)

The Dice Similarity Coefficient (DSC) quantifies the overlap

between the predicted prostate zone segmentation mask and the

ground truth mask A and B, considering both false positives and

false negatives. The Intersection Over Union (IoU) measures the

proportion of overlap between the predicted and ground-truth

masks, normalized by their union. Accuracy measures the fraction

of correctly identified pixels in the segmentation task by comparing

the intersection of the sets with their union.

4.3 Implementation details

The experiments were conducted on a single NVIDIA RTX

3090 GPU using the PyTorch framework. The input images were

resized to 256 × 256 pixels, and pixel intensities and voxel

resolutions were standardized to enhance model generalizability.

The data was split into 70% for training, 20% for validation,

and 10% for testing. Both datasets underwent comprehensive

preprocessing, which included a structured hierarchy of techniques,

such as various augmentation strategies (no augmentation, vertical,

horizontal, and diagonal shifts) and a mix of original and

downsampled data. To optimize model training, hyperparameters

were fine-tuned by exploring batch sizes (4, 8, and 16) and learning

rates (1 × 10−2, 1 × 10−3, and 1 × 10−4). Each combination

was evaluated using metrics like accuracy, precision, specificity,

DSC and Jaccard to assess its effectiveness. The augmentation
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FIGURE 2

Image samples from PROMISE12 dataset (on Left), ProstateX dataset (on Right).

TABLE 2 Augmentation and preprocessing parameters for the

experiment.

Attributes Description

Horizontal shift True

Zoom True

Vertical shift True

Diagonal shift True

Hue saturation True

Random brightness True

Random contrast True

and preprocessing parameters are given in Table 2. Additionally,

preprocessing metrics for the PROMISE12 dataset are provided

in Table 3, while those for the ProstateX dataset are outlined

in Table 4. The model was trained end-to-end using the Adam

optimizer (35). A ReduceLROnPlateau learning rate scheduler

dynamically adjusted the learning rate during training. The model

was trained for a maximum of 200 epochs with early stopping

based on validation loss. To address the challenges of prostate

segmentation, a hybrid loss function was employed to manage class

imbalance and improve edge delineation.

5 Results and analysis

5.1 Comparison with di�erent encoders

The comparison of different encoders with our proposed

modules on the PROMISE12 dataset shows significant changes in

performance across various models (Table 5). Starting with ResNet-

18, the baseline model, we observe an improvement with ResNet-

34, which shows a DSC increase of 1.67%, IoU improvement of

1.65%, and an accuracy boost of 2.5%. These improvements are

attributed to ResNet-34’s deeper architecture, which allows for

better feature extraction through residual connections. Further

improvements are seen with ResNet-50, which achieves a DSC

increase of 0.88%, IoU improvement of 0.24%, and a slight decrease

in accuracy of 0.25%. This increase in DSC and IoU can be

attributed to the enhanced feature extraction capabilities and

deeper layers of ResNet-50, allowing it to capture more detailed

spatial features. The EfficientNet models show more varied results.

EfficientNetB3 has a slight decrease in DSC (down by 0.75%) and a

small increase in specificity (up by 0.43%) compared to ResNet-50,

but its accuracy and IoU are lower than ResNet-50. This suggests

that while EfficientNetB3 is more efficient, it may not be able to

capture the same level of detail as deeper models like ResNet-

50. EfficientNetB4, on the other hand, achieves a DSC increase of

0.44%, IoU improvement of 0.36%, and accuracy increase of 0.57%,

indicating that a deeper and more optimized EfficientNet performs

well while maintaining computational efficiency. EfficientNetB5

shows a small improvement in DSC (up by 0.20%) and IoU (up by

0.12%), while its accuracy increases by 0.54% compared to ResNet-

50. Finally, RaNet outperforms all models, with a DSC increase

of 1.69% over EfficientNetB5, an IoU improvement of 0.43%, and

a significant accuracy gain of 1.30%. This improvement is due to

RaNet’s use of dilated convolutions, attention mechanisms, and the

removal of max-pooling layers, which enhance feature retention,

preserve spatial resolution, and refine segmentation performance.

On the ProstateX dataset (Table 6), RaNet also demonstrates

notable improvements and variations in performance. Starting with

ResNet-18, the baseline model, we observe a DSC improvement

of 2.75%, IoU increase of 2.59%, and accuracy gain of 1.75%

with ResNet-34. This improvement is due to ResNet-34’s deeper

architecture, which allows for better feature extraction and

handling of more complex patterns through residual connections.

Further increases are observed with ResNet-50, which shows

a DSC increase of 0.68%, IoU improvement of 0.74%, and

accuracy improvement of 0.09% compared to ResNet-34. The

additional layers in ResNet-50 refine feature extraction and

improve segmentation, capturing more detailed and complex

spatial information. In contrast, the EfficientNet models show

varying performance. EfficientNetB3 underperforms compared to

ResNet-50, with a DSC decrease of 2.09% and IoU decrease of

4.05%. This decrement is likely due to EfficientNetB3’s compact

design, which prioritizes computational efficiency but may not

capture as detailed features as deeper models like ResNet-50.

EfficientNetB4, however, shows a slight improvement over ResNet-

50, with a DSC increase of 0.68%, IoU increase of 0.74%, and

accuracy increase of 0.54%. This indicates that a deeper and
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TABLE 3 Performance evaluation with di�erent pre-processing and hyper-parameter settings on PROMISE12.

Accuracy Precision Specificity DSC Jaccard

Pre-processing Data augment

None 95.81 94.61 94.23 92.57 87.92

Vertical 96.54 95.12 95.58 93.39 88.71

Horizontal 96.89 95.49 96.14 95.55 89.19

Diagonal 98.21 95.88 95.95 97.66 89.96

Hyper-parameters

Batch

4 97.83 93.79 94.15 92.21 86.65

8 98.19 94.42 97.91 92.73 87.37

16 98.78 95.44 95.71 93.77 88.25

Learning rate

1× 10−2 97.63 91.32 95.75 95.82 86.47

1× 10−3 99.61 92.76 97.91 97.54 87.83

1× 10−4 98.51 92.19 94.23 94.62 86.84

TABLE 4 Performance evaluation with di�erent pre-processing and hyper-parameter settings on ProstateX.

Accuracy Precision Specificity DSC Jaccard

Pre-processing Data augment

None 94.82 90.38 89.13 90.28 83.29

Vertical 96.43 91.61 92.72 91.94 85.97

Horizontal 95.37 91.17 92.20 91.32 84.23

Diagonal 97.71 92.52 93.89 92.65 86.48

Hyper-parameters

Batch

4 95.46 89.91 89.37 90.13 85.28

8 92.73 91.57 91.53 91.42 86.65

16 96.51 91.67 91.19 92.76 87.88

Learning Rate

1× 10−2 93.85 91.24 91.49 90.71 84.72

1× 10−3 97.44 90.62 93.37 93.17 86.58

1× 10−4 94.14 92.29 92.86 91.34 86.73

TABLE 5 Comparison with di�erent encoders on PROMISE12.

Model DSC% Sensitivity% Specificity% Accuracy% IoU%

ResNet-18 94.37 86.71 93.46 96.07 95.47

ResNet-34 96.04 88.89 95.38 98.57 97.12

ResNet-50 96.92 87.16 96.10 98.32 97.36

EfficientNetB3 96.17 86.94 96.29 97.15 95.84

EfficientNetB4 95.61 87.25 97.54 97.89 96.72

EfficientNetB5 96.32 88.39 96.67 98.43 97.26

RaNet 98.61 89.42 98.90 99.73 97.69

more optimized EfficientNet model benefits from better feature

extraction while maintaining efficiency. EfficientNetB5 shows a

small decrement in DSC (down by 1.52%) and IoU (down by

0.79%), likely due to diminishing returns as model depth increases

without corresponding performance gains.

Finally, RaNet outperforms all models, achieving a DSC

increase of 0.95%, IoU improvement of 0.74%, and an accuracy

gain of 0.86%. This can be attributed to RaNet’s architecture,

which utilizes dilated convolutions, removes max-pooling layers,

and integrates attention mechanisms, resulting in superior feature

retention and refined segmentation performance.

5.2 Ablation study

The ablation study demonstrates the performance

improvement with each module added to the base UNet

architecture (Table 7). Starting with the base UNet model, it

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2025.1589707
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Arshad et al. 10.3389/fmed.2025.1589707

TABLE 6 Comparison with di�erent encoders on ProstateX.

Model DSC% Sensitivity% Specificity% Accuracy% IoU%

ResNet-18 92.19 84.63 92.17 96.56 92.30

ResNet-34 94.94 86.72 94.80 98.31 94.89

ResNet-50 95.62 87.43 96.35 98.40 95.42

EfficientNetB3 93.53 84.59 93.16 94.38 91.37

EfficientNetB4 95.29 86.41 96.28 96.94 94.56

EfficientNetB5 94.10 86.68 95.83 96.61 94.63

RaNet 96.57 87.49 96.74 97.26 95.16

provides solid performance, achieving a DSC of 94.82% and

accuracy of 95.52% on PROMISE12, and a DSC of 93.16%

and accuracy of 93.17% on ProstateX. The first improvement

comes with the addition of DCNet, which modifies the ResNet50

backbone by removing the initial max-pooling layer and replacing

the stride-2 bottleneck with a regular convolution. These

modifications preserve spatial resolution and enhance the model’s

ability to capture finer details. The inclusion of DCNet results in

an increase in DSC of 1.49% and an improvement in precision

of 0.91% on PROMISE12, while on ProstateX, the DSC increases

by 1.70% and the accuracy by 2.49%. Adding the MSAF module

introduces multi-scale feature fusion, allowing the model to

capture features at varying scales. This module improves the

model’s ability to focus on relevant regions with greater precision,

leading to improved segmentation of complex structures like

the prostate. MSAF results in an increase in DSC of 1.35% and

an improvement in accuracy of 2.46% in PROMISE12, and in

ProstateX, the DSC increases by 0.93% and the accuracy by 1.07%.

The final module, FFM merges the outputs from multiple decoder

layers using bilinear upsampling, ensuring that both spatial and

semantic information are preserved. This module strengthens the

segmentation by consolidating the features learned at different

levels of the network. The addition of FFM leads to a DSC increase

of 0.95% and an accuracy boost of 0.84% on PROMISE12, and

on ProstateX, DSC increases by 0.78% and accuracy by 0.53%. In

conclusion, the integration of DCNet, MSAF, and FFM results

in significant performance improvements, with RaNet achieving

a DSC of 98.61% and accuracy of 99.73% on PROMISE12,

and a DSC of 96.57% and accuracy of 97.26% on ProstateX,

demonstrating the effectiveness of the combined architecture for

prostate zone segmentation.

5.3 Comparison with state-of-the-art
methods

The performance comparison of RaNet with state-of-the-art

prostate segmentationmodels on the PROMISE12 dataset (Table 8)

reveals significant improvements. Compared to the original UNet

(4), RaNet achieves a DSC increase of 3.79%, an IoU improvement

of 4.93%, and an accuracy boost of 4.21%. These gains are attributed

to RaNet’s use of dilated convolutions, attention mechanisms,

and the removal of max-pooling layers, which help preserve

TABLE 7 Ablation performance comparison between PROMISE12 and

ProstateX.

PROMISE12 ProstateX

Models DSC% Accuracy% DSC% Accuracy%

UNet 94.82 95.52 93.16 93.17

UNet +

DCNet

96.31 96.43 94.86 95.66

UNet +

DCNet +

MSAF

97.66 98.89 95.79 96.73

UNet +

DCNet +

MSAF + FFM

98.61 99.73 96.57 97.26

spatial resolution and refine feature maps. When compared to

MicroSeg-Net (10), which uses multi-scale feature fusion and

attention mechanisms, RaNet shows a DSC increase of 3.09%,

IoU improvement of 3.12%, and accuracy increase of 2.60%,

highlighting its superior feature retention and spatial resolution.

Against PZS-Net (36), which incorporates a pyramid structure and

attention layers, RaNet demonstrates a DSC increase of 2.32% and

IoU improvement of 1.64%, thanks to its more effective attention-

based fusion and feature extraction capabilities. Finally, RaNet

outperforms nnUNet (37), which is known for its adaptive design

and strong performance, by showing a DSC improvement of 1.66%,

an IoU increase of 1.21%, and an accuracy boost of 1.13%. This

performance is due to RaNet’s ability to capture both fine details

and larger contextual information through its dilated convolutions

and attention mechanisms. Overall, RaNet outperforms all SOTA

models, with significant improvements in DSC, IoU, and accuracy,

demonstrating the effectiveness of its architecture in prostate

zone segmentation. Comparison with other previous work for

PROMISE12 dataset is given in Table 9.

Table 10 presents the performance comparison of RaNet

with state-of-the-art prostate segmentation models on the

ProstateX dataset, showing clear improvements. Compared

to the original UNet (4), RaNet achieves a DSC increase of

3.41%, an IoU improvement of 4.90%, and an accuracy boost

of 4.09%. These significant improvements stem from RaNet’s

architectural innovations, such as dilated convolutions, attention

mechanisms, and the removal of max-pooling layers, which

preserve spatial resolution and refine feature maps. When
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TABLE 8 State-of-the-art comparison on PROMISE12.

Model DSC% Sensitivity% Specificity% Accuracy% IoU%

UNet (4) 94.82 84.23 91.11 95.52 92.76

MicroSeg-Net (10) 95.52 87.83 94.27 97.13 94.57

PZS-Net (36) 96.29 88.91 96.89 98.99 96.05

nnUNet (37) 96.95 87.97 97.11 98.60 96.48

RaNet 98.61 89.42 98.90 99.73 97.69

TABLE 9 Comparison with previous methods on Promise12.

References Technique Dataset Cases DSC%

Jia et al. (38) 3D APA-Net PROMISE12, ASPS13 140 90.10

Zhu et al. (39) BOWDA-Net PROMISE12, BWH 146 92.54

Wang et al. (40) SegDGAN PROMISE12, Decathlon, ISBI13, QIN-PROSTATE 335 91.66

Qian et al. (41) ProSegNet PROMISE12, ProstateX 80 90.80

Meyer et al. (42) Multi-Stream-CNN PROMISE12, In-house dataset, ProstateX 19 93.00

Ocal et al. (43) Triple Fusion Model PROMISE12, NCI-ISBI 2013 80 91.90

Jia et al. (44) MSD-Net PROMISE12, 12CVB, NCI-ISBI13 180 92.90

Chen et al. (45) RASEU-Net PROMISE12, Private Dataset 30 80.70

Li et al. (28) DRCU-Net PROMISE12 80 91.60

Bhandary et al. (46) nnU-Net PROMISE12, Medical Segmentation Decathlon 50 91.20

Ma et al. (47) ResGNet PROMISE12, Prostate158, NCI-ISBI13, PI-CAI 1,764 94.40

Ours RaNet PROMISE12 50 98.61

TABLE 10 State-of-the-art comparison on ProstateX.

Model DSC% Sensitivity% Specificity% Accuracy% IoU%

UNet (4) 93.16 82.19 90.14 93.17 90.26

MicroSeg-Net (10) 93.92 85.42 94.27 94.56 91.86

PZS-Net (36) 95.16 85.96 95.54 95.91 93.43

nnUNet (37) 95.82 86.64 96.18 96.37 94.07

RaNet 96.57 87.49 96.74 97.26 95.16

compared to MicroSeg-Net (10), which uses multi-scale feature

fusion and attention mechanisms, RaNet shows a DSC increase

of 2.65%, IoU improvement of 3.30%, and accuracy increase

of 2.70%, highlighting RaNet’s superior spatial resolution and

attention-based fusion strategy. In comparison to PZS-Net (36),

which incorporates pyramid structures and attention layers, RaNet

demonstrates a DSC increase of 1.41% and an IoU improvement

of 1.73%, benefiting from its more refined attention-based fusion

and feature retention capabilities. Finally, RaNet outperforms

nnUNet (37), achieving a DSC improvement of 0.75%, IoU

increase of 1.09%, and accuracy boost of 0.89%. The performance

gains of RaNet are attributed to its advanced architecture, which

captures both fine details and larger contextual information

through dilated convolutions and attention mechanisms. Overall,

RaNet demonstrates superior performance across all metrics,

with substantial improvements over all other SOTA models,

highlighting the effectiveness of its architecture for prostate zone

segmentation on the ProstateX dataset. Comparison with other

previous work for ProstateX dataset is given in Table 11.

Figures 3, 4 compares the segmentation results from UNet,

MicroSeg-Net, PZS-Net, nnUNet, and RaNet. While UNet serves

as a strong baseline, it struggles with incomplete regions and

imprecise boundaries due to its lack of spatial attention and feature

refinement. MicroSeg-Net improves feature map refinement but

still fails to capture complete regions due to inadequate spatial

resolution preservation. PZS-Net offers better region visualization

but suffers from blurry boundaries due to insufficient refinement

in the decoding phase. nnUNet, though comparable to RaNet

in segmentation performance, faces challenges with accurately

delineating zonal boundaries. In contrast, RaNet outperforms all

models, delivering sharper, more complete segmentations with

well-defined boundaries. This is attributed to RaNet’s architectural

innovations, such as the removal of max-pooling in ResNet50,

dilated convolutions to preserve spatial integrity, MSAF for
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TABLE 11 Comparison with previous methods on ProstateX.

References Technique Dataset Cases DSC%

Yu et al. (48) SPCT ProstateX 914 92.23

Zhong et al. (49) ProSegDiff ProstateX, NCI-ISBI, PROMISE12 - 89.16

Qian et al. (41) ProSegNet ProstateX, PROMISE12 346 89.20

Liu et al. (50) CriDiff ProstateX, NCI-ISBI - 87.40

Yan et al. (51) CCT-Unet ProstateX, Huashan dataset 200 80.30

Hung et al. (52) CAT-nnU-Net ProstateX, private dataset 193 83.90

Nguyen and Fernandez-Quilez (53) nnU-Net ProstateX 204 98.00

Wei et al. (54) attention U-Net ProstateX, Prostate158, MSD 443 82.00

Nai et al. (55) HighRes3DNet ProstateX 160 89.00

Ours RaNet ProstateX 204 96.57

FIGURE 3

Comparison of RaNet’s segmentation performance with di�erent state-of-the-art methods on PROMISE12 dataset. From left to right: input image,

ground truth, UNet, MicroSeg-Net, PZS-Net, nnUNet, and RaNet.

focusing on relevant regions, and FFM for refining the final

segmentation. These enhancements make RaNet particularly

effective in complex medical image segmentation tasks, ensuring

high accuracy and precise boundary delineation.

6 Discussion

This study introduces RaNet, a novel model for prostate

segmentation in MRI images, which outperforms traditional and

state-of-the-art segmentation models, including UNet, MicroSeg-

Net, PZS-Net, and nnUNet. The architecture of RaNet integrates

several innovations, such as the DCNet encoder, MSAF, and FFM,

which collectively enhance segmentation performance. RaNet

achieved a DSC of 98.61% on the PROMISE12 dataset and

96.57% on the ProstateX dataset, demonstrating superior accuracy

compared to the existing models. The DCNet encoder plays

a crucial role in preserving spatial resolution by eliminating

the initial max-pooling layer and using dilated convolutions

to expand the receptive field. These modifications help RaNet
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FIGURE 4

Comparison of RaNet’s segmentation performance with di�erent state-of-the-art methods on ProstateX dataset. From left to right: input image,

ground truth, UNet, MicroSeg-Net, PZS-Net, nnUNet, and RaNet.

capture both fine details and larger contextual features, crucial

for accurate prostate segmentation. MSAF, with its multi-scale

feature fusion mechanism, refines the model’s ability to focus on

relevant regions at multiple scales, further improving segmentation

accuracy. Finally, the FFM consolidates features from various

decoder layers using bilinear upsampling, ensuring robust and

precise segmentation output by maintaining both spatial and

semantic information. RaNet’s performance was compared with

other state-of-the-art models, including nnUNet, which is known

for its adaptive design and strong performance across various

datasets. While nnUNet performed well, RaNet outperformed it

on the ProstateX dataset, achieving a DSC improvement of 0.75%

and an IoU improvement of 1.09%. This superior performance

can be attributed to RaNet’s architectural enhancements, such

as dilated convolutions and attention mechanisms, which enable

more precise feature retention and better boundary delineation,

particularly for the complex prostate boundaries.

7 Conclusion

RaNet represents a significant advancement in prostate

segmentation, surpassing existing models in both accuracy and

efficiency. The integration of a deep ResNet-based encoder,

attention mechanisms, and optimized pooling strategies enables

RaNet to achieve superior performance, even with smaller datasets.

These results suggest RaNet could be a valuable tool in clinical

applications for prostate cancer diagnosis, improving diagnostic

accuracy and treatment planning. Accurate segmentation of

prostate regions is essential for clinicians to develop effective

treatment strategies, as precise delineation directly influences

outcomes. RaNet’s high accuracy, even when trained on limited

data, makes it a promising solution for real-world medical

scenarios with scarce annotated data. Despite its advantages, RaNet

faces challenges in high-resolution image processing and requires

further optimization for computational efficiency. Additionally,

extensive validation in clinical settings is needed to ensure its

generalizability across diverse patient populations and imaging

protocols. While RaNet performs well with smaller datasets, its

computational demand could be a limitation for widespread use in

real-time clinical scenarios. Future work will focus on improving

RaNet’s computational efficiency, particularly for high-resolution

medical images, ensuring that inference speed is optimized while

maintaining accuracy for real-time clinical use. Additionally,

expanding its application to other medical imaging tasks, such as

tumor detection and organ segmentation, will enhance its clinical

relevance and solidify its role in medical image analysis and

clinical decision-making.
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