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The early and accurate diagnosis of Alzheimer’s Disease and Frontotemporal
Dementia remains a critical challenge, particularly with traditional machine
learning models which often fail to provide transparency in their predictions,
reducing user confidence and treatment e�ectiveness. To address these
limitations, this paper introduces an explainable and lightweight deep learning
framework comprising temporal convolutional networks and long short-term
memory networks that e�ciently classifies Frontotemporal dementia (FTD),
Alzheimer’s Disease (AD), and healthy controls using electroencephalogram
(EEG) data. Feature engineering has been conducted using modified Relative
Band Power (RBP) analysis, leveraging six EEG frequency bands extracted
through power spectrum density (PSD) calculations. The model achieves high
classification accuracies of 99.7% for binary tasks and 80.34% for multi-class
classification. Furthermore, to enhance the transparency and interpretability
of the framework, SHAP (SHapley Additive exPlanations) has been utilized
as an explainable artificial intelligence technique that provides insights into
feature contributions.

KEYWORDS
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1 Introduction

Frontotemporal dementia (FTD) (1) and Alzheimer’s disease (2) (AD) are two most

prevalent forms of dementia, primarily affecting individuals over 40 years of age. The

global prevalence of dementia is expected to reach more than 130 million cases by 2050

(3). The rise in cases related to these diseases have significantly strained healthcare systems

around the world, necessitating an urgent need for accurate and early diagnostic methods.

The diagnosis of (FTD) and AD relies on the methodologies, such as neuropsychological
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evaluations (4), biomarkers analysis (5), established clinical criteria

(6), and magnetic resonance imaging (MRI) (7). But the time

requirements, need for expert interpretation, limit the practicality

of advanced neuroimaging tools, and the high cost. Therefore,

there is a critical need for early and accurate diagnosis, there is

an indispensable need for improved detection methods. Timely

diagnosis is critical, as early intervention can help slow disease

progression and enhance patients’ quality of life.

Electroencephalograms (EEG) offer features such as high

temporal resolution, lower cost, and real-time monitoring, which

make them valuable for dementia diagnosis. EEG signals in

conjunction with machine learning, hold tremendous potential to

be an effective non-invasive method to detect and monitor (FTD)

and AD (8). However, extracting features from EEG is a crucial

task, and although various methods have been proposed in research

(9, 10), many of them have not achieved high accuracies with

deep learning and machine learning models. Therefore, novel and

tailored approaches are needed to extract high-quality data from

EEG for improved analysis and diagnosis based on deep learning.

Deep learning (DL) models have shown significant potential

in classifying EEG data, offering improved accuracy and efficiency

in analysis. However, there is a need for lightweight models

to optimize data processing and develop a high-performing

model that is time-efficient, and computationally less loaded.

In addition, most ML and DL models function as “black

boxes,” providing outputs without transparency, which limits their

acceptance, especially in sensitive fields like healthcare. Explainable

Artificial Intelligence (XAI) offers a solution by revealing what

the models learn during training and how decisions are made

during prediction, making the results more understandable

and interpretable. The core contributions of this research are

given below.

• This research introduces an EEG-based feature extraction

approach using modified Relative Band Power (RBP) analysis

for feature engineering and proposes a lightweight hybrid

deep learning classifier for accurate and robust classification

of frontotemporal dementia, Alzheimer’s disease, and health.

• SHAP (SHapley Additive Explanations), an explainable

artificial intelligence technique has been integrated into the

model to provide deeper insights into feature contributions,

increasing interpretability, transparency, and prediction

reliability for mental disorder diagnosis.

This is how the rest of the article is organized. Related work is

covered in Section 2, and methodology is covered in Section 3. Our

research findings are shown in Section 4, and explainable artificial

intelligence is covered in Section 5. Section 6 concludes with a

summary of our findings and recommendations for future research.

2 Related work

Recent studies have focused on enhancing the Alzheimer’s

disease detection with advanced machine learning methods. To

solve supervised AD detection using EEG data analysis, machine,

and deep learning-based systems have gained popularity (11–13).

The study (14) used a public EEG signal dataset that included

recordings from 12 Alzheimer’s disease patients and 11 healthy

controls. A directed graph approach was applied for local texture

feature extraction, resulting in 448 low-level features per EEG

signal. This was further enhanced by combining it with a tunable

q-factor wavelet transform, resulting in a total of 8,512 features per

signal input. The accuracy of the model was 92.01% with leave-

one-subject-out (LOSO) cross-validation and 100% with 10fold

cross-validation.

Moreover, six supervised machine-learning approaches were

used in this work (15) to categorize processed EEG data from

patients with FTD and AD. Different techniques for processing and

analyzing EEG signals were applied to identify relevant features.The

accuracy of the decision tree machine learning model was 78.5%,

while the random forest model attained an accuracy of 86.3% in

diagnosing FTD. This study (16) proposes a convolutional neural

network-based model called STEADYNet, which achieves high

performance with 98.24% accuracy in dementia detection using

multichannel spatiotemporal EEG signals.

Another study (17) proposes a CNN-based model utilizing

the Forward-Backward Fourier Transform (FBFT) to enhance

EEG signal visualization for brain disorder classification. The

model achieves 85.1% for murmur, 99.82% accuracy for epilepsy,

100% for mental stress, and 95.91% for Alzheimer’s disease (AD).

Additionally, the eye-naked classification approach attains 78.6%,

71.9%, 82.7%, and 91.0% accuracy for epilepsy, AD, murmur, and

mental stress, respectively.

In addition, a study (18) offers a “dual-input convolution

encoder network” as a unique method for classifying AD.

Denoising and the extraction of band power and coherence

characteristics from the EEG data were important feature

engineering approaches. With an accuracy of 83.28% in

differentiating AD patients from healthy controls, the presented

model combines convolutional layers with transformer

architecture, and feed-forward module and proves its efficacy

in collecting intricate EEG features.

3 Methodology

3.1 Data collection

The dataset (8) consists of EEG recordings from 88 subjects (36

Alzheimer’s disease, 29 healthy and 23 frontotemporal dementia)

obtained at the 2nd Neurology Department of AHEPA General

University Hospital, and data statistics as shown in Figure 1.

EEG signals were captured using 19 electrodes while participants

remained seated with their eyes closed. The data was initially

filtered at 0.5–60 Hz and sampled at 500 Hz.

3.2 Data preprocessing

To enhance the quality of the electroencephalogram (EEG)

signals and remove unwanted artifacts, a systematic pre-processing

technique has been applied. Initially, a Butterworth bandpass filter

with a frequency range of 0.5 Hz to 45 Hz was used to retain
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FIGURE 1

Statistical overview of the dataset.

relevant neural activity while eliminating low-frequency drifts

and high-frequency noise. Next, Artifact Subspace Reconstruction

(ASR) was implemented to identify and correct signal distortions.

ASR detects artifacts by measuring the standard deviation of

signal segments within a 0.5-s window. Segments exceeding a

deviation threshold of 17 were reconstructed to suppress transient

artifacts while preserving the integrity of neural activity. After the

artifact correction, Independent Component Analysis (ICA) was

performed using the RunICA algorithm. This process decomposed

the 19-channel EEG signals into independent components, as

illustrated in Figure 2. The independent components were then

analyzed using EEGLAB’s ICLabel tool, which automatically

classifies components based on their source characteristics.

Components identified as “eye artifacts” or “jaw artifacts” were

removed to ensure that only neural activity remained in the

processed signals. Although EEG signals were recorded in a closed-

eye resting state, some residual eye movement artifacts were

still present. The implemented pre-processing steps effectively

mitigated these unwanted influences, ensuring cleaner EEG signals

for subsequent analysis.

3.3 Feature engineering

In EEG classification tasks, relative band power (RBP) (15) is

often extracted, especially when analyzing brain activity related to

various neurological and cognitive states. The RBP is calculated

for several frequency bands that correspond to various facets of

brain activity. Six interesting frequency bands were taken into

consideration in this study:

• Delta: 0.5 ≤ f < 4Hz

• Theta: 4 ≤ f < 8Hz

• Alpha: 8 ≤ f < 16Hz

• Zaeta: 16 ≤ f < 24Hz

• Beta: 24 ≤ f < 30Hz

• Gamma: 30 ≤ f ≤ 45Hz.

The Welch technique is used to compute the Power Spectral

Density by a given equation

PSD(f ) = lim
N→∞

1

N

N−1
∑

n=0

|X(fn)|
2 (1)

where X(fn) is the Fourier transform of the signal x(t) evaluated

at frequency bins fn, and N is the total number of segments over

which the Fourier transform is averaged. The overall power in

the frequency range of 0.5–45 Hz is calculated by summing the

PSD values.

Total PSD =

max
∑

f=min

PSD(f ) (2)
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FIGURE 2

Independent Component Analysis (ICA) components extracted from EEG signal.

The RBP for each frequency band b is determined by dividing the

power within the band by the overall power.

RBPb =

∑fmax

f=min
PSD(f )

∑45
f=0.5 PSD(f )

(3)

The power in the frequency band [fmin, fmax] is represented by the

numerator, while the total power in the range of 0.5 Hz to 45 Hz is

the denominator.

These bands provide greater in-depth observations and cover

a wider range of brain activity. In order to compute the RBP,

EEG signals are segmented into epochs, each 6 s in length and

sharing a 50% overlap. By splitting the signal into overlapping

segments, calculating the squaredmagnitude of the discrete Fourier

transform for each segment, and then averaging the results, the

Welch technique is used to estimate the Power spectral Density

for each epoch. After that, the relative power inside each frequency

band is determined by dividing the PSD for that band by the PSD

for the whole frequency range of interest 0.5–45 Hz. A normalized

measure of brain activity is provided by this ratio, which shows the

contribution of each frequency band to the signal’s overall strength.

For each epoch, the RBP is computed across all channels:

Epoch RBP =
1

Nchannels

Nchannels
∑

i=1

RBPb(i) (4)
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FIGURE 3

The proposed methodology with the proposed deep learning model.

where RBPb(i) is the RBP for the i-th channel and Nchannels is

the number of EEG channels.

The RBP values for every epoch make up the final feature

matrix. The columns match the six frequency bands (Beta, Delta,

Alpha, Theta, Zaeta, and Gamma), whereas each row denotes

an epoch:

Feature Matrix =
[

Delta Theta Alpha Zaeta Beta Gamma Label
]

Once the RBP features have been extracted, they are used as

inputs for classification tasks. Each epoch is labeled according

to whether the person has frontotemporal dementia, Alzheimer’s

disease, or cognitive normal.

3.4 Label encoding and data normalization
and splitting

The data was saved in a comma-separated file, and then

categorical variables were converted to numerical data using one-

hot encoding. Then, the data was normalized using the min-max

normalization formula given by:

χ
∗ =

χ − µmin

µmax − µmin
(5)

The normalized value is represented by χ
∗, the original value is

represented by χ , and the dataset’s minimum and maximum values

are indicated by µmin and µmax, respectively. Training, validation,

and test data sets were split into 80%, 10%, and 10% of the total

data set.

3.5 The proposed deep learning model

The proposed hybrid model as given in Figure 3. Its consists

of two deep learning components LSTM and TCN. The TCN

uses dilated causal convolutions to obtain high-level features

from the input sequence, and the LSTM captures the sequential

dependencies. The Temporal Convolutional Network enhances

traditional CNNs with dilated causal convolutions, allowing

them to model long-term temporal patterns without violating

sequence order.

H(l) = σ (W(l) ∗ X + b(l)) (6)

whereH(l) represents the output of the l-th convolutional layer,

the learnable convolutional filters are represented by W(l), the

convolution operation is represented by ∗, the bias is represented

by b(l), and the ReLU activation function is represented by σ (·).

Long-range interdependence in EEG data can be captured with

the use of dilated convolutions:

H
(l)
t =

k−1
∑

i=0

W
(l)
i · Xt−d·i + b(l) (7)

where k is the kernel size and d is the dilation rate. To optimize both

stability and the flow of gradients, residual connections are adopted.

H(l)
res = H(l) + X (8)

This structure enables efficient learning without

vanishing gradients.

LSTMs are a unique class of recurrent neural networks that

use gate mechanisms and memory cells to manage long-term

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2025.1590201
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Khan et al. 10.3389/fmed.2025.1590201

dependencies. The LSTM uses three primary gates—forget, input,

and output gates to process the features that were extracted

from TCN.

ft = σ (WfH
(l)
t + Uf ht−1 + bf ) (9)

it = σ (WiH
(l)
t + Uiht−1 + bi) (10)

c′t = tanh(WcH
(l)
t + Ucht−1 + bc) (11)

ct = ft ⊙ ct−1 + it ⊙ c′t (12)

ot = σ (WoH
(l)
t + Uoht−1 + bo) (13)

ht = ot ⊙ tanh(ct) (14)

where Wf the input’s weight matrix at time step t. The input to

the LSTM at layer l and time t is represented by the item H
(l)
t . Uf

Weight matrix for the preceding time step’s hidden state. ht−1 The

previously hidden state. Adding the bias term bf and the sigmoid

activation function σ .

The model begin with an input layer shaped (6,1), followed by a

1D convolutional layer with 32 filters as shown in Table 1. The first

layer connects to a batch normalization layer having 128 number

of parameters and an activation function, then goes through a

spatial dropout layer having value 0.2. The next convolutional

layer also uses 32 filters, followed by batch normalization and

another activation layer. A residual connection is created by adding

the output of a separate convolution layer with the same shape,

allowing the model to retain important features. Furthermore, a

similar set of layers is added next, helping the model process the

input in the sameway as before. Themodel uses an LSTM layer with

64 units to capture temporal features. Following this, the model

includes a dense layer with 128 units, which is succeeded by two

additional dense layers containing 192 and 256, units respectively;

each of these layers is paired with a dropout mechanism to help

mitigate overfitting, culminating in a final dense layer with 3 output

units that delivers the classification outcome.

3.6 Hyperparameter tuning

Random search-based hyperparameter tuning was used to find

the optimal number of layers in the proposed model. The best

hyperparameter values for the CNN component are: two TCN

blocks, 32 filters, a kernel size of 7, a dropout rate of 0.3, and a

dilation rate of 1. During optimization, the best LSTM structure

was found to be a single layer of 64 units. Dense layers follow with

128, 192, and 256 units and a 0.2 dropout rate and early stopping

mitigates overfitting. The number of training epochs depended on

the specific classification task. A batch size of 32 was used, and

the Adam optimizer was selected with a learning rate of 0.0001.

The model has 131,587 parameters. it uses 514.01 KB of memory,

making it suitable for deployment on edge medical devices for real-

time mental disorder detection. Out of these, 131,331 are trainable

and 256 are non-trainable as shown in the Table 2. The model was

trained using 8 GB RAM, and each epoch took 6 s.

TABLE 1 Model architecture summary.

Layer
(type)

Output
shape

Parameters Connected
to

Input layer (None, 6, 1) 0 -

Conv 1D (None, 6, 32) 256 Input layer [0][0]

Batch

normalization

(None, 6, 32) 128 Conv1D [0][0]

Activation (None, 6, 32) 0 Batch

normalization

[0][0]

Spatial

dropout 1D

(None, 6, 32) 0 Activation [0][0]

Conv1D (None, 6, 32) 7,200 Spatial dropout 1D

[0][0]

Batch

normalization

(None, 6, 32) 128 Conv1D [1][0]

Activation (None, 6, 32) 0 Batch

normalization

[1][0]

Conv 1D (None, 6, 32) 64 Input layer [0][0]

Spatial

dropout 1D

(None, 6, 32) 0 Activation [1][0]

Add (None, 6, 32) 0 Conv1D[2][0],

Spatial dropout 1D

[1][0]

Conv 1D (None, 6, 32) 7,200 Add[0][0]

Batch

normalization

(None, 6, 32) 128 Conv1D [3][0]

Activation (None, 6, 32) 0 Batch

normalization

[2][0]

Spatial

dropout 1D

(None, 6, 32) 0 Activation [2][0]

Conv 1D (None, 6, 32) 7,200 Spatial dropout 1D

[2][0]

Batch

normalization

(None, 6, 32) 128 Conv 1D [4][0]

Activation (None, 6, 32) 0 Batch

normalization

[3][0]

Conv 1D (None, 6, 32) 1,056 Add[0][0]

Spatial

dropout 1D

(None, 6, 32) 0 Activation [3][0]

Add (None, 6, 32) 0 Conv1D[5][0],

Spatial dropout 1D

[3][0]

LSTM (None, 64) 24,832 Add [1][0]

Dense (None, 128) 8,320 LSTM [0][0]

Dropout (None, 128) 0 Dense [0][0]

Dense (None, 192) 24,768 Dropout [0][0]

Dropout (None, 192) 0 Dense [1][0]

Dense (None, 256) 49,408 Dropout [1][0]

Dropout (None, 256) 0 Dense [2][0]

Dense (None, 3) 771 Dropout [2][0]
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3.7 Classification

The proposed hybrid Temporal Convolutional Network model

with Long Short-Term Memory was utilized to perform four

types of classification tasks for Alzheimer’s Disease, Frontotemporal

Disease, and healthy classes. The classification tasks are as follows:

• Classification for Alzheimer’s, frontotemporal, and healthy

classes:the objective of this work was to categorize three

different classes: healthy controls, frontotemporal disease, and

Alzheimer’s disease. The model was trained to distinguish

between the three groups.

• Classification for Alzheimer + frontotemporal disease and

healthy classes: in this classification the model was trained

to classify a combined class of Alzheimer’s Disease and

Frontotemporal Disease from healthy individuals.

• Classification for Alzheimer’s disease and healthy classes:

the objective of this task is to train the model to classification

between the Healthy class and Alzheimer’s disease.

• Classification for frontotemporal disease and healthy

classes: this classification task required the model to

separate individuals with Frontotemporal Disease from

healthy controls.

4 Results

4.1 Performance parameters

To access the performance of the proposed model, the

key performance parameters, i.e., precision, F1 score, accuracy,

recall, sensitivity, etc. have been extensively evaluated. Among

other, accuracy is the most important performance parameter

for assessing a classification model’s efficacy. It measures the

proportion of accurately predicted instances to all instances in

the dataset, including true positives and negatives. Mathematically,

accuracy can be written as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100 (15)

TABLE 2 Model parameter summary.

Parameter type Count Size

Total parameters 131,587 514.01 KB

Trainable parameters 131,331 513.01 KB

Non-trainable parameters 256 1 KB

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
× 100% (16)

Similarly, precision measures the quality of the model’s

prediction. It measures the percentage of properly identified

positive cases in comparison to the total number of cases that were

TABLE 4 Classification metrics for Alzheimer + frontotemporal disease

and healthy classes.

Metric Alzheimer + frontotemporal
disease

Healthy

Precision 0.9977 0.9987

Recall 0.9993 0.9956

F1 score 0.9985 0.9972

Support 2,983 1,596

Sensitivity 1.00

Specificity 1.00

TABLE 5 Classification metrics for Alzheimer’s disease and healthy

classes.

Metric Alzheimer’s disease Healthy

Precision 0.9963 0.9987

F1 Score 0.9976 0.9972

Recall 0.9989 0.9956

Support 1876 1596

Sensitivity 1.00

Specificity 1.00

TABLE 6 Classification metrics for frontotemporal disease and healthy

classes.

Metric Frontotemporal disease Healthy

F1 score 0.9975 0.9964

Recall 0.9956 0.9991

Precision 0.9994 0.9937

Support 1597 1596

Sensitivity 1.00

Specificity 1.00

TABLE 3 Classification metrics for Alzheimer, frontotemporal, and healthy classes.

Class Precision Recall F1-score Sensitivity Specificity Support

Alzheimer 0.70 0.90 0.79 0.90 0.74 1,876

Frontotemporal 1.00 1.00 1.00 1.00 1.00 1,597

Healthy 0.68 0.35 0.47 0.35 0.95 1,106
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FIGURE 4

Confusion matrices for di�erent classification scenarios. (a) Alzheimer vs. Frontotemporal vs. Healthy. (b) Alzheimer + Frontotemporal vs. Healthy. (c)
Alzheimer vs. Healthy. (d) Frontotemporal vs. Healthy.

anticipated to be positive (sum of true positives and false positives).

Precision can be shown mathematically as:

Precision =
Number of Correctly Predicted Positive Cases

Total Predicted Positive Cases
× 100

(17)

Precision =
TP

TP+ FP
× 100% (18)

Recall, also known as the true positive rate, is a crucial

performance indicator that assesses how well a classification model

detects positive. Recall can be mathematically represented as:

Recall =
Number of Correctly Identified Positive Cases

Total Actual Positive Cases
× 100

(19)

Recall =
TP

TP+ FN
× 100 (20)

The F1 score offers a balance between accuracy and recall by

taking the harmonic mean of the accuracy and recall metrics. It

is particularly convenient when dealing with imbalanced datasets.

Mathematically, the F1 score is expressed as:

F1-score =
2× Precision× Recall

Precision+ Recall
× 100 (21)

F1-score =
2× TP

TP+FP × TP
TP+FN

TP
TP+FP + TP

TP+FN

× 100 (22)

Specificity measures the proportion of actual negatives that

the model correctly identifies. It evaluates the model’s ability to

correctly identify true negatives.

Specificity =
Number of Correctly Identified Negative Cases

Total Actual Negative Cases
×100

(23)

Specificity =
TN

TN+ FP
× 100 (24)

In above equations, TP represents True Positives or correctly

identified positive cases, TN represents True Negatives or
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FIGURE 5

AUC curves for di�erent classification scenarios. (a) Alzheimer vs. Frontotemporal vs. Healthy. (b) Alzheimer + Frontotemporal vs. Healthy. (c)
Alzheimer vs. Healthy. (d) Frontotemporal vs. Healthy.

correctly identified negative cases, FP represents False Positives or

incorrectly classified as positive, and FN represents False Negatives

or incorrectly classified as negative.

4.2 Performance evaluation

Table 3 presents the classification metrics for the three classes:

Alzheimer, Frontotemporal, and Healthy.The model achieves 70%

precision and 90% recall for Alzheimer’s, with an F1-score of 0.79.

It performs perfectly for frontotemporal Disease with 100% F1-

score, precision, and recall, while the Healthy class shows weaker

performance with 68% precision, 35% recall, and an F1-score

of 0.47.

Table 4 focuses on a binary classification task where Alzheimer

+ Frontotemporal Disease are treated as a combined class, and

Healthy is the other class.he model achieves nearly perfect results

for Alzheimer + Frontotemporal Disease with 99.77% precision and

99.93% recall. The Healthy class also performs well with 99.87%

precision and 99.56% recall, both classes showing 1.00 sensitivity

and specificity.

In the binary classification task, the Table 5, the goal is to

classify Alzheimer’s disease and healthy individuals.The model

excels with 99.63% precision and 99.89% recall for Alzheimer’s, and

99.87% precision and 99.56% recall for Healthy, both showing 1.00

sensitivity and specificity.

The Table 6 shows the results of the binary classification

between frontotemporal disease and healthy individuals. The

model shows 99.94% precision and 99.56% recall, with a very

high F1 score of 0.9975. The Healthy class also has a high

F1-score of 0.9964, with 99.37% precision and 99.91% recall.

Both classes show 1.00 sensitivity and specificity. Similarly,

Table 7 reports high classification accuracies for binary dementia

tasks (≥0.997) and a lower accuracy (0.8034) for the three-

class classification among Alzheimer’s, frontotemporal disease, and

healthy subjects.
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The multi-class confusion matrix given in Figure 4a that

the model effectively classifies Alzheimer’s and frontotemporal

Disease. Out of 1,876 Alzheimer cases, 1,693 are correctly

identified, with minor misclassifications into healthy and

frontotemporal. Similarly, frontotemporal disease achieves a

near-perfect classification with only three misclassifications.

However, the model struggles significantly with Healthy cases,

misclassifying 712 instances as Alzheimer’s, highlighting room

for improvement in distinguishing healthy from disease classes.

When combining Alzheimer’s and Frontotemporal as a single

class against Healthy, the model demonstrates almost perfect

classification as shown in Figure 4b. Only 2 out of 2,983 Alzheimer

+ frontotemporal instances are misclassified as healthy. For the

Healthy class, only 7 out of 1,596 instances are misclassified,

indicating strong model performance in binary classification with

very few false positives or false negatives. For Alzheimer’s Disease

vs. Healthy classification, as displayed in Figure 4c, the model

achieves excellent performance. Out of 1,876 Alzheimer cases, only

2 are misclassified as Healthy. Similarly, for 1,590 Healthy cases,

only 7 are misclassified as Alzheimer. Furthermore, the model

performs well in the binary classification of frontotemporal disease

against healthy as evident from Figure 4d. Just one healthy case out

of 1,106 is incorrectly categorized as frontotemporal, whereas only

7 out of 1,597 frontotemporal patients are incorrectly classified

as healthy.

The multi-class ROC (Receiver Operating Characteristic)

curve, as given in Figure 5a, displays the AUC (Area Under the

Curve) for each class. Alzheimer’s disease has an AUC of 0.88,

which indicates good but not perfect discrimination; healthy cases

have the lowest AUC of 0.85, which indicates some difficulty in

differentiating them from the disease classes; and frontotemporal

disease achieves a perfect AUC of 1.00, which indicates ideal

classification with no false positives or negatives. The binary

classification combining Alzheimer’s and frontotemporal as one

class vs. healthy achieves an exceptional AUC of 1.00. Additionally,

the model attains an AUC of 1.00 for Alzheimer’s Disease

vs. Healthy cases, indicating perfect discrimination. Similarly,

the classification of ‘Alzheimer + Frontotemporal’ vs. Healthy,

Alzheimer vs. Healthy, and Frontotemporal Disease vs. Healthy

TABLE 7 Classification accuracy for di�erent dementia classification

tasks.

Classification task Accuracy

Frontotemporal disease vs. healthy 0.9970

Alzheimer’s disease vs. healthy 0.9974

Alzheimer + frontotemporal disease vs. healthy 0.9980

Alzheimer vs. frontotemporal vs. healthy 0.8034

achieve a flawless AUC of 1.00 as displayed in Figures 5b–d,

respectively.

4.3 Model performance evaluation with
SMOTE balancing

It was noted in all the classification task that the dataset was

imbalanced. To address this issue Smote data balancing technique

were used. SMOTE balances datasets by generating new samples

along the lines connecting a minority instance and its nearest

within-class neighbors. Table 8 shows the classification metrics for

Alzheimer, Frontotemporal, and Healthy classes after applying data

balancing techniques. It can see a significant improvement in F1-

score, precision, recall and specificity for all classes. Frontotemporal

class got perfect scores in all metrics (1.00). The Alzheimer’s class

got good scores with precision 0.63, recall 0.71 and F1-score 0.67.

Healthy class got precision 0.67, recall 0.58 and F1-score 0.62.

Overall accuracy of the model decreased to 77.45% after balancing

compared to 80.34% accuracy with the original imbalanced dataset.

The classification metrics for the Alzheimer’s Disease and

Healthy classes are shown in Table 9 after data balancing. The

model ability to distinguish between the two classes is demonstrated

by the precision, recall, and F1 scores of both classes, all of which

are above 99.7%. Even though the balanced model’s accuracy is

99.71%, it is only slightly lower than the unbalanced model’s

99.74% accuracy.

TABLE 9 Classification metrics for Alzheimer’s disease and healthy classes

with data balancing.

Metric Alzheimer’s disease Healthy

Precision 99.73 99.70

F1 score 99.71 99.73

Recall 99.70 99.71

Support 1876 1876

TABLE 10 K-fold validation accuracy for Alzheimer, frontotemporal, and

healthy classes.

K-value Training accuracy (%) Test accuracy (%)

1 79.89 80.15

2 80.00 80.00

3 79.58 80.06

4 79.43 80.02

5 81.27 80.13

TABLE 8 Classification metrics for Alzheimer, frontotemporal, and healthy classes with data balancing.

Class Precision Recall F1-score Sensitivity Specificity Support

Alzheimer 0.63 0.71 0.67 0.71 0.79 1,876

Frontotemporal 1.00 1.00 1.00 1.00 1.00 1,876

Healthy 0.67 0.58 0.62 0.58 0.86 1,876
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TABLE 11 K-fold validation accuracy for Alzheimer and healthy classes

K-value Training accuracy (%) Test accuracy (%)

1 99.82 99.86

2 99.80 99.82

3 99.73 99.92

4 99.61 99.86

5 99.78 99.82

TABLE 12 Classification metrics for Alzheimer, frontotemporal, and

healthy classes.

Class Precision Recall F1-
score

Support

Alzheimer 0.60 0.77 0.67 1,876

Frontotemporal 0.68 0.68 0.68 1,597

Healthy 0.60 0.33 0.43 1,106

4.4 Evaluation of model accuracy using
K-fold cross-validation

In this paper, a 5-fold cross-validation methodology was

employed to validate the proposed model. The dataset was

split into five subsets. For the multiclass classification task, the

training accuracy ranged from a minimum of 79.43% to a

maximum of 81.27% across different K values. The test accuracy

remained consistently close to 80% for all folds, as shown in the

Table 10. Table 11 shows the 5-fold cross-validation findings for

differentiating between Alzheimer’s and healthy patients. The test

accuracy remains the same as in the training accuracy. These

findings demonstrate the model’s robust and reliable capacity to

differentiate between the Alzheimer’s and healthy classes.

4.5 Comparative analysis of feature
extraction methods

In this evaluation, we compared the standard RBP with our

modified RBP. The same methodology was used, but the frequency

ranges were adjusted according to the standard: Delta (0.5–4),

Theta (4–8), Alpha (8–13), Beta (13–25), and Gamma (25–45).

The results achieved are shown in the Table 12. The standard

RBP method achieved an accuracy of 63.03% in the multiclass

classification task, whereas the modified RBP reached 80.34%. The

precision for all classes remained almost the same; however, the

recall and F1-score varied across the three classes. The Alzheimer

class showed higher F1-score and recall values, whereas the Healthy

class had lower values in these metrics. For the binary classification

task, the Alzheimer and Healthy classes achieved an accuracy of

76.36% using the standard feature extraction method, whereas the

modified feature extractionmethod achieved an accuracy of 99.71%

as shown Table 13. Both classes showed lower recall, precision,

and F1-scores with the standard method compared to the results

obtained using the modified feature extraction method.

TABLE 13 Classification metrics for Alzheimer and healthy classes.

Class Precision Recall F1-
score

Support

Alzheimer 0.76 0.81 0.79 1,876

Healthy 0.76 0.71 0.73 1,597

TABLE 14 Model accuracy comparison with existing papers using dataset.

Paper Model Accuracy Feature
engineering

XAI

Ma et al.

(20)

Support vector

machine

91.5% PHI ✗

Miltiadous

et al. (18)

Dual-Input

Convolution

Encoder Network

(DICE-net)

83.28% Band power

and coherence

✗

Kachare

et al. (16)

STEADYNet 97.59% ✗ ✗

Chen

et al. (19)

Vision

transformer +

CNN

80.23% frequency

channels

✗

This

work

Proposed model 80.34%, 99.7% Modified RBP ✓

4.6 Comparison with existing ML and DL
model

To gauge the performance of the proposed model, it has been

compared with existing studies in Table 14. InMiltiadous et al. (18),

the authors achieved an 83.28% accuracy with the DICE-net model,

utilizing EEG denoising and extracting Band power and coherence

features as key steps in feature engineering. In Kachare et al. (16),

the STEADYNet model achieved 88.00% accuracy for AD vs. NC

and 92.25% for FTD vs. NC. Using a dual-input strategy, the model

employed convolutional and features are extracted from EEG data

using max-pooling layers. The research explored binary and multi-

class classification, reporting a 97.59% accuracy in the multi-class

setting. The study (19) utilized a CNN with pre-trained weights,

achieving an accuracy of 82.30%. EEG feature extraction was

performed in both the time and frequency domains, while a Vision

Transformer complemented the CNN by capturing global feature

representations. The classification task distinguished between AD,

FTD, and NC. Ma et al. (20), EEG data was used to classify AD

and FTD, achieving an initial accuracy of 91.5%. After optimizing

the feature set by eliminating unnecessary attributes, the accuracy

increased to 96.6%. A support vector machine (SVM) model was

utilized for binary classification between these groups (20).

No prior research utilized explainable AI (XAI) or lightweight

models. To address this, the proposed study introduces a hybrid

deep learning model with efficient feature engineering and a

reduced number of parameters, improving accuracy in binary and

multi-class classification while integrating SHAP.

5 Explainable artificial intelligence

Explainable Artificial Intelligence (XAI) is a crucial

development in the field of artificial intelligence, focusing on
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FIGURE 6

SHAP global feature importance graph for class healthy.

FIGURE 7

SHAP global feature importance graph for class Alzheimer’s disease.

making the decision-making processes of AI systems transparent

and understandable to users. In medicine, the need for XAI

is particularly significant due to the high stakes involved in

clinical decision-making. Healthcare professionals require clear

explanations for AI-driven recommendations to ensure trust and

reliability in these technologies. By improving interpretability, XAI

not only helps clinicians approach AI methods with caution but

also fosters a deeper understanding of AI applications in medical

practice, ultimately promoting data-driven and mathematically

grounded medical education (21). The SHAP (SHapley Additive

exPlanations) (22) global feature importance graphs depict the

contribution of different frequency bands (Zaeta, Beta, Theta,

Alpha, Delta, Gamma) to the classification of three classes:

Healthy, Alzheimer’s Disease, and frontotemporal Disease. In

Figure 6, the SHAP values for the Healthy class show that Zaeta

has the highest importance (+0.1), followed by Beta (+0.07) and

Theta (+0.05). This indicates these frequency bands are most

influential in predicting Healthy cases, while Alpha, Gamma,

and Delta have minimal contributions. Figure 7 highlights the

SHAP importance for Alzheimer’s Disease, where Beta exhibits

the highest importance (+0.19), followed by Zaeta (+0.12) and

Theta (+0.06). These results suggest that Beta and Zaeta bands

play a critical role in distinguishing Alzheimer’s Disease from

other classes. In Figure 8, the SHAP values for the Frontotemporal

Disease class demonstrate that Beta has the most significant

influence (+0.26), with Zaeta being the second most important

feature (+0.2). The other frequency bands, including Theta, Alpha,

Delta, and Gamma, contribute very minimally to this classification.

The SHAP summary graphs explain the contributions of

different features to the predictions of a proposed hybrid deep
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FIGURE 8

SHAP global feature importance graph for class frontotemporal disease.

FIGURE 9

SHAP Summary graph for Class Healthy.

learning model for three different Alzheimer’s disease, and

frontotemporal disease. Each plot shows the impact of the features

on the model’s output. The x-axis represents the SHAP values,

indicating whether a feature contributes positively or negatively to

the prediction for a specific class.The Healthy class plot Figure 9

shows distinct feature behavior compared to the disease classes.

Here, the SHAP values indicate a different pattern of influence,

with Zaeta and Beta waves also playing critical roles but in opposite

directions from the disease classes. For the Alzheimer’s Disease class

Figure 10, features such as Beta and Zaeta wave characteristics show

a stronger positive or negative influence on predictions, with higher

feature values (red points) generally pushing predictions in one

direction. In this plot Figure 11, the Zaeta and Beta waves seem to

have the most significant influence on the model’s predictions, with

both high and low feature values affecting the SHAP values. The

distribution of points along the x-axis for these features suggests

that they are crucial in determining whether the prediction aligns

with frontotemporal disease.

The SHAP heat maps show how different brain wave features

contribute to the model’s predictions for healthly, Alzheimer’s

Disease, and Frontotemporal Disease. Each row represents a

feature, while the columns represent individual instances. Each

model input’s global importance is shown as a bar plot on the

plot’s right side. Beta and Zaeta waves are among the features

that commonly display blue in Healthy class Figure 12, suggesting

that they have a negative impact on the prediction and force

the model to classify these phenomena as healthy. On the other

hand, beta and Zaeta waves frequently show red in the AD class

Figure 13, indicating that they are highly predictive of Alzheimer’s

disease. How these features adjust to different data points is

seen in the mixed pattern across instances. For Frontotemporal

Disease Figure 14, Beta and Zaeta waves again dominate with
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FIGURE 10

SHAP summary graph for class Alzheimer’s Disease.

FIGURE 11

SHAP summary graph for class frontotemporal disease.

strong red contributions, emphasizing their importance for this

class. Compared to Healthy, there are more concentrated positive

contributions (red), pushing predictions toward the disease class.

These heat maps reveal the nuanced role of brain wave features in

distinguishing between healthy and diseased states.

5.1 Neurophysiological interpretation of
frequency band importance

The SHAP visualizations in (Figures 6–14) reveal that the

Zaeta and Beta frequency bands consistently exhibit high SHAP

values across all classification tasks, indicating their dominant

contribution in distinguishing between Alzheimer’s Disease (AD),

Frontotemporal Dementia (FTD), and healthy controls. This is not

merely a data-driven outcome but has a neurophysiological basis

grounded in clinical EEG studies.

The Beta band is associated with active cognitive processing,

attention, and motor control. Abnormalities in Beta activity—

particularly elevated or diminished power—have been reported in

AD patients, often linked to disruptions in cognitive and executive

functions. In contrast, FTD patients may exhibit distinct patterns

in Beta activity due to altered frontal lobe functioning, which is

characteristically impaired in FTD but less so in early AD.

The Zaeta band, though less commonly named in classical EEG

literature, overlaps with the high Alpha to low Beta range and

serves as a transitional band. Our modified Relative Band Power

(RBP) analysis captures Zaeta as a distinct band, enabling finer

differentiation. The elevated importance of Zaeta in our SHAP

analysis suggests that subtle shifts in mid-frequency rhythms play

a significant role in disease-specific EEG patterns. Specifically,

such shifts may reflect compensatory mechanisms or region-

specific slowing in cortical activity, both of which are documented

phenomena in dementia-related neurodegeneration.
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FIGURE 12

SHAP heatmap for class healthy.

FIGURE 13

SHAP heatmap for class AD.
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FIGURE 14

SHAP heatmap for class frontotemporal disease.

Therefore, the SHAP-derived feature dominance is consistent

with known pathophysiological changes in brain activity across

dementia subtypes. The model not only learns these discriminative

patterns effectively but also explains them in a way that aligns with

clinical neurophysiology, enhancing interpretability and potential

clinical utility.

6 Conclusions and future direction

This paper addressed the critical need for an accurate and

efficient detection of mental disorders, i.e., AD and (FTD). A

lightweight TCN-LSTM hybrid model has been proposed for the

aforementioned purpose. To prepare the data for experimentation,

a modified Relative Band Power (RBP) analysis was performed to

extract six EEG frequency bands via power spectrum density (PSD)

computations. The proposed model achieved 99.70% accuracy

for the classification of Frontotemporal Disease vs. Healthy,

and 99.74% accuracy for Alzheimer vs. Healthy. In another

binary task, where Alzheimer and Frontotemporal data were

combined into a single class and classified against Healthy, the

model achieved 99.80% accuracy. For the three-class classification,

accuracy 80.34% achieved. Evaluation metrics including AUC-

ROC, recall, confusion matrix, and F1-score were calculated for

each classification. High scores were achieved across all multiclass

categories, except the Healthy class, which showed reduced recall

(35%) and F1-score (47%) as a result of data imbalance. Finally, the

integration of SHAP for explainability further enhanced themodel’s

transparency, making it a valuable tool for clinical applications. The

proposed method proved to be an efficient and effective solution

for the detection of AD and (FTD). Future research may include

the use of large and diverse datasets focusing on the exploration of

additional EEG characteristics Vascular, Lewy Body Dementia, and

Creutzfeldt-Jakob Disease data can be used to train and validate

the model with an XAI approach while maintaining patient data

privacy and security.
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