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Background: Endometrial cancer (EC) is a common and increasingly prevalent 
gynecological malignancy. Pyroptosis, a pro-inflammatory form of programmed 
cell death, plays dual roles in cancer but remains poorly understood in the 
context of EC and its immune microenvironment.

Methods: We identified pyroptosis-associated genes (PAGs) and applied a 
101-combination machine learning framework to construct and validate a robust 
prognostic model using TCGA bulk RNA-seq and single-cell transcriptomic 
data. Immune infiltration was assessed using CIBERSORT and Tumor Immune 
Dysfunction and Exclusion (TIDE), while CellChat was employed to investigate 
pyroptosis-related cell–cell communication. Drug sensitivity was predicted with 
OncoPredict.

Results: A seven-gene prognostic model demonstrated robust predictive 
performance with concordance index (C-index) values exceeding 0.70 in both 
training and validation cohorts. The model stratified EC patients into high- 
and low-risk groups with distinct immune infiltration profiles and differential 
responses to programmed cell death protein 1 (PD-1) blockade. Drug sensitivity 
analysis revealed several therapeutic agents with potential efficacy in high-risk 
and low-risk subgroups.

Conclusion: This study highlights the clinical and immunological relevance 
of pyroptosis in EC and introduces a PAG-based model with strong predictive 
and therapeutic potential. These findings provide a foundation for developing 
pyroptosis-guided precision immunotherapy strategies in EC.
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Introduction

Endometrial cancer (EC) is the second most commonly diagnosed 
gynecological malignancy worldwide, with a steadily rising incidence, 
particularly in developed countries. Epidemiological projections from 
the American Cancer Society estimate that in 2025, EC will contribute 
to approximately 69,120 newly diagnosed cases and 13,860 related 
mortalities (1). While early-stage EC has a five-year survival rate of 
about 95%, advanced-stage disease has a poor prognosis, with survival 
dropping to 14% (2). These statistics highlight the critical importance 
of early diagnosis in improving patient outcomes.

Adjuvant cancer therapies have been shown to exert anti-tumor 
effects, in part, through the induction of pyroptosis (3). This form of 
cell death is characterized by cellular swelling, osmotic lysis, disruption 
of membrane integrity, and alterations in electrochemical gradients 
such as calcium ion (Ca2+) flux. These changes result in the release of 
inflammatory cytokines, including interleukin-1β (IL-1β) and IL-18 
(4, 5), which amplify inflammatory responses and facilitate the 
activation of antigen-specific cytotoxic T lymphocytes (CTLs). These 
CTLs play a crucial role in recognizing and eliminating tumor cells, 
initiating the first step of the “tumor-immunity” cycle and suppressing 
tumor progression (6–10).

Pyroptosis plays a complex and context-dependent role in cancer 
(8, 11). It can promote tumor growth and metastasis through 
inflammation and immune evasion (7). The shift from apoptosis to 
pyroptosis mediated by PD-L1 can promote tumor necrosis (12), 
potentially facilitating tumor growth and hindering antitumor 
immunity (13). Gao et al. (14) found that higher GSDMD expression 
might contribute to tumor evasion of innate immune responses and 
is associated with poor prognosis in non-small cell lung cancer. On 
the other hand, pyroptosis also activates antitumor immunity by 
recruiting immune cells and enhancing immunotherapy response (11, 
15, 16). A study demonstrated that GSDME acts as a tumor suppressor 
by activating pyroptosis and enhancing antitumor immunity (17). 
Pyroptosis-induced inflammation within the tumor 
microenvironment (TME) can stimulate the immune system by 
activating immune cells and pathways, thereby improving the efficacy 
of cancer immunotherapy (18). It is also associated with many adverse 
effects of cancer therapy, such as cytokine release syndrome in 
chimeric antigen receptor T (CAR-T) cell therapy (19) or 
chemotherapy drug damage to normal tissues in chemotherapy (20).

In recent years, our research team has focused on the field of 
endometrial cancer pyroptosis. Our previously published article 
confirms that pyroptosis-related protein nucleotide-binding domain 
(NOD)-like receptor (NLR) family member pyrin-domain-containing 
protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD) were 
overexpressed in endometrial cancer tissue and cells. GSDMD-
induced pyroptosis suppressed tumor growth in subcutaneous EC 
xenografts, revealing its tumor-suppressive role in EC (21). 
Furthermore, we also demonstrated Charged Multivesicular Body 
Protein 4B (CHMP4B) and vacuolar protein sorting 4 homolog A 
(VPS4A) reverse GSDMD-mediated pyroptosis by cell membrane 
remodeling in EC. GSDMD knockdown reduced PI-positive cells, 
Ca2+ efflux, IL-1β, and LDH release, while CHMP4B and VPS4A 
depletion enhanced these indicators in EC cells. Membrane 
perforations decreased with inactivated GSDMD and increased or 
decreased after CHMP4B and VPS4A depletion or overexpression in 
EC cells, suggesting a regulatory mechanism within the pyroptosis 

pathway in EC (22). Despite these findings, the role and mechanisms 
of pyroptosis in EC remain incompletely understood.

Understanding these processes would offer new insights and 
strategies for improving treatment for endometrium cancer (23, 24). 
Therefore, in this study, we continued to investigate the prognostic 
significance and regulatory functions of pyroptosis-related genes in 
endometrial cancer. Using publicly available datasets, we identified 
key pyroptotic genes, assessed their diagnostic relevance, and explored 
their associations with the immune microenvironment. Pyroptosis-
associated essential genes were identified by the DepMap Public 23Q2 
dataset and their involvement in membrane repair and pyroptosis was 
validated by drug treatment and western blotting analysis in AN3CA 
and HEC1A cells. This work provides a theoretical basis for future 
studies and potential therapeutic strategies in EC.

Method

Data collection

RNA sequencing (RNA-seq) data were obtained from 589 patients 
in the TCGA-UCEC cohort (accessed via https://portal.gdc.cancer.gov 
on August 11, 2024). Due to missing survival data for 17 patients, 
these cases were excluded from the study. Consequently, our final 
analysis included mRNA expression data from 538 tumor samples and 
34 normal tissue samples, along with survival outcomes and clinical 
follow-up data corresponding to these patients. Somatic mutation 
data, provided in mutation annotation format (MAF), were 
downloaded from TCGA, while copy number variation (CNV) data 
for TCGA-UCEC patients were retrieved from the UCSC Xena 
database (accessed via https://xena.ucsc.edu on August 11, 2024).

Acquisition of pyroptosis-associated genes

A list of 52 pyroptosis-associated genes (PAGs) was retrieved from 
the MSigDB database (25) (accessed via https://www.gsea-msigdb.org/
gsea/msigdb) and selected for further analysis in this study 
(Supplementary Table 1).

Analysis of PAGs expression and mutation

In the TCGA-UCEC dataset, the pheatmap package was utilized 
to generate a heatmap representing the expression of PAGs. 
Differences in PAGs expression between tumor and normal groups 
were visualized using boxplots created with the ggplot2 package. For 
an in-depth examination of the chromosomal distribution of PAGs, 
the RCircos package was employed to produce circular visualizations. 
Additionally, mutation data for TCGA-UCEC were downloaded and 
analyzed using the maftools and oncoplot packages to generate 
waterfall plots illustrating the mutations present in the selected PAGs.

Consensus clustering analysis

Consensus clustering is a robust resampling-based technique 
employed to determine subgroup memberships and validate clustering 
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outcomes. In the present study, we leveraged the ConsensusClusterPlus 
package (26) in R to categorize distinct pyroptosis subtypes based on 
the expression profiles of PAGs. The optimal number of clusters (K) 
was determined by evaluating the cumulative distribution function 
(CDF) plot, delta area plot, and consensus matrix heatmap. Based on 
these metrics, K = 2 was selected as the optimal number of clusters, 
and samples were accordingly divided into two distinct pyroptosis-
related subtypes. The survival disparities among these subtypes were 
evaluated using Kaplan–Meier (K–M) survival curves, which were 
generated utilizing the survminer package.

Screening of PAGs by single-cell RNA 
sequencing analysis

We acquired single-cell RNA sequencing data from the 
GSE173682 dataset (27), which presented a comprehensive multi-
omic cell atlas of matched single-cell transcriptome and single-cell 
chromatin accessibility profiles spanning over 150,000 cells from 11 
human gynecologic tumors, including samples from five EC patients. 
To identify the gene expression patterns associated with pyroptosis, 
single-cell RNA sequencing analysis was conducted from the dataset 
using the “Seurat” package.

Low-quality cells were removed to eliminate cell-specific biases. 
Quality control metrics included: cells were retained only if their 
mitochondrial gene content was below 10%, and genes were included 
if they were expressed in at least 10 cells within an expression range of 
500 to 6,000. Post-quality control, 10,794 cells remained for 
downstream bioinformatic analyses.

Data normalization and feature selection were performed using 
the Seurat R package. Gene expression data were normalized using the 
“LogNormalize” method with a scaling factor of 10,000. Subsequently, 
the top 2,000 highly variable genes were identified using the “vst” 
method, which selects genes based on their variance-stabilizing 
transformation across cells. Principle component analysis (PCA) was 
performed on the list of highly variable genes and identify cell clusters. 
We used the elbow method (elbow function in Seurat) to identify 
significant priniciple components (PCs). The top 20 PCs were used for 
clustering with the FindClusters function (10 clusters with 
resolution = 0.5). Marker genes were determined with p-value <0.05 
and log2(fold-change) >1 by performing differential gene expression 
analysis between the clusters using the likelihood-ratio test. Cell types 
were annotated based on the CellMarker 2.0 database (28). To mitigate 
batch effects across the five samples, we applied the Harmony package. 
We performed umap analysis using the results of PCA with significant 
PCs as input. The top  20 PCs were used for clustering and 18 
subclusters were obtained with resolution = 0.5.

We utilized the AddModuleScore function from the Seurat 
package to calculate a pyroptosis score for each cell. This function 
computes the average expression level of PAGs, subtracted by a control 
gene set matched by expression bins, thus reflecting the relative 
activation level of the pyroptosis gene module across cells. The 
resulting Pyroptosis_Score was visualized on a umap embedding 
using feature plot, and cells were stratified into “high” and “low” 
groups based on the median score.

To identify genes differentially expressed between the two groups, 
we performed a differential expression analysis using the FindMarkers 
function. Genes were considered significantly differentially expressed 

if they met the criteria of p < 0.05 and |avg_log2FC| >1. We  then 
intersected the list of significant DEGs with our predefined PAG list 
to extract pyroptosis-associated DEGs (PADEGs). Representative 
genes were visualized using density plots generated with the Nebulosa 
package to highlight their expression distributions across 
cell populations.

Construction and evaluation of the risk 
model

The TCGA-UCEC dataset was randomly partitioned into a 
training set and an internal validation set in a 7:3 ratio, ensuring a 
balanced distribution of clinical characteristics between the two 
cohorts. We utilized the Mime1 package to apply 10 machine learning 
algorithms (29), including Lasso, Ridge, stepwise Cox, CoxBoost, 
random survival forest (RSF), elastic net (Enet), partial least squares 
regression for Cox (plsRcox), supervised principal components 
(SuperPC), generalized boosted regression modeling (GBM), and 
survival support vector machine (survival-SVM). Ten of these models 
were individual algorithms applied alone, while the remaining 
models consisted of combinations, including a feature selection 
algorithm (Lasso, RSF, Boruta) and a survival prediction algorithm 
(Cox, survival-SVM, GBM, etc.). Variable selection and model 
development were conducted within the TCGA-UCEC training 
dataset using a 10-fold cross-validation approach. All constructed 
models were subsequently validated in the TCGA internal 
validation set.

A univariate Cox proportional hazards regression analysis was 
performed on all candidate genes to filter out irrelevant features and 
genes with a p-value less than the specified cutoff (unicox_p_
cutoff = 0.05) were retained for downstream analysis. We choosed the 
“all” mode in the ML.Dev.Prog.Sig function of Mime1 package to 
explore both single-gene and multi-gene interactions to identify the 
most predictive signature. The nodesize = 5 parameter defines the 
minimum number of samples needed for a node split in tree-based 
modeling to ensure robustness against overfitting.

The concordance index (C-index) was calculated for both the 
training and internal validation sets to evaluate predictive 
performance. Besides, 1-year-AUC was also calculated to assist in the 
selection of the final model. The most robust and clinically relevant 
algorithm combination (RSF) was selected for further investigation. 
We employed the RSF algorithm implemented in the random Forest 
SRC package to develop a prognostic model using the training dataset. 
To optimize model performance, we  performed hyperparameter 
tuning using the tune function. The optimal parameter combination 
was determined based on out-of-bag (OOB) error rates. The final RSF 
model was then trained with the identified optimal parameters 
(ntree = 1,000, mtry = 28, nodesize = 3).

To evaluate the model’s ability to predict survival probabilities at 
specific time points (1-year, 2-year, and 3-year survival), 
we  constructed time-dependent ROC curves using the timeROC 
package. Risk scores were generated for both the training and 
validation datasets using the trained RSF model. Patients were 
stratified into high-risk and low-risk groups based on the median risk 
score derived from the training set. Kaplan–Meier survival curves 
were plotted for both groups, and log-rank tests were performed to 
assess the statistical significance of differences in survival probabilities.
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The importance of individual genes in predicting survival 
outcomes was quantified using the variable importance metric 
(VIMP) derived from the RSF model. The top-ranked genes were 
identified based on their VIMP scores and visualized using bar plots. 
These genes were further used as input features for downstream Cox 
proportional hazards regression analysis.

A nomogram was constructed via the rms package to predict 
patient survival probabilities at specific time points (2-year, 3-year, 
and 5-year survival). A multivariate Cox proportional hazards model 
was fitted using the top-ranked genes identified from the RSF analysis. 
Calibration curves were plotted to assess the agreement between 
predicted and observed survival probabilities.

Immune infiltration and immunotherapy 
analysis

We utilized the CIBERSORT (30) package in R to quantify the 
proportions of 22 immune cell types in tumor samples, including 
seven T cell subtypes, three B cell subtypes, NK cells, and myeloid 
cells. The results were saved for subsequent analysis.

To provide effective guidance for tumor immunotherapy, 
we  obtained immune phenotype scores (IPS) from The Cancer 
Immunome Atlas (TCIA) (accessible at https://tcia.at/) (31). These scores 
were utilized to predict responses to immune checkpoint blockade in the 
training cohort. Wilcoxon rank-sum tests were employed to evaluate the 
disparities in responses to cytotoxic T lymphocyte antigen-4 (CTLA-4) 
inhibitors and anti-PD-1/PD-L1 inhibitors across different risk strata.

PAGS and immunotherapy for endometrial 
cancer

GSE251923 is a dataset which indicates responders and 
non-responders to anti-PD-1 therapy in human EC (32). The 
clustering, visualization, and annotation methods for this dataset are 
as described above. Cell–cell interaction analysis was performed using 
the CellChat package (version 1.6.0) (9). Signaling pathway networks 
were evaluated using this package.

Drug sensitivity analysis

OncoPredict is a computational tool tailored for predicting the 
responsiveness of tumor patients to a range of chemotherapy and 
targeted therapeutic agents (33). Leveraging patient gene expression 
profiles and established drug sensitivity data, it generates predictive 
models. In the present study, patients were stratified into distinct 
expression clusters (PagCluster) based on the median expression levels 
of prognostic genes. Subsequently, the drug sensitivity of these clusters 
to commonly used chemotherapy drugs was evaluated.

Identification of pyroptosis-associated 
essential genes

The dependency scores (Chronos) of 27 endometrial cancer cell 
lines were obtained from the DepMap Public 23Q2 dataset (accessed 

on February 24, 2024). Genes with gene effect scores <−1 were 
selected as potential pyroptosis-associated essential genes. Candidate 
genes involved in membrane repair and pyroptosis were prioritized 
for further validation based on biological relevance.

Cell culture and drug treatment

AN3CA cells and HEC1A cells were obtained from the American 
Type Culture Collection. They were cultured in modified Eagle 
medium (MEM) (Servicebio, China) with 10% FBS (Vazyme, China). 
The cells were cultured at 37°C in a humidified incubator 
with 5% CO2.

Cells were treated with LPS (Sigma-Aldrich, United States; 50 ng/
mL, 4 h) and nigericin (Sigma-Aldrich, United States; 10 μM, 30 min); 
LPS, nigericin and olaparib (Beyotime, China; 200 nM, 24 h); LPS, 
nigericin and niraparib (Beyotime, China; 50 nM, 24 h); LPS, 
nigericin and EDTA (Absin, China; 1 mM, 12 h); LPS, nigericin and 
CaCl₂ (Macklin, China; 100 μM, 12 h); vehicle (DMSO) at the 
same volume.

After drug treatments, cells were harvested for downstream assays 
by western blotting.

Coimmunoprecipitation assays

Coimmunoprecipitation (Co-IP) assays were performed as 
described previously. The cells were lysed with RIPA lysis buffer 
(Epizyme, China) supplemented with protease and phosphatase 
inhibitors (Epizyme, China). The lysate was sonicated for 30 s and kept 
on ice for 1 h, and the supernatant was collected. Mixed 50 μL protein 
A/G magnetic beads (Beyotime Biotechnology, China) into the 
protein-antibody solution and incubated on a shaker at 4°C for 3 h. 
The magnetic beads were precipitated with a magnetic stand. The 
magnetic beads were boiled with SDS loading buffer and subjected to 
immunoblotting analysis.

Western blotting

Western blot analysis was used to assess the expression levels of 
GSDMD, cleaved-GSDMD, CHMP4B, TSG101, PARP1, 
VPS4A. GAPDH was used as a loading control.

Total proteins were extracted from cultured cells using RIPA lysis 
buffer (Epizyme, China) supplemented with protease and phosphatase 
inhibitors (Epizyme, China). Protein concentrations were measured 
using a BCA Protein Assay Kit (Epizyme, China) according to the 
manufacturer’s instructions. Equal amounts of protein (30 μg) were 
resolved by 10% SDS-PAGE and transferred onto PVDF membranes 
(Vazyme, China). Membranes were blocked with 5% non-fat milk in 
TBST for 1 h at room temperature and incubated overnight at 4°C 
with primary antibodies against GSDMD (1:1,000, Proteintech), 
CHMP4B (1:1,000, Proteintech), TSG101 (1:1,000, Proteintech), 
VPS4A (1:1,000, Abcam), PARP1 (1:1,000, Abcam) or GAPDH 
(1:5,000, Proteintech) as a loading control. After washing, membranes 
were incubated with HRP-conjugated secondary antibodies (1:5,000, 
Servicebio, China) for 1 h at room temperature. Immunoreactive 
bands were detected using enhanced chemiluminescence (ECL) 
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reagents (Epizyme, China) and visualized with a ChemiDoc Imaging 
System (Bio-Rad, United States).

Result

Expression and mutation analysis of PAGs

In the TCGA-UCEC dataset, we utilized the “pheatmap” package 
to construct a heatmap depicting the expression profiles of pyroptosis-
associated genes (PAGs), providing a comprehensive visualization of 
their transcriptional patterns (Figure  1A). To illustrate the 
chromosomal distribution of PAGs, we  employed the “RCircos” 
package, revealing their widespread localization across autosomes, 
with notable absences on chromosomes 9, 10, 15, 18, 21, and 22 
(Figure 1B).

To investigate the mutational landscape of PAGs in the 338 
patients with available data, we applied the “maftools” and “oncoplot” 
packages to generate waterfall plots, identifying TP53, CASP8, and 
NLRP3 as the most frequently mutated genes, each exhibiting a 
mutation rate exceeding 10%. Among the observed alterations, 
missense mutations were the most prevalent, followed by nonsense 
mutations (Figure 1C). Furthermore, we utilized the ggplot2 package 
to generate boxplots comparing PAG expression levels between tumor 
and normal tissues. Differential expression analysis revealed that 
CASP4, CHMP4B, ELANE, IL-1A, and TNF were significantly 
upregulated in tumor samples (p < 0.05) (Figure 1D). These findings 
underscore the transcriptional and mutational heterogeneity of PAGs 
in endometrial cancer, providing insights into their potential roles in 
tumorigenesis and immune regulation.

Consensus clustering analysis for EC 
classification

Consensus clustering is a widely utilized approach in cancer 
classification, enabling the identification of molecular subtypes based 
on gene expression patterns. In this study, we performed consensus 
clustering on tumor samples from the TCGA-UCEC dataset using the 
Consensus Cluster Plus package, with classification based on the 
expression profiles of PAGs. The robustness of the clustering results 
was assessed through the cumulative distribution function (CDF) 
plot, delta area plot, and consensus matrix heatmap (Figures 2A–C). 
Our analysis identified an optimal clustering solution at K = 2, 
stratifying the cohort into two distinct molecular subtypes, designated 
pagCluster A and pagCluster B.

Differential gene expression analysis between the two subtypes 
revealed significantly higher expression levels of PAGs in pagCluster 
B compared to pagCluster A (p < 0.05 for all genes except ELANE) 
(Figure 2D). Based on these expression patterns, pagCluster A was 
classified as the low pyroptosis expression group, whereas pagCluster 
B represented the high pyroptosis expression group.

To investigate the prognostic implications of these molecular 
subtypes, we performed Kaplan–Meier (K-M) survival analysis using 
the survminer package (Figure  2E). While both groups exhibited 
relatively high survival rates within the first 3 years, a divergence in 
survival outcomes became evident over time. Although the difference 
did not reach statistical significance (p = 0.295), patients in pagCluster 

A consistently demonstrated a slightly higher survival rate than those 
in pagCluster B across the entire follow-up period. Notably, this 
survival advantage became more pronounced beyond the 9-year 
mark, suggesting a potential association between lower PAG 
expression and improved long-term prognosis. These findings suggest 
that heightened pyroptosis-related gene expression may be linked to 
unfavorable clinical outcomes in endometrial cancer, underscoring 
the potential impact of pyroptosis on disease progression and patient 
survival. Further investigations are warranted to elucidate the 
mechanistic basis of this relationship and its implications for 
therapeutic strategies.

Pyroptosis scores of PAGs at the single-cell 
level

To elucidate the gene expression patterns associated with 
pyroptosis at single-cell resolution, we performed single-cell RNA 
sequencing (scRNA-seq) analysis using data from the 
GSE173682 dataset.

Following clustering and cell-type annotation, a total of 18 distinct 
clusters were identified, corresponding to nine major cell 
subpopulations: stem cells, stromal cells, epithelial cells, smooth 
muscle cells, fibroblasts, macrophages, NK cells, T cells, and an 
“unknown” group (Figure 3A).

We applied the “AddModuleScore” function in Seurat. The 
analysis revealed that PAG activity varied significantly across different 
cell types, with the highest scores observed in macrophages (0.09) and 
the lowest in stromal cells (−0.03) (Figures 3B–C).

To further delineate the molecular features associated with 
pyroptosis, Wilcoxon rank-sum tests were employed to identify 
differentially expressed genes (DEGs) between high and low PAG 
score groups (p < 0.05), yielding a set of pyroptosis-associated 
differentially expressed genes (PADEGs) (Table  1). UMAP 
visualization of PADEGs revealed that key pyroptosis-related genes, 
including CASP1, TNF, GSDME, IL1A, NLRP3, IL6, NOD2, IL18, and 
IL1B, were predominantly enriched in macrophages exhibiting high 
PAG activity (Figure 3D).

Construction and evaluation of a risk 
prediction model

To identify key pyroptosis-associated genes with prognostic 
significance, we utilized the TCGA-UCEC dataset, randomly dividing 
70% of the cohort into a training set and allocating the remaining 30% 
to a validation set. We constructed multiple predictive models within 
the training set using the “Mime1” package in R. After rigorous 
evaluation across both training and validation cohorts, the model 
integrating Random Survival Forest (RSF) was identified as the 
optimal approach. This model demonstrated the highest predictive 
performance, achieving an average C-index of 0.81, with C-indices of 
0.91 in the training set and 0.71 in the validation set (Figure 4A). 
Additionally, the one-year survival prediction yielded an area under 
the curve (AUC) of 0.78 in the training set and 0.73 in the test set, with 
a hazard ratio (HR) >1, suggesting that elevated expression of 
pyroptosis-associated genes (PAGs) is correlated with poorer 
prognosis (Figure 4B).
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FIGURE 1

Overview of PAGs in endometrial cancer. (A) Heatmap of PAGs expression. The blue bar above represents tumors, while the red bar represents normal 
tissues. PAGs exhibit medium to high expression in both normal endometrium and endometrial cancer. (B) Chromosomal distribution of PAGs. 
(C) Mutation landscape of PAGs in endometrial cancer. TMB distribution plot illustrating the genetic alterations in 518 samples, with 330 (63.71%) 

(Continued)
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In the RSF model, the genes with the highest importance scores 
were CASP9 (0.067), GSDME (0.064), TIRAP (0.038), TP53 (0.032), 
GZMB (0.029), NOD1 (0.026), and GZMA (0.025). These results 
indicate that CASP9 and GSDME are the most significant 
contributors to the predictive power of the RSF model in the context 
of patient prognosis (Figure 4C). Kaplan–Meier survival analysis 
based on the median risk score revealed that patients in the low-risk 
group had significantly better survival outcomes (p < 0.0001 in the 
training cohort; p = 0.025 in the testing cohort, Figure 4D).

To further assess the model’s predictive capacity, time-dependent 
ROC curves were generated for 1-, 2-, and 3-year survival. The results 
demonstrated robust discriminative ability of the RSF model 
(Figure 4E). The nomogram was constructed using the rms package. 
Among them, GSDME and several other genes were closely associated 
with patient survival, which was consistent with the findings from the 
RSF model (Figure 4F). Finally, calibration curve analysis revealed 
good agreement between predicted and observed survival 
probabilities, supporting the strong calibration performance of the 
nomogram model (Figure 4G).

Immune checkpoint analysis and immune 
infiltration analysis

To elucidate the role of PAG expression in shaping the immune 
landscape and guiding immunotherapy strategies in EC, we obtained 
immune phenotype scores (IPS) from The Cancer Immunome Atlas 
(TCIA) to predict responses to immune checkpoint blockade (ICB) 
within the training cohort. IPS serves as a predictive biomarker for 
responsiveness to immune checkpoint inhibitors (ICIs), including 
PD-1 and CTLA-4 inhibitors. Using the Wilcoxon test, we analyzed 
differences in IPS between high- and low-risk groups across different 
immunotherapy modalities. Our results revealed that the effect of 
immunotherapy under the PAGs signature indicated that patients in 
the low-risk group had higher immunotherapy scores for four types 
of immunotherapy, including no CTLA4 and PD1 treatment, PD1 
treatment alone, CTLA4 treatment alone, combined PD1 and CTLA4 
treatment (p < 0.001, Figure 5A).

To further investigate the relationship between PAG expression 
and immune cell infiltration, we utilized the CIBERSORT algorithm 

showing mutated genes. The x-axis represents different gene names, while the y-axis indicates the number of alterations for each gene. The bar chart, 
with various colors, depicts different types of mutations, including missense mutations, frameshift insertions/deletions, nonsense mutations, etc. The 
percentage bar chart on the right displays the proportion of samples with each type of mutation. Color code: blue: missense mutations; orange: 
frameshift insertions/deletions; pink: frameshift substitutions; red: non-frameshift insertions; green: nonsense mutations; gray: non-stop codon 
mutationsormal tissues. (D) Differential expression of PAGs between tumor and normal tissues. Red represents tumor tissue, and blue represents non-
tumor tissue; CASP4, CHMP4B, IL-1A, and TNF are significantly overexpressed in tumors, while ELANE is more highly expressed in normal tissues.

FIGURE 1 (Continued)

FIGURE 2

Consensus clustering analysis of TCGA-UCEC tumor samples. (A) Cumulative distribution function (CDF) plot of consensus clustering. It describes the 
changing trends of the CDF of the consensus index under different K values. The colors from red to pink represent K values ranging from 2 to 9. As K 
increases, the consensus index shows noticeable changes. (B) Delta area plot. The x-axis represents the K values, while the y-axis shows the relative 
delta area. As K increases, the delta area gradually decreases. (C) A consensus matrix heatmap is shown for K = 2. (D) Differential gene expression 
between different pagClusters. The x-axis represents the names of different genes, and the y-axis represents the expression level of the gene. The blue 
box represents the expression level of cluster A, and the red box represents the expression level of cluster B. (E) Kaplan–Meier survival analysis of 
different pagClusters. Cluster A shows a better survival rate in the long term.
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to quantify immune cell composition and assess correlations between 
PAGs and immune cell subtypes. Our analysis demonstrated a 
negative correlation between PAG expression and the infiltration of 
M2 macrophages and monocytes (Figures 5B, p < 0.05), suggesting a 
potential link between pyroptosis-related inflammation and the tumor 
immune microenvironment (TIME). Additionally, ESTIMATE 
analyse revealed that patients with low PAG expression exhibited 
higher immune score (p < 0.01) and ESTIMATE score (p < 0.01), 
indicating a more inflamed tumor microenvironment (Figure 5C).

PAGs in immunotherapy for endometrial 
cancer

To further elucidate the role of PAGs in the context of EC 
immunotherapy, we  analyzed the GSE251923 single-cell dataset, 
which includes EC patients stratified based on their response to PD-1 
blockade therapy. Patients were categorized into two groups: partially 
responsive (PR) and progressive disease (PD). Following 

dimensionality reduction using UMAP, we  observed that the PR 
group exhibited increased T cell infiltration compared to the PD 
group (Figure 6A), suggesting a potential association between T cell 
activity and response to PD-1 therapy. To further explore cellular 
interactions in response to PD-1 blockade, we  employed the 
“CellChat” package to construct a cellular communication network 
among key cell types, including B cells, mast cells, macrophages, and 
epithelial cells. Notably, in the PR group, macrophage-mediated 
communication with nearly all other cell types was markedly reduced, 
implying that PD-1 blockade may modulate macrophage function and 
intercellular signaling (Figure 6B).

We further examined signaling pathway alterations between the 
PR and PD groups (Figure 6C). Within macrophages, pathways such 
as CD56 and BAFF signaling were generally downregulated, 
suggesting that PD-1 blockade may attenuate pyroptosis-related 
macrophage activation. Given the previously identified significant role 
of PAGs in modulating T cell-macrophage interactions, we  next 
performed pyroptosis scoring on cells from both groups using the 
“AddModuleScore” function in Seurat. Notably, in the PR group, 

FIGURE 3

PAGs scoring and distribution in endometrial cancer single cells. (A) Clustering and annotation of single cells in endometrial cancer. (B,C) PAGs activity 
scores across single cells. PAGs were scored by “AddModuleScore” function (B) and visualized using violin plots (C). Macrophages exhibit a high PAG 
score. (D) Expression distribution of PADEGs2. CASP1, TNF, GSDME, IL1B, IL18, IL1A, NLRP3, NOD2, and IL6 showed aggregation in macrophages.

https://doi.org/10.3389/fmed.2025.1590405
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al. 10.3389/fmed.2025.1590405

Frontiers in Medicine 09 frontiersin.org

epithelial cells exhibited significantly lower pyroptosis scores, 
indicating a potential correlation between epithelial cell pyroptosis 
and response to immunotherapy (Figure 6D). These findings suggest 
that pyroptosis in epithelial cells may play a pivotal role in determining 
response to PD-1 blockade in EC patients.

Drug sensitivity analysis

To further elucidate the relationship between pyroptosis-risk 
scores and chemotherapy response, we employed the OncoPredict R 
package to estimate the half-maximal inhibitory concentration (IC50) 
values for a panel of commonly utilized chemotherapeutic and 
targeted agents across all patients (Figure 7). A lower IC50 value (μM) 
indicates greater drug sensitivity. Notably, 164 drugs exhibited 
statistically significant differences in IC50 values between the high- 
and low-risk groups (p < 0.01) (Supplementary Table 2).

We next evaluated these differences, Wilcoxon tests were 
performed to compare IC50 values (p < 0.001) between high- and 
low-risk groups for drugs with IC50 values below 1 μM. The IC50 

values were transformed using a negative logarithmic scale, and the 
top six most significantly different drugs were visualized using a 
box-and-whisker plot. The findings revealed that vinblastine, 
docetaxel, bortezomib, daporinad, dactinomycin, antronium bromide 
exhibited potential therapeutic value in the high-risk pyroptosis group 
of endometrial cancer (Supplementary Figure 1).

A key drug target for reversing pyroptosis 
via membrane remodeling: TSG101 
interacts with pyroptosis-associated genes

In our previous study, CHMP4B and VPS4A mitigate GSDMD-
mediated pyroptosis by promoting cell membrane remodeling in 
endometrial carcinoma (34). To investigate the key genes involved in 
membrane remodeling during pyroptosis, we utilized the CRISPR-
based DepMap database (35) (DepMap Public 23Q2+ Score, Chronos) 
to analyze the ene effect in 27 EC cell lines. Tumor susceptibility gene 
101 (TSG101) and CHMP4B were identified as candidate genes with 
a Gene Effect score of less than −1 (Figure  8A). Furthermore, 

TABLE 1 PADEGs in single cell.

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj

CHMP4A 0 1.37534716 0.405 0.205 0

BAX 6.143 × 10−288 1.08899767 0.443 0.268 1.37 × 10−283

IL1B 8.815 × 10−283 6.54089959 0.135 0.03 1.966 × 10−278

GSDMD 1.206 × 10−241 1.34656643 0.258 0.12 2.689 × 10−237

CASP8 9.941 × 10−223 1.60427271 0.219 0.095 2.217 × 10−218

CASP4 1.425 × 10−202 1.14851609 0.323 0.185 3.177 × 10−198

CASP1 3.62 × 10−199 2.39127742 0.12 0.034 8.072 × 10−195

IL18 8.077 × 10−184 2.40895224 0.102 0.026 1.801 × 10−179

PYCARD 1.154 × 10−136 1.40846291 0.172 0.083 2.573 × 10−132

TNF 7.81 × 10−122 3.00916778 0.079 0.024 1.742 × 10−117

IL1A 2.381 × 10−117 4.43685994 0.05 0.008 5.308 × 10−113

CASP6 8.803 × 10−107 1.25646108 0.127 0.059 1.963 × 10−102

GZMB 1.798 × 10−106 3.37715548 0.052 0.011 4.01 × 10−102

CHMP4C 1.4081 × 10−83 1.21074597 0.106 0.05 3.1397 × 10−79

CHMP6 2.2612 × 10−74 1.10457859 0.118 0.062 5.0419 × 10−70

PRKACA 3.1219 × 10−73 1.12379997 0.112 0.057 6.9611 × 10−69

TP53 1.6038 × 10−67 1.0309549 0.119 0.065 3.576 × 10−63

GSDME 2.3472 × 10−67 1.57602404 0.059 0.022 5.2337 × 10−63

IL6 3.6123 × 10−62 1.98527293 0.124 0.072 8.0547 × 10−58

GZMA 4.5224 × 10−61 3.50867058 0.022 0.003 1.0084 × 10−56

CASP9 1.3908 × 10−40 1.20829617 0.048 0.021 3.1011 × 10−36

NLRP2 6.1952 × 10−39 1.267805 0.04 0.017 1.3814 × 10−34

NLRP3 2.6467 × 10−34 1.91118671 0.031 0.012 5.9017 × 10−30

NOD2 1.5627 × 10−24 2.07572334 0.018 0.006 3.4845 × 10−20

NOD1 1.3482 × 10−19 1.27444705 0.025 0.012 3.0062 × 10−15

GSDMB 8.6712 × 10−17 1.19040758 0.027 0.014 1.9335 × 10−12

TIRAP 1.796 × 10−16 1.57603085 0.02 0.009 4.0046 × 10−12
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we conducted Co-IP assays in EC cell lines and confirmed pairwise 
interactions between TSG101 and CHMP4B, GSDMD, and poly 
(ADP-ribose) polymerase inhibitors (PARPi), with the TSG101 also 
showing association with CHMP4B (Figure 8B). Therefore, TSG101 
holds promise as a key protein which regulates EC cell 
membrane remodeling.

Recent studies show that TSG101, a differentially expressed 
protein in the EC pyroptosis model, may be  targeted by clinically 
available drugs, particularly PARPi (36). To examine the upstream/
downstream relationship between TSG101 and CHMP4B, as well as 
the effect of PARPi on TSG101 inhibition, we performed experiments 
in BRCA1/2 non-mutant AN3CA cells. Western blot (WB) analysis 
revealed that when TSG101 expression was knocked down, CHMP4B 
expression was absent, and the expressions of GSDMD and PARP1 
were downregulated. In contrast, knocking down CHMP4B did not 
affect TSG101 expression, but led to a significant downregulation of 
GSDMD expression. These results suggest that TSG101 is upstream of 
CHMP4B, and CHMP4B may regulate GSDMD expression. 

Furthermore, after treatment with PARPi, both TSG101 and CHMP4B 
expressions were inhibited, while GSDMD expression was significantly 
upregulated (Figure 9). These findings indicate that TSG101 directly 
regulates CHMP4B expression, and PARPi, as an inhibitor of TSG101, 
downregulates CHMP4B expression and promotes GSDMD 
expression, potentially playing a significant role in pyroptosis, and also 
possesses clinically targetable drug potential.

Discussion

Current drug therapies for endometrial cancer include (37) 
platinum-based chemotherapy, progestins, and targeted agents such 
as mTOR inhibitors and immune checkpoint inhibitors. However, due 
to tumor heterogeneity and therapeutic resistance (38), the clinical 
outcomes of advanced or recurrent endometrial cancer remain 
challenging. We systematically explored the role of PAGs in EC by 
integrating bulk RNA-seq, single-cell transcriptomics, and machine 

FIGURE 4

Construction of the risk model. (A) C-index values of 101 machine learning models. RSF showed the highest C-index (0.81 in average, framed in red). 
(B) AUC at 1-year values of 101 machine learning models. RSF showed a high AUC (0.755 in average, framed in red). (C) Top variable importance in RSF 
model for pyroptosis genes. Bar plot showing the importance of pyroptosis-related genes in the RSF model. The x-axis represents the importance 
score, and the y-axis lists the genes. (D) Kaplan–Meier curve of the COX model. Divided by the median, red represents the high-risk group and green 
represents the low-risk group. The low-risk group enjoys a higher survival rate. (E) 1-year, 3-year, and 5-year ROC of the RSF model. (Represented by 
red, green, and blue respectively). (F) Nomogram of a model for estimation of the probability of EC survival. Points were assigned to parameters by 
drawing lines upward from the corresponding values to the “Points” line. The sum of these points, plotted on the “Total points” line, corresponds to the 
predicted two, three, and five-year survival. (G) Calibration plot of the nomogram. The predictive line (solid line in red) overlaps well with the ideal line 
(dotted line), indicating that the predictive value approximates the actual value. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 5

Immune checkpoint analysis and immune infiltration analysis. (A) IPS scores in different risk groups. Red represents high-risk group, and blue 
represents low-risk group. The high-risk group showed a negative predictive result for PD-1 treatment. The high-risk group exhibits a lower IPS. 
(B) The correlation between PAGs and immune cells. Macrophages M2 and monocytes show a negative correlation significantly with PAGs (framed in 
black). (C) Immune score and ESTIMATE score in high-risk group and low-risk group. *p < 0.05, **p < 0.01, and p < 0.001.
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learning approaches. Our findings provide insights into the complex 
interplay between pyroptosis, tumor progression, and the immune 
microenvironment in EC. In this study, we analyzed the TCGA-UCEC 
cohort and identified seven representative pyroptosis-related genes in 
endometrial cancer (CASP9, GSDME, TIRAP, TP53, GZMB, NOD1, 
and GZMA) that were most effective in predicting patient survival. 
Our findings suggest that these genes may serve as valuable tools for 
guiding treatment decisions and selecting therapeutic agents.

CASP9 is an initiator caspase that plays a central role in the intrinsic 
(mitochondrial) apoptotic pathway. Genetic polymorphisms in the 
CASP9 gene have been linked to altered cancer risk across multiple 

tumor types (39), suggesting their potential role in modulating apoptosis 
and tumorigenesis. Exosome-mediated transfer of miR-769-5p from 
drug-resistant cells targets CASP9 and promotes the ubiquitination and 
degradation of p53, leading to cisplatin resistance and progression in 
gastric cancer (40). Overexpression of CASP9 is associated with poor 
overall survival (OS) in breast cancer (41). GSDME is an important 
member of the Gasdermin family of proteins, capable of converting 
caspase-3-mediated apoptosis into pyroptosis in cancer cells and 
activating anti-tumor immunity (42). Pyroptosis induced by GSDME 
promotes the release of pro-inflammatory cytokines, transforming the 
tumor immune microenvironment from a “cold” state to a “hot” state, 

FIGURE 6

Single-cell analysis of the relationship between anti-PD-1 therapy, immunity, and pyroptosis. (A) The umap plot of cell types in the PD and PR group. 
UMAP visualization results show the distribution of different cell types in two dimensions. The PR group includes B cells, epithelial cells, macrophages, 
mast cells, progenitor cells, smooth muscle cells, and unknown cells. The PD group contains B cells, epithelial cells, macrophages, mast cells, 
progenitor cells, T cells, trophoblast cells, and unknown cells. The legend lists the corresponding colors for each cell type. (B) Interactions of same 
cells in the two groups. Blue represents mast cells, green represents macrophages, pink represents B cells, and purple represents epithelial cells. The 
numbers represent the number of interactions. (C) Overall signal patterns of the two groups. (D) Pyroptosis scores in each cell type. The score of each 
cell type is presented in the form of a scatter plot, with the x-axis representing the cell type and the y-axis representing the score value.
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FIGURE 7

Drug sensitivity analysis in EC. In the RS group, the color scheme differentiates the low-risk cohort with green and the high-risk cohort with red. The 
transition in IC50 values from low to high is depicted through a gradient ranging from blue to red. The visualization clearly indicates that the IC50 for 
the low-risk group is inferior to that of the high-risk group, suggesting that a lower expression of PAGs may confer increased sensitivity to 
chemotherapeutic agents.
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significantly enhancing the effectiveness of anti-tumor immunotherapy 
(17). GSDME-mediated pyroptosis plays a crucial role in PD-1 blockade 
therapy, antibody-drug conjugate (ADC) therapy, and CAR-T therapy 
(43–45). However, due to the widespread expression of GSDME in 
nearly all body tissues and immune cells (46), it may exacerbate 
chemotherapy toxicity and partially hinder immune responses (47). 
TIRAP (Toll/interleukin-1 receptor domain-containing adaptor protein) 
is an adaptor molecule associated with Toll-like receptors. The T allele of 
the rs8177376 polymorphism in TIRAP is statistically associated with 
lower cervical tumor grades (48). When granzymes directly cleave and 
activate gasdermins to induce cell death, the expression of gasdermins 
in tumor cells can convert immune cell-mediated killing into 
inflammatory pyroptosis (43, 49), in which granzyme B cleaves 
gasdermin E, while granzyme A cleaves gasdermin B. As a transcription 

factor, TP53 directly regulates the expression of approximately 500 genes, 
many of which are involved in cell cycle arrest/senescence, apoptosis, or 
DNA damage repair—cellular responses that collectively prevent 
tumorigenesis (50, 51). Dysfunction of TP53 not only contributes to 
tumor development but also impairs the responsiveness of malignant 
cells to anticancer drugs, particularly those that induce DNA damage 
(51). NOD1 plays a dual role in cancer. It sensitizes the TNF signaling 
pathway to induce apoptosis and downregulate estrogen receptor 
expression in breast cancer (52), while also promoting cell proliferation 
and invasion in ovarian cancer (53), whereas its disruption in cervical 
and liver cancers fosters tumor progression (54, 55). In summary, 
pyroptosis-related genes play a critical role in tumor initiation and 
progression, modulation of the immune microenvironment, and the 
development of therapeutic resistance.

FIGURE 8

TSG101 and CHMP4B form a functional interaction network with GSDMD and PARP1 in EC. (A) The DepMap database identified TSG101 and CHMP4B as 
candidate genes with a gene effect score of less than −1 in 27 endometrial cancer (EC) cell lines. (B) In AN3CA and HEC1A cell lines, CO-IP was performed 
using His and Flag antibodies to detect the interaction between TSG101 and GSDMD, CHMP4B, and PARP1. The antibody concentration used was 1:50.
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Although pyroptosis is traditionally viewed as a tumor-suppressive 
mechanism (56, 57), its role in cancer is complex and context-dependent. 
Excessive or inappropriate activation can lead to immune 
hyperinflammation or cytokine storms, damaging normal tissues and 
promoting cancer progression (58, 59). This paradox may help explain 
our finding that lower expression of certain PAGs is associated with 
longer overall survival in endometrial cancer patients. Similarly, Zhou 
et al. (60) identified three distinct clusters in the TCGA gastric cancer 
dataset and found that the cluster with the highest level of pyroptosis 
exhibited the longest OS. Further mechanistic studies are needed to 
clarify the net biological impact of pyroptosis signaling in different tumor 
microenvironments. In addition to prognostic modeling, we employed 
the oncoPredict algorithm to estimate drug sensitivity based on the gene 
expression profiles of EC patients. Some agents, such as vinblastine, 
docetaxel, bortezomib, etc., may have potential therapeutic implications 
for patients with elevated pyroptosis-related risk. These findings, though 
preliminary, provide a potential basis for exploring individualized 
therapeutic strategies based on PAG-driven molecular subtypes.

TSG101 is a multifunctional protein comprising a ubiquitin E2 
variant (UEV) domain, a proline-rich domain (PRD), and a 

coiled-coil (COIL) domain. The UEV domain directly interacts with 
CHMP4B, facilitating its recruitment to multivesicular bodies 
(MVBs), which are essential for membrane remodeling (61). 
Inhibiting the TSG101–CHMP4B axis impairs membrane repair and 
compromises the survival of damaged cells (62). TSG101 also interacts 
with PARP1 via its COIL domain (36). PARP inhibitors (PARPi) block 
PARP1 activity, thereby trapping TSG101 at DNA damage sites and 
hindering downstream signaling (63). Additionally, due to the 
interaction between PARP1 and Ca2+, PARPi may also affect calcium 
homeostasis (64), functioning as dual inhibitors of TSG101 and Ca2+ 
signaling. PARPi have shown therapeutic potential in EC, even in the 
absence of BRCA mutations (65). These findings highlight TSG101 as 
a potential therapeutic target involved in membrane remodeling in EC.

Despite these promising results, several limitations must 
be acknowledged. First, the prognostic model was constructed and 
validated using TCGA data only, lacking external cohort validation. 
This limitation may affect the generalizability of the signature to 
broader EC populations. Second, while we conducted some in vitro 
assays to explore the relationships among key molecules, further 
biological validation at the cellular and animal levels remains essential 

FIGURE 9

TSG101 acts upstream of CHMP4B to regulate GSDMD-mediated pyroptosis and is targeted by PARP inhibitors in endometrial cancer cells. Compared 
to the control group, in AN3CA cells, the addition of CaCl2, EDTA, olaparib, niraparib, and TSG101 inhibitor topotecan resulted in the downregulation 
of TSG101 and CHMP4B expressions, with a significant upregulation of GSDMD expression. After silencing TSG101 using siRNA, neither TSG101 nor 
CHMP4B expression was detected, and the expressions of PARP1, VPS4A, and GSDMD were significantly downregulated. When CHMP4B expression 
was silenced, TSG101 expression showed no significant change, but the expression of GSDMD was consistently downregulated across all groups. All 
experiments were performed in triplicate, with data presented as mean ± SD.
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to strengthen the causal link between PAG expression and the 
observed phenotypes. Third, our scRNA-seq analysis was based on a 
relatively small number of EC samples, which may limit the resolution 
and robustness of cell-type-specific expression patterns of PAGs. 
Future studies with larger and more diverse single-cell datasets are 
needed to refine these findings. Besides, artificial intelligent 
approaches are helpful in identifying the clinical characteristics of 
endometrial cancer, such as MRI radiomics effectively predicts tumor 
grade, myometrial invasion, LVSI, and lymph node metastasis in 
endometrial carcinoma, aiding diagnosis and prognosis (66). 
Moreover, while our study focused primarily on transcriptomic data, 
additional layers such as epigenetic regulation, proteomic alterations 
and spatial transcriptomics could further enrich our understanding of 
pyroptosis in EC. Lastly, although the oncoPredict-based drug 
sensitivity prediction offers valuable preliminary clues, actual drug 
responses in clinical settings may differ due to tumor heterogeneity 
and pharmacokinetics, which warrants further preclinical and 
clinical validation.

Conclusion

In this study, we developed and validated a seven-gene pyroptosis-
associated prognostic model for EC. The model demonstrated robust 
performance across clinical subtypes and immune phenotypes, 
showing strong associations with patient survival and immunotherapy 
response. These findings highlight the potential of PAGs as biomarkers 
for risk stratification and as targets for personalized treatment in EC.
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