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Pulmonary diseases, such as pneumonia and lung abscess, can trigger

sepsis, while sepsis-induced immune dysfunction exacerbates Pulmonary tissue

damage, creating a vicious cycle. Therefore, designing a safe and e�ective

clinical treatment planning method for sepsis is critically significant. In recent

years, deep reinforcement learning (DRL), as one of the artificial intelligence

technologies, has achieved remarkable results in the field of sepsis treatment.

However, DRL models may be attacked due to their sensitive training data and

their high commercial value, especially with the increasing number of DRL

models being released on the Internet. Consequently, protecting the “privacy”

of DRL models and training data has become an urgent problem. To address this

issue, we propose a di�erential privacy-based DRL model for sepsis treatment.

Furthermore, we investigate the impact of di�erential privacy mechanisms on

the performance of the DRL model. Experimental results demonstrate that

integrating di�erential privacy intoDRLmodels enables clinicians to design sepsis

treatment plans while protecting patient privacy, thereby mitigating lung tissue

damage and dysfunction caused by sepsis.

KEYWORDS

pulmonary diseases, sepsis treatment, artificial intelligence, deep reinforcement

learning, di�erential privacy, clinical treatment plan

1 Introduction

Sepsis is a life-threatening condition caused by a dysregulated host response to

infection, resulting in systemic inflammation and organ dysfunction (1). The primary

sources of infection include the Pulmonary (40–60%), abdomen, urinary tract, and

bloodstream (2). Inflammatory factors released during sepsis, such as tumor necrosis

factor-α and interleukin-1β , disrupt the alveolar-capillary barrier, leading to pulmonary

edema, respiratory failure, and progression to acute respiratory distress syndrome

(ARDS) (1, 2). Additionally, excessive inflammatory mediator release induces brain

microvascular endothelial injury and coagulation dysfunction, increasing the risk of

cerebral microcirculation disorders and cerebral infarction. Therefore, designing a safe and

effective clinical treatment plan for sepsis is of critical importance.

Recently, with the development of computer computing power, deep reinforcement

learning has achieved surprising achievements in real-world scenarios, including medical

care, chess, and games.We have witnessed recent breakthroughs in reinforcement learning,

such as the emergence of the Deep Q-Network (3), which surpassed human levels in

three of the seven games on the test. In 2016, Komorowski et al. (4) first proposed using
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reinforcement learning (RL) to address challenges in the medical

field, They propose a discrete MDP to provide optimal treatment

options for terminally ill patients in the intensive care unit,

demonstrating the great potential of reinforcement learning in

providing the individualized treatment.

Reinforcement learning, like other machine learning methods

(5–7), requires training in representative data, which often contains

sensitive personal information, to obtain ideal models. Ideally,

sensitive personal privacy should not be leaked during the process

of training a machine learning model. In other words, the

parameters of the machine learning model should learn general

patterns (People with a sweet tooth are more likely to develop

diabetes), not some specific training samples (he has diabetes).

But deep reinforcement models can remember a user’s private

information “inadvertently”. Zhang et al. (8) argued that deep

models, such as convolutional neural networks, can accurately

memorize arbitrary labels of training data. Shokri et al. (9) proposed

a member inference attack: Given a sample, it can be inferred

whether the sample is in the training data set of this model. Even

if the parameters and structure of the model are poorly known,

this attack is still effective. Unfortunately, the same risk exists for

reinforcement learning, and Pan et al. (10) showed that RL agents

can leak information about the environment, which indicated the

risk of leaking the privacy of users in the training data. Both training

data, the structure and parameters of the model should also be

protected. The commercial value of the model makes it likely to

be subjected to Model Extraction attacks (The schematic diagram

of a model extraction attack is shown in Figure 1). The recent trend

is machine learning as a service, which means that a proven model

can serve a large number of users and generate significant revenue

for the company. For example, the autonomous driving company

TuSimple relies on its driverless transportation solutions which

are expected to bring in over a billion dollars in annual earnings.

Tramer et al. (11) proposed the model extraction attacks, which can

obtain a model with close to perfect fidelity under the condition

that he only has access to the black box of the model without model

parameters or training data.

To prevent privacy leak issues with deep reinforcement

learning for sepsis treatment, this paper proposes a Privacy-

Preserving deep Q network based on differential privacy for Sepsis

Treatment. In detail, the purpose of this study and our main

contributions are:

1. We propose a privacy-preserving deep reinforcement learning

model. In particular, we add perturbations to gradient descent

using Gaussian noise and calculate the privacy budgets.

2. We analyzed the performance of the model in treating patients

with different severities of sepsis, counted the choice of actions

of the model, and summarized the effect of the inclusion of

differential privacy on the model strategy, and we explained the

reasons for this occurrence.

3. We evaluate the performance of a deep reinforcement

learning model for the treatment of sepsis at different privacy

budgets, and analyze its impact on the deep reinforcement

learning model strategy and patient mortality. Our experiments

show that differential privacy can be used to protect deep

reinforcement learning models with good performance at

reasonable privacy budgets.

2 Related work

Privacy protection for machine learning can be divided

into three categories according to the protection technology:

homomorphic encryption, multi-party secure computing, and

differential privacy.

Homomorphic encryption and multi-party secure computing

are cryptographic methods that protect data privacy during

computing. Sun et al. (12) used approximate homomorphic

encryption to solve the problem of untrustworthy outsourcing

servers, prevented private health data from being leaked or altered,

and provided secure treatment decisions for patients. Liu et al. (13)

proposed a privacy-preserving reinforcement learning framework

that uses encryption to protect the privacy of patients’ current

health status and treatment decisions and provides patients with

a secure dynamic treatment plan. Xue et al. (14) prevented the

privacy of historical electronic medical records (EMRs) from being

leaked during training by additively homomorphic encryption

schemes to provide personalized treatment plans.

Homomorphic encryption and multi-party secure computing

can effectively defend against Reconstruction Attacks duringmodel

training but cannot defend against member inference Attacks.

Therefore, it is necessary to introduce differential privacy to protect

reinforcement learning, and relevant research has been carried

out. Wang et al. (15) introduced differentially private Q-learning

in the continuous state space to make adjacent reward functions

indistinguishable, which can protect the reward information from

being exploited by methods such as inverse reinforcement learning.

Gajane et al. (16) suggested two methods to solve the Corrupt

Bandits problem and discussed the application of the algorithms in

privacy protection. Using local differential privacy, the algorithm

is suitable for protecting user privacy in recommender systems.

Basu et al. (17) introduced and unified privacy definitions for

the multi-armed bandit algorithms; they used a unified graphical

model to represent the framework, used it to connect the

privacy definitions, and derived the regret lower bounds on the

regret of bandit algorithms satisfying these definitions. Ono et

al. (18) implemented distributed reinforcement learning under

local differential privacy(LDP). Agents do not submit deliverable

data but submit perturbed gradients. They propose the Laplacian

method and random projection method to introduce randomness

to satisfy the LDP distribution gradient to prevent information

leakage. We focus on reinforcement learning for centralized

learning, using Gaussian mechanisms to add randomness to

gradients and analyze its application in sepsis treatment.

3 Preliminaries

In this section, we briefly introduce the definition of differential

privacy and outline the fundamentals of reinforcement learning.

3.1 Di�erential privacy

Differential privacy is a strictly proven privacy-preserving

technology. This definition was first proposed byMicrosoft’s (19). It
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FIGURE 1

Schematic diagram of model extraction attack.

is defined according to the application-specific concept of adjacent

databases, that is, two datasets differ by only one record.

Definition 1: (ε, δ)−Differential privacy (20). A random

algorithmM :D→ R satisfies (ε, δ)−differential privacy if and only
if for any adjacent data set d, d′ ∈ D and any output S ⊆ R differing

by only one piece of data, the following conditions are satisfied:

Pr[M(d)ǫS] ≤ eε Pr
[
M

(
d′

)
ǫS

]
+ δ (1)

Where, M(d) and M(d’) represent the output of the algorithm

M on the data sets d,d’ respectively; Pr is the output probability

of the algorithm; ε is the privacy budget, which is used to control

the level of privacy protection. The smaller the ε, the stronger the

privacy protection ability provided; δ is another privacy budget,

representing the probability that the tolerable privacy budget

exceeds ε.

Definition 2: [Global sensitivity (21)]. Given a function f :D→
Rd, for any two adjacent datasets D and D′, the global sensitivity of

f is defined as:

GSf = max
D,D′ |f (D)− f

(
D′

)
| (2)

Definition 3: [l2-global sensitivity (21)]. The l2-global

sensitivity of a function f is the maximum L2 norm of the

difference between f(D) and f
(
D′

)
, defined below:

L2f = max
D,D′

∣∣f (D)− f
(
D′

)∣∣ (3)

Definition 4: [Gaussian mechanism (20)]. where
(
0, S2

f
· σ 2

)

is the normal (Gaussian) distribution with mean 0 and standard

deviation Sf σ . defined below:

M(D) , f (D)+N

(
0, S2f · σ

2
)

(4)

Theorem 1 (20). Let ε ∈ (0, 1), the Gaussian mechanism

with parameter σ > 2
√
ln

(
1.25/δL2f /ε is (ε, δ)−DP. According

to Theorem 1, the Gaussian mechanism can achieve a (ε, δ)−DP

guarantee as long as those parameters ǫ, δ and σ meet the above

inequality conditions.

Differential privacy can be used in machine learning because of

its special properties:

Property 1 (post-processing immunity). For the same dataset

D, if the mechanism M satisfies ǫ-differential privacy, then for

any random algorithm A (not necessarily satisfying the definition

of differential privacy), the new mechanism M
′ = A(M(D)) still

satisfies ǫ-differential privacy.

Property 2 (sequence compositionally). If a series of algorithms

M1, M2, ..., Mk satisfies (ε, δ)−differential privacy, then for the

same data set D, the combined algorithm [M1(D), M2(D),. . . ,

Mk(D)] provide (kǫ, kδ)-differential privacy protection.

Differential privacy technology makes it impossible for

malicious adversaries to infer sensitive information of training data

or models even if they can obtain algorithm services and output

through the algorithm.

3.2 Reinforcement learning

Reinforcement learning is a branch of machine learning that

allows computers to interact with their environment and is used

extensively to solve sequential decision problems. The “interaction”

of the agent is realized through a predefined action set A =
{a1, a2 · · · }, which contains all possible actions. The agent first

observes the current state, then performs the selected action, and

obtains environmental feedback, and the learning process is to

repeat the above process. This learning process establishes a loop

between the environment and the agent, as shown in Figure 2.

The standard theory of reinforcement learning is defined by

the Markov Decision Process (MDP), where the immediate reward

depends only on the present state and action.

3.2.1 Markov decision process (MDP)
The Markov decision process can be represented by a tuple

< S, A, P, R, γ >, where S is a set of state/observation spaces

of the environment; A is the action set of the agent; P is a
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FIGURE 2

The interaction diagram between the agent and the environment.

transition probability function P (st+1 | st , at), which represents the
probability of transitioning to st+1 ∈ S if the agent takes action

a ∈ Ain state s ∈ S; R is a reward function, and the immediate

reward is Rt = R (st , at); γ ∈ [0, 1] is a discount factor, which

determines the degree of influence of future rewards on the current.

The purpose of reinforcement learning is to maximize the expected

return E
[∑

t γ
trt

]
by optimizing the strategy. The optimal value

function is defined as:

V∗(s) = max
π

E

[∑

t

γ trt | S0 = s,π

]
(5)

The action-value function is introduced to estimate the

expected revenue of the strategy π . This value is the mathematical

expectation of return, approximated by the Bellman expectation

equation.

3.2.2 Bellman equation
The Bellman equation, also known as the Bellman expectation

equation, is used to calculate the expectation of the value function

on the mining trajectory under the guidance of the strategy given

the strategy π . The optimal state-action value function is defined

as:

Q∗(s, a) = max
π

E

[∑

t

γ trt | S0 = s, a0 = a,π

]
(6)

The above equation satisfies the Bellman equation can be written

as:

Q∗(s, a) = r(s, a)+ γ max
a′

E
[
Q∗

(
s′, a′

)]
(7)

3.2.3 Deep reinforcement learning
Deep reinforcement learning combines the advantages of deep

learning and reinforcement learning. The deep neural network has

strong data expression ability, and the action-value function is

approximated by the neural network, so it can be written as:

Q(s, a, θ) ≈ Q∗(s, a) (8)

where θ is the parameter of the neural network.

4 Our approach

This section describes the main components of our study,

including the deep reinforcement learning model for the

treatment of sepsis, the differentially private gradient descent

algorithm, and the computation of the privacy budgets of

differential privacy.

4.1 DP-DQN

This section introduces our proposed DP-DQN algorithm,

which outlines how to incorporate privacy protection in

reinforcement learning based on the DQN model and

calculate the privacy budgets. gradient perturbation can

achieve DP guarantee even for nonconvex objectives, so this

paper chooses to take the gradient perturbation approach.

The pseudocode of Algorithm 1 outlines the basic steps of

our algorithm.

Norm clipping. We need to limit the influence of every

single example on the gradient g̃t to provide the differential

privacy guarantee of Algorithm 1, for this we need to perform

gradient clipping, in which we use the L2 norm to measure,

define C as the threshold, the gradient is greater than The

gradient of C will be clipped to C, the gradient smaller than

C will retain the original value, then g̃t will be replaced by

max

(
1,
‖gt(∅i)‖2

c

)
.

Crafting Noisy Gradient. We choose to add Gaussian noise,

which is different from Ono et al. (18) adding Laplacian noise to

LDP. The sum of the twoGaussian functions is a Gaussian function,

so the impact of privacy mechanisms on statistical analysis is

easier to understand and correct. Gaussian noise achieves relaxed

(ε, δ)−differential privacy.
Privacy accounting. The main problem after adding noise is

how to calculate the overall privacy budgets. Differential privacy

is compostable, which means that we can calculate the privacy

budgets by accumulating the privacy budgets as the training

number progresses. Each step of training requires adding noise

to the multi-layer gradients, and Privacy accounting needs to

accumulate the budgets corresponding to all these gradients. We

use Moments accountant (22) to calculate Privacy accounting,

which provides a more rigorous calculation method than the

strong composite theorem. It proves that there are constants c1
and c2, given sampling probability q=L/N and number of steps

T, for any ε < c2q
2 T and δ > 0 and σ ≥ C2

q
√

T log(1/δ)

ǫ
,

Algorithm 1 satisfies (ε, δ)−differential privacy. Through this

theorem, the privacy budgets in Algorithm 1 can be monitored in

real time.

4.2 Building the deep reinforcement
learning model

This section mainly describes building deep reinforcement

learning models and environments for the treatment of sepsis.
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Initialize replay memory D to capacity N

Initialize target action-value function Q with random weights θ

Initialize action-value function Q with random weights

for episode=1,M do

Initialize sequence s1 = {x1} and preprocessed sequenced ∅1 = ∅ (s1)

for t=1,T do

With probability ǫ select a random action at

Otherwise select at = maxa Q∗ (∅ (st),a; θ)

Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st,at,xt+1 and preprocess ∅t+1 = ∅ (st+1)

Store transition
(
∅t,at,rt, ∅t+1

)
in D

Sample random minibatch of transitions
(
∅j,aj,rj, ∅j+1

)
from D

Set yi =
{

ri, for terminal ∅j+1
ri + γ maxa′ Q

∗ (
∅

(
sj+1

)
,a′; θ

)
, for non − terminal ∅j+1

loss function L(θ) = 1
N

∑
i

(
yi − Q

(
∅j, aj; θ

))2
, Parameters: learning rate ηt, noise scale σ, group size L,

gradient norm bound C.

for t ∈ [T] do

Take a random sample Lt with sampling probability L/N

For each i ∈ Lt, compute gt (∅i)← ∇θtL (θt, ∅i)
gt (∅i)← 1

L

(∑
i gt

)
/max

(
1, ‖gt(∅i)‖2

c

)

g̃t ← 1
L

(∑
i gt (∅i)+N

(
0, σ2C2I

))

θt+1 ← θt − ηtg̃t

Network parameters θ

Every C steps reset Q̂ = Q

end for

end for

end for

Algorithm 1. DP-DQN algorithm.

This scheme replicates the work of Raghu et al. (23) with some

improvements.

4.2.1 Screening patients with sepsis
The patients’ data were obtained from the MIMIC-III (Medical

Information Mart for Intensive Care) dataset, a large public

database of patients in the intensive care unit at Beth Israel

Women’s Dickens Medical Center between 2001 and 2019.

According to the latest criteria defined by Singer et al. (24), sepsis

is defined as a suspected infection (prescribing antibiotics and

collecting body fluids formicrobial cultures) with evidence of organ

dysfunction, as measured by a Sequential Organ Failure Assessment

(SOFA) score greater than or equal to 2 to define. We followed

Sepsis-3 criteria to screen patients with sepsis.

4.2.2 State space
Patient histories were divided into 4-h windows, timed from 24

h before the diagnosis of sepsis to 48 h after the onset of sepsis.

According to the research of Johnson et al. (25), 46 physiological

indicators of patients were selected, patients with too many missing

physiological indicators were excluded, and a 47× 1 feature vector

of each patient at each time step was obtained. These feature vectors

will be used to represent the current body state of the patient, which

is the S in the MDP. The dataset is split into 80% training and

validation sets and 20% test sets. See the appendix for details.

4.2.3 Action space
We define the same discrete action space as Raghu et al. (23).

Our action consists of doses of two drugs: intravenous (IV) fluids

and vasopressors (VP). In the cohort, IV and VP usage were

recorded for each patient every 4-h window, the effect space was

discretized into quartiles for each drug, and the quartiles for each

drug at each time step were transformed is an integer representing

its quartile, plus an action space with a dose of 0. This resulted in a

5 × 5 action space, with an action of (0,0) indicating no treatment

and an action of (4,4) representing the highest quartile of fluid and

vasopressor doses.

4.2.4 Rewards
We focus on patient survival, so we choose to set a sparse

reward, giving the agent a +15 reward if the patient survives at the

end, a -15 reward if he dies, and a 0 reward otherwise.

4.2.5 Model architecture
The original Deep Q-Networks have obvious shortcomings in

that the q-values are often overestimated, so we use an improved

version of the model. The model uses the Dueling Double-Deep

Q Network architecture. Compared to the ordinary Deep Q-

Networks, the Double-Deep Q Network decouples the two steps

of target Q-value action selection and target Q-value calculation,

and no longer finds the maximum Q-value of each Dueling-Deep
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FIGURE 3

2D histograms were used to represent the discrete action space. (0,0) indicates no treatment and (4, 4) represents the highest quartile dose of fluid

and vasopressors.

Q Network divides the model output q-value into value stream

and dominance function stream. The value stream represents the

quality of the current state, while the dominance stream represents

the quality of the selected action. In this experiment, then, the

value stream represents the current physiological state of the

patient, and the dominance stream represents the dose of the agent.

To accelerate convergence, the model uses preferential empirical

replay.

5 Experimental results and discussion

This section presents the performance of a deep reinforcement

learning model based on differential privacy for sepsis treatment.

We analyze the impact by setting up comparison experiments in

which we evaluate the learning efficiency, patient survival, and the

trade-off between privacy and efficiency, and show here that our

approach is effective and feasible.

5.1 Action

The strategy of the strengthened model is reflected by the

actions, and we analyze the changes brought by differential privacy

on the action selection aspect of the model. We take the model

satisfying
(
8, 10−6

)
−differential privacy as an example.

Figure 3 depicts the overall action selection of the DQN

and DP-DQN, which are similar but not identical, suggesting

that the agent’s strategy produced a change that caused it to

select a different sequence of actions at the time of treatment.

However, both algorithms follow a rule that less pressurized

drugs are prescribed, indicating that DP-DQN can also learn this

strategy. Less prescribing of vasopressors can be explained clinically

by injecting vasopressors to increase the patient’s mean arterial

pressure, but many patients with sepsis do not have low blood

pressure and thus do not need vasopressors.

We qualitatively analyze the performance of the algorithm in

treating patients with different states, and we classified patients as

critical according to SOFA, with SOFA scores < 5 for low SOFA,

< 15 and > 5 for medium SOFA, and > 15 for high SOFA at the

current time step. This is to understand the performance of the

model on different severity subcohorts.

By observing Figure 4, we found that the strategies of DQN and

DP-DQN did not change greatly in treating patients with low SOFA

and high medium SOFA, with most of the actions concentrated at

(0,4) and almost no vasopressors drugs prescribed. In the case of

high SOFA patients, the strategies of the DQN and DP-DQN were

far apart, with the DQN actions still concentrated at (0,4) and the

DP-DQN actions concentrated at (3,3), and the DP-DQN agent

started to give larger doses of vasopressors, which was similar to the

strategy of the physicians, who mostly concentrated at (4,4) when

dealing with this type of patients.

In the work of Neelakantan et al. (26), the authors

demonstrated empirically that adding noise encourages active

exploration of the parameter space and gives the model more

chances to escape local minima or to quickly pass the early learning

smooth phase. We argue that this also holds for reinforcement

learning, where the perturbation of the gradient makes the model

more exploratory and the model more likely to explore different

actions. Different strategies will also lead to a different performance

in terms of mortality.

Collectively, the deep reinforcement learning model satisfying(
8, 10−6

)
−differential privacy is still able to learn good strategies,

even to the extent that it learns strategies that are not learned by the

original model.

5.2 Learning e�ciency

We measure the learning efficiency by how many steps the

agent can reach the target survival rate in training. To measure

it, we introduce a performance metric termed the First Achieve
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FIGURE 4

Showing the action selection of the model on di�erent severity subcohorts.

FIGURE 5

Showing the FAE for di�erent ε.

Episode (FAE), which is defined as:

FAE = min{episode | episode ∈ [Episode], Survival rate ≥ φ}
(9)

We compared FAE in different ǫ cases, screening patients with

moderate SOFA as the data set. In our experiments, we found

that in patients with small SOFA values, mortality did not change

significantly with dose, and the mortality rate of patients was

maintained at a low level. At the same time, there was no clear

pattern in patients with higher SOFA values, and there were fewer

patients with high SOFA, which made it difficult for the model

to learn a stable strategy. Therefore, the experiment selected the

data of patients with moderate SOFA as the dataset, which would

make the results more representative. We also compared the effect

of whether to include preferential experience replay or not, and

we selected the median of 24 experiments considering the possible

effect of uneven sampling.

Figure 5 demonstrates that as ǫ decreases, the learning time

required to reach a specific survival rate becomes longer, implying

that larger ǫ requires more training steps to obtain a better strategy.

At the same time, we observe that PER still has the effect of

accelerating convergence for larger ε, but instead has the opposite

effect in the case of smaller ǫ. When ε = 12, the learning efficiency

of using PER is higher, when ε = 8, there is almost no change,

and when ε = 4 and ε = 2, adding PER will significantly reduce

the learning efficiency. We believe that PER increases the effect of

perturbations and thus causes the model to converge less easily at

high privacy budgets. In subsequent experiments, we will not use

preferential empirical replay at low ε.

5.3 Estimated mortality

The usability of the model can be visualized by the Estimated

Mortality. A high usability should ensure that patients have a
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FIGURE 6

Estimated mortality rates of the model on di�erent severity subcohorts at di�erent privacy budgets (ε = ∞ indicates no di�erential privacy

protection).

low mortality rate, and a lower mortality rate means that the

model learns a better strategy. We first compare the performance

of models satisfying
(
8, 10−6

)
−differential privacy in treating

patients with different SOFA values.

As shown in Figure 6, compared to the model without the

inclusion of privacy protection, the model with the inclusion of

privacy protection caused a change in the estimated mortality rate

for both patients under the perturbation of the gradient, with a

smaller effect on the treatment of patients with low SOFA, with

only a 0.6% increase in the estimated mortality rate. In contrast,

it had a larger impact on the treatment effect for patients with

moderate SOFA and patients with high SOFA, with a 4.6% increase

in estimated mortality for patients with moderate SOFA and,

interestingly, an 4% decrease in estimated mortality for patients

with a high SOFA instead, which may be due to the change

in action selection. To make the data more representative, we

observed the performance of the model when treating patients with

moderate SOFA.

From Figure 7, it can be found that the mortality rate is

negatively correlated with the privacy budget. The smaller the

privacy budget, the higher the degree of privacy protection. As the

privacy budget becomes smaller, the effect of the model becomes

worse, and the mortality rate of patients increases. This means that

a low privacy budget means poor usability. This is interpretable,

to achieve tighter privacy protection, larger perturbations

need to be added, which is bound to have an impact on

model usability.

FIGURE 7

Model’s estimated mortality for patients at di�erent privacy budgets.

The slope of the polyline gets steeper and steeper with tighter

privacy protections. The agent selects the action corresponding

to the highest Q value, and the selection of the action affects the

patient’s mortality rate. Small parameter perturbation does not

change the Q value greatly, so the action selection of the agent does
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not change greatly, and the impact on the mortality of patients is

small. However, when the perturbation exceeds a certain threshold,

the mortality rate of patients increases sharply.

Although using differential privacy protection will have an

impact on usability, a balance between privacy and availability can

be found by limiting the privacy budget. Our experiments also

demonstrate that using Algorithm 1 can still provide strong privacy

protection (ε < 10). Achieving high survival rates has a minimal

impact on model performance.

6 Conclusion

In this paper, we investigated the use of differential privacy

in reinforcement learning and accordingly proposed a privacy-

preserving deep Q-network for secure sepsis treatment. The

advantage of our approach is that the Gaussian noise is

added to the gradient, thus achieving privacy preservation for

reinforcement learning. Furthermore, we analyzed the impact of

differential privacy on model learning efficiency and usability.

Finally, we conducted experiments to evaluate our proposed

method and the results confirmed that the proposed privacy-

preserving deep Q-network could work for sepsis treatment

without significant efficiency and accuracy drop. The experimental

results also demonstrate that incorporating differential privacy into

a deep reinforcement learning model helps clinicians to design

personalized sepsis treatment strategies that effectively protect

patient data privacy while simultaneously reducing sepsis-induced

pulmonary tissue injury and respiratory dysfunction. In the future,

we plan to explore the adaptive selection of related parameters.

Under the premise of privacy, the model has higher usability.
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