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Maturity-onset diabetes of the young (MODY) is a rare, genetically

heterogeneous form of diabetes characterized by early-onset dysglycaemia,

typically before 25 years of age, and autosomal dominant inheritance. Among

the di�erent forms of MODY, HNF4A-MODY (MODY1) is caused by mutations

in the HNF4A gene, which encodes a transcription factor essential for glucose

metabolism. Here, we describe a novel splicing variant in the HNF4A gene

(c.319+1G>A) identified in a 15-year-old girl with non-ketoacidotic diabetes

and a family history of diabetes. Initially diagnosed with Type 1 diabetes (T1D),

she required low insulin doses and displayed negative autoimmune markers.

Genetic testing revealed the heterozygous variant inherited from her father and

functional studies confirmed the variant’s impact on splicing. Following the

diagnosis of HNF4A-MODY, the patient’s treatment was switched from insulin

to sulfonylureas, resulting in improved glycaemic control and time in range,

along with an improved quality of life. The report highlights the importance

of considering MODY in young patients with diabetes who lack typical T1D

characteristics and the value of combining clinical, genetic, and functional

testing for accurate diagnosis and personalized treatment.
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1 Introduction

Maturity-onset diabetes of the young (MODY) is an inherited form of non-

autoimmune diabetes mellitus characterized by early onset dysglycaemia before 25 years

of age, autosomal dominant inheritance, absence of β-cell autoantibodies (IAA, GADA,

IA-2A, and ZNT8), and rare association with obesity (1, 2). MODY accounts for 1%−5%

of all diabetes mellitus cases (3, 4) and is genetically heterogeneous, with 14 different

causative genes identified to date. Among these, HNF4A-MODY (MODY1) (OMIM

#125850) accounts for 10% of cases in the European MODY population (5). HNF4A-
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FIGURE 1

Pedigree of proband and segregation analysis of the novel HNF4A variant. Sanger sequencing was used to validate the presence of the novel HNF4A

variant identified by NGS and to verify the segregation in the proband’s family. As shown by the chromatograms, the substitution was inherited from

the a�ected father.

MODY is caused by pathogenic defects in the hepatocyte nuclear

factor 4 alpha gene (HNF4A) (OMIM #600281), which encodes for

the HNF4A transcription factor. HNF4A is essential for glucose

transport and metabolism, and is expressed predominantly in the

liver, pancreatic islets cells and kidney (2, 6). Variants in the

HNF4A gene cause a reduction in insulin secretion. Sulfonylureas

are effective in managing patients with HNF4A-MODY (7). With

the growing number of variants detected by NGS, the availability

of reliable functional assays is essential to evaluate their impact on

gene function and expression in order to provide patients with the

proper diagnosis and management.

We describe a novel splicing variant of the HNF4A gene

identified in a familial case of MODY and its functional

characterization, enabling a diagnosis of MODY1 in a

teenage patient.

2 Case description

A 15-year-old girl was diagnosed as diabetes mellitus (DM)

with non-ketoacidotic onset: fasting hyperglycaemia 379 mg/dl,

HbA1c 8.57% (70 mmol/mol), C-peptide 1.96 ng/ml, normal pH,

absence of ketonemia, polyuria, or polydipsia. Antibodies against

pancreatic beta cells (anti-IA2, anti-ZnT8, anti-GAD, and anti-

insulin) were negative.

She was born at term of an uneventful pregnancy, with an

appropriate weight for gestational age at birth. No perinatal issues,

in particular no hypo- or hyper-glycaemia, were reported. Her

medical history was unremarkable. Family history was positive for

diabetes mellitus: the father with insulin-treated Type 2 Diabetes

Mellitus (T2DM) and paternal grandfather with unspecified DM.

Multi-injection insulin therapy, adapted on continuous glucose

monitoring (CGM), was prescribed and the patient was assigned

a provisional diagnosis of Type 1 Diabetes (idiopathic, absence

of autoimmunity). Due to a persistent low insulin requirement

(0.3 U/kg/day), autoimmune testing was repeated 1 year later and

resulted negative. In the light of this result and the positive family

history of DM, a genetic investigation for monogenic diabetes (i.e.

Maturity Onset Diabetes of the Young, MODY) was performed

(8). Next-Generation Sequencing (NGS) analysis involving 45

genes associated with dysglycaemia revealed a heterozygous variant

(c.319+1G>A) in intron 3 of the HNF4A gene (Figure 1). The

variant, inherited from the father, was predicted to impact splicing

as confirmed by functional studies. Based on these results, a

therapeutic switch to sulfonylureas (SU) was proposed to the

patient, resulting in good control of her glycaemic levels.

3 Diagnostic assessment

3.1 Molecular diagnosis

Genomic DNA was obtained from PBMC of the proband and

her father upon administration of an informed consent. Molecular

screening was performed by analyzing a panel of 45 genes involved

in monogenic diabetes and dysglicaemia (Supplementary Table 1)

filtered from whole Exome Sequencing (ES) data (9). 50–100 ng

of genomic DNA was used to sequencing selection of coding

genomic regions and flanking intronic sequences using IDT xGen

Exome Research Panel v2 enrichment kit (34Mb, 19,433 genes)

and Illumina technology (PE 2X150) on the Illumina platform

Novaseq6000. Bioinformatics workflow for variant calls based on

GATK software.

The patient was found to be heterozygous for a novel, intronic

variant of the HNF4A gene (OMIM# 600281), the c.319+1G>A

(p.◦?) (RefSeq, NM_175914.5, and NP_787110.2), nomenclature
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according to the HGVS guidelines. The presence of the variant

was confirmed by direct Sanger sequencing. Briefly, PCR products,

corresponding to the genomic region of interest, were purified

by enzymatic digestion with Exo/SAP-IT (Thermo Scientific R©,

Massachusetts, USA) and sequenced with the Big Dye Terminator

Cycle Sequencing Kit (Thermo Scientific R©, Massachusetts, USA)

according to the provided protocol; sequencing reactions were

run on a 3,130 × l Genetic Analyzer (Thermo Scientific R©,

Massachusetts, USA) and analyzed with the Sequencer 4.7 software

(Genecodes R©, USA).

3.2 Generation of the minigene constructs

The effect of the HNF4A variant on the mRNA splicing was

verified by the minigene approach, based on pSPL3 exon trapping

vector (already available in the Lab) (10).

A genomic fragment of 450 bp (chr20:44,407,193–44,407,642;

GRCh38/hg38) spanning the third coding exon of HNF4A

and flanking intronic sequences was amplified by PCR from

genomic DNA of the proband. Wild-type and variant allele

were separated by subcloning in pCR2.1-TOPO TA (TOPOTM

TA Cloning, Invitrogen, Thermo Fisher Scientific, Massachusetts,

USA), checked by Sanger sequencing and then subcloned into the

pSPL3 splicing vector for functional analysis.

3.3 Cell culture, transient transfection and
minigene sequences analysis

The Hek-293 cell line was already available in the laboratory

and previously purchased by ATCC. Cells were routinely cultured

in complete medium consisting of Essential Modified Medium

(MEM) with 10% FBS in a humidified incubator at 37◦C with

5% CO2. Transient transfections for the minigene assay were

carried out by seeding 8 × 105/well cells in 6-well plates. The

next day, the transfection mix composed by 2 µg of pSPL3

constructs and Lipofectamine 2,000 reagent was added to cells,

as suggested by the manufacturer (Invitrogen R©, Thermo Fisher

Scientific, Massachusetts, USA). Cells were then collected after

24 h and processed for RNA extraction with the RNeasy plus

Mini Kit (Qiagen R©, Hilden, Germany) according to the protocol

provided. cDNA was obtained by the retro-transcription of 1 µg of

RNA by using Advantage R© RT-for-PCR (Takara, Shiga, Japan) and

then, amplified with GoTaq Master mix (Promega R©, Wisconsin,

USA) as indicated by the manufacturer’s protocol (oligonucleotides

sequences are available upon request). The PCR products were

checked on 1.5% Agarose gel, cleaned-up by Exo/SAP-IT (Thermo

Scientific R©, Massachusetts, USA) digestion and sequenced as

described above.

3.4 Results

The identified HNF4A variant, inherited by the proband

from the affected father (Figure 1), has never been reported in

association with MODY and is absent in population databases.

According to the ACMG criteria the variant is interpreted as

likely pathogenic (PVS1, PM2) (11). This substitution affects the

canonical donor site of the HNF4A exon 3 and is predicted

to alter the splicing with a significant 1 score of 0.95 (high

precision) by the splice AI bioinformatic tool (12), thus prompting

us to proceed with the experimental validation by a minigene

approach (10).

As shown in Figure 2, RT-PCR amplification products with

different sizes were detected in cells expressing both wild-type

(WT) and mutated pSPL3 constructs. Sanger sequencing allowed

us to verify that the bands migrating with lower molecular weight

corresponded to what expected by the correct splicing of the vector

exons in cells transfected with empty vector, and to an altered

splicing with skipping of the HNF4A exon 3 in cells transfected

with the mutated construct. A proper splicing combining vector

exons withHNF4A exon 3 was detectable in cells expressing theWT

construct. These results demonstrated that the variant alters the

HNF4A splicing by causing the exclusion of the exon 3 frommature

mRNA. This exon is out-of-frame and its skipping from cDNA

leads to a frameshift with generation of an early termination codon,

likely triggering the nonsense-mediated mRNA decay (NMD) of

the mutated transcript. Splicing alterations of HNF4A are a known

pathogenic mechanism in MODY1 (13).

3.5 Clinical management

Based on the confirmed molecular diagnosis of HNF4A-

MODY1, we planned a therapeutic switch to sulfonylureas (SU),

which would likely improve the patient’s quality of life and

glycaemic control. The therapeutic switch was conducted as

follows: on Day 1, therapy with Gliclazide started at a dosage of

30mg per day, pre-prandial insulin boluses were suspended and

the dosage of basal insulin was halved. On Day 2 basal insulin was

discontinued and CGM showed initially optimal glycaemic values.

No episodes of hypoglycaemia occurred.

The patient was initially followed-up monthly in the outpatient

Clinic. At the first follow-up visit, isolated postprandial

hyperglycaemic peaks, consistently below 250 mg/dL, were

reported and Gliclazide dosage was increased to 60mg per day.

The glycaemic trend remained stable. Throughout the follow-up,

screening for DM complications was performed according to

ISPAD guidelines and no complication occurred (14).

In Figure 3, we summarized CGM parameters at T0 (during

insulin therapy), at T1 (after starting Gliclazide), and at T2

(at the last follow-up visit, with Gliclazide dosage stabilized at

60mg per day). Although the patient had excellent glycaemic

control already during insulin therapy, the therapeutic switch and

especially the appropriate dosage of Gliclazide helped to further

increase the Time In Range (TIR) and reduce the Time Above

Range (TAR).

4 Discussion

In this case report, we describe a young patient initially

diagnosed with non-ketoacidotic DM, later confirmed to have

HNF4A-MODY. The diagnosis, which was suspected based on
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FIGURE 2

The novel HNF4A variant a�ects the splicing of the gene. RT-PCR products obtained from Hek-293 cells transiently transfected with the di�erent

pSPL3 constructs. A band of 263 bp was detectable both in cells transfected with the empty vector (EV) and with the construct carrying the third

HNF4A exon 3 and flanking intronic sequences with the c.391G>A variant (V). This is due to the skipping of the HNF4A exon induced by the presence

of the substitution with combination of the two artificial exons as observed in cells expressing the empty vector. A band of 358 bp is detectable in

cells expressing the wild-type minigene construct (WT) and corresponding to the correct splicing combining the exon 3 of the HNF4A gene with

those provided by the splicing vector, as schematically represented in the middle panel. The splicing events were also checked by Sanger sequencing

of the RT-PCR products as shown by the chromatograms reported in the right panel. 1kb and 100bp, molecular weight markers; -, PCR reaction

negative control; SA and SD6, artificial exons provided by the pSPL3 vector.

FIGURE 3

Glycaemic improvement after starting Gliclazide. TAR>250, Time Above Range >250; TAR, Time Above Range; TIR, Time In Range; TBR, Time Below

Range; TBR <54, Time Below Range <54; T0, in the course of insulin therapy; T1, after starting Gliclazide; T2, Gliclazide dosage stabilized at 60mg

per day.

clinical features and confirmed by molecular testing along with

functional analysis of a novel variant, had significant implications

for the management of the patient.

Young patients presenting with a clinical onset of DM requiring

insulin treatment are diagnosed as Type 1 Diabetes Mellitus

(T1DM) while evidence of the presence of autoimmune antibodies

is investigated. The absence of pancreatic autoantibodies, a low

or no insulin requirements for longer than 5 years after the

diagnosis and the absence of signs of Type 2 Diabetes Mellitus

(T2DM) (marked obesity, acanthosis nigricans) prompts suspicion

of monogenic diabetes, particularly in cases with a family history of

DM in one parent or first-degree relative (15).
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Maturity-Onset Diabetes of the Young 1 (MODY1) is a rare

and hereditary monogenic form of diabetes due to heterozygous

mutations in the HNF4A gene. It encodes a transcription factor

crucial for the development and function of pancreatic β-cells,

which are responsible for insulin secretion in response to glucose

(16). The gene is involved in a well-coordinated network of

transcriptional regulation, comprising several genes such Glucose

Transporter 2 (GLUT2/SLC2A2), which facilitates the glucose

uptake into β-cells; enzymes involved in the downstream glycolytic

pathway (such as GCK, PKLR, GAPDH); genes encoding channels

central to the ATP-dependent pathway of insulin secretion

(such as KCNJ11) (16–18). Moreover, HNF4A regulates insulin

expression both directly, through the binding of consensus

sequences in the promoter of the INS gene and indirectly

through HNF1A transcription factor (19). Indeed, HNF4A and

HNF1A form a cross-regulatory network, where each regulates the

other’s expression, highlighting their interconnected roles in β-

cell function (19). It’s important to note that HNF4A has many

target genes beyond those directly involved in insulin secretion,

as it plays a broad role in liver, kidney, and intestinal function

as well (16, 20). Literature on MODY1 is limited and primarily

focused on mutations defining the condition (21) and some clinical

manifestations characterizing its onset (macrosomia, neonatal

hypoglycaemia, and gestational diabetes), which were absent

in our patient (22).

Sulfonylureas are the first therapeutic choice for MODY1.

Switching from insulin to sulfonylureas is considered successful,

without deterioration in glycaemic control, in the patients

previously treated with insulin (23). Sulfonylureas reduce blood

glucose levels by stimulating insulin secretion from pancreatic beta

cells. Among sulfonylureas, Gliclazide is usually chosen for its lower

risk of hypoglycaemia and its favorable route of administration,

since it can be taken orally, once or twice a day depending on the

formulation (short or slow release). In adults, the initial dose is

30mg per day and can then be increased up to 120mg per day. The

interval between each dose increase should be at least 1 month. In

children, the initial dose should be lower to avoid hypoglycaemic

events. Themost common side effect is hypoglycaemic crises in case

of irregularities in meals, and especially, in case of missed meals.

Moreover, attention should be paid to patients with conditions of

liver or kidney failure, malnutrition, imbalance between exercise

and carbohydrate intake or endocrine dysfunctions (involving

thyroid, pituitary and adrenal glands, among others). In absence

of hypoglycaemia, patients maintain low-dose sulfonylureas (e.g.,

20–40mg gliclazide daily) for decades (22).

The benefits of this treatment extend beyond improved

glycaemic control offering a better quality of life, particularly

important for younger patients. This report underlines how

integrating clinical and genetic diagnoses can contribute to

precision medicine, enabling targeted treatment, personalized

follow-up, and genetic counseling for both the patient and the

family members.
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