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Chagas disease is considered a public health issue, especially in Latin America. 
To this date, the course of the infection caused by the parasite Trypanosoma 
cruzi is yet to be completely understood and the conventional treatment do 
not promote a cure in the chronic phase, meaning there is an urgent need to 
discover new drugs. The expression of reporter genes by transgenic parasites 
has become an important tool in the screening of new compounds, whether in 
the study of the parasite, in the development of in vitro and in vivo assays, or in 
the application of High-Throughput Screening utilizing compounds collections. 
This review sought to gather information about transgenic T. cruzi applications in 
screening studies of compounds with action specifically against Chagas disease, 
the reporter genes in use, besides the highlighted characteristics of each one by 
the literature, including the performed assays, evolutionary forms and techniques 
applied, aiming to facilitate the identification of the reporter gene system or research 
model whose characteristics best adapt to the needs of new studies, contributing 
to the decisions about a framework adaptable to the reality of laboratories, in the 
screening of potentially trypanocidal compounds.
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1 Introduction

Chagas disease (CD) caused by the parasite Trypanosoma cruzi (Chagas, 1909) (1) 
(Kinetoplastida, Trypanosomatidae), is a neglected disease affecting over 7 million people 
globally and frequently results in chronic heart conditions (2). The disease in the host 
progresses through two main phases: an initial acute phase characterized by high 
parasitemia and often few or no symptoms, followed by a chronic phase where parasitemia 
becomes intermittent. This chronic phase can remain asymptomatic for years or 
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eventually lead to severe neurological and cardiodigestive 
complications (3, 4). Currently available treatments rely on 
nitroheterocyclic drugs which unfortunately present significant 
toxicity (5).

Preventive control of CD involves reducing human-vector contact 
(6), implementing blood bank screening programs (7), ensuring strict 
food and beverage hygiene coupled with public awareness campaigns 
(8), and ongoing efforts to develop vaccines to prevent/slow disease 
progression (6).

Post-infection control relies on pharmacological treatment, 
limited to two drugs: nifurtimox (commercialized as Lampit™ by 
Bayer HealthCare AG, Leverkusen, Germany) and benznidazole 
(commercialized as Benznidazol LAFEPE® in Brazil by LAFEPE, and 
as Abarax® in Argentina by Maprimed/ELEA) (9).

These drugs are primarily effective during the acute phase of the 
disease, but their multiple adverse reactions are frequently reported, 
leading to treatment discontinuation in approximately 20% of patients, 
which reinforces the urgent need for new therapeutic options (9).

Ideally, a new drug should demonstrate efficacy for all phases of 
CD, improved safety and tolerability compared to benznidazole, no 
contraindications during pregnancy or age groups, and shorter 
treatment regimen (10).

Achieving this goal requires overcoming significant gaps in 
knowledge of parasite biology, its interactions with the host immune 
system (11), and current lack of tools to assess treatment efficacy (12).

Methodological challenges to develop anti-T. cruzi drugs are the 
absence of standardized protocols for in vitro and in vivo screening 
and the difficulty in extrapolating animal model findings to human 
disease (7); also insufficient comprehension of CD pathogenesis, 
chronicity, and tissue tropism (13).

Romanha et al. (14) established some criteria to new compound’s 
identification in preclinical studies, providing decision-making steps 

for progression to later testing stages, facilitating data comparison 
across research groups (9).

Transgenic parasites expressing reporter genes were 
emphasized in that document (14), and since then, the importance 
of genetically modified parasites in drug screening has grown (15), 
facilitating studies on cellular signaling and gene expression (16) 
while enabling rapid data quantification and reducing manual 
labor (17).

In murine models, screening of anti-T. cruzi compounds has become 
faster and more efficient through the use of recombinant fluorescent or 
luminescent parasites (18), complemented by imaging systems (19).

This review aims to identify transgenic T. cruzi used in drug 
screening for CD, in vitro and in vivo, employing techniques such as 
imaging and High-Throughput Screening (HTS). Strains were 
analyzed in relation to their life stage, reporter genes, advantages and 
limitations of each approach, in order to provide information that may 
guide toward efficient, rapid, and quantitative tools for the screening 
of potentially trypanocidal compounds.

1.1 The reporter system

A reporter system codes for a detectable and quantifiable product 
in a living cell (20). For clarity, we have categorized reporter systems 
currently applied to T. cruzi into two groups: Enzymatic and 
Fluorescent (Figure  1): the enzymatic group, which includes 
chloramphenicol acetyltransferase (CAT), β-galactosidase (β-gal) 
reporters (21) and bioluminescent systems (20). The fluorescent group 
comprises green fluorescent protein (GFP); enhanced green 
fluorescent protein (EGFP); red fluorescent proteins such as 
Discosoma red fluorescent protein (DsRed) (20), tandem tomato 
(tdTomato) (22) and E2-crimson (23) (Table 1).

FIGURE 1

Representation of reporter systems categories, currently in use for anti- T. cruzi drug screening. (A) The enzymatic system depends on the enzyme 
reaction in the presence of the substract to express bioluminescence. (B) The fluorescent system requires no substrates, enzymes or cofactors to 
express fluorescence. The image was created by the authors using the following programs: AutoCAD 2024 - educational version, for drawing; WPS 
Office free version for assembling the figure (https://www.wps.com/) and GIMP 2.10.38 (gimp.org) for exporting with higher resolution (300dpi).
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TABLE 1 Reporter genes systems highlighted characteristics, parasite strains and forms mentioned by the literature.

Reporter 
gene 
systems

Reporter 
gene

Parasite Evolutive 
form

Highlighted characteristics References

Enzymatic 

systems

CAT T. cruzi CL. Epimastigote.
Absent from mammalian cells; good reading of the 

signal in relation to the cellular background.
(71)

β-gal

T. cruzi Tulahuen β-gal, 

clones C4 and CL B5 

(DTU VI); T. cruzi CL-B5 

(DTU TcVI).

Amastigote; 

trypomastigote.

Rapid quantification; adaptable to different devices and 

methods, including HTS; quantitative verification of 

the activity of specific promoters; visualization of 

cellular and subcellular activity in different tissues; 

identification of compounds against amastigotes.

(25, 29)

T. cruzi CL-B5 (DTU 

TcVI).
Epimastigote. Single step; consistent and reproducible. (72)

T. cruzi Dm28c/pLacZ 

(DTU TcI).

Amastigote; 

trypomastigote.

Standardization and validation of the colorimetric 

method; use in HTS; use of colorimetric readers.
(30)

T. cruzi, Tulahuen strain 

(MHOM/CH/00/

Tulahuen C2).

Amastigote; 

trypomastigote.

Use in murine model; parasites visible in tissues; 

quantification by microscopic scanning.
(31)

FLuc

T. cruzi CL strain.

Transgenic parasites were used to evaluate the activity 

of anti-T. cruzi, in a short in vivo assay. The parasites 

provided results to long trials followed by 

immunosuppression.

(22)

T. cruzi CL and Brazil, 

Dm28c-Luc clone.

The activity of compounds derived from 

naphthoquinones against T. cruzi was evaluated.
(73)

T. cruzi Dm28c (DTU 

TcI) expressing FLuc.

Monitoring of in vivo infection in BALB/c mice. It 

allowed us to understand important aspects of the 

interaction between host and parasite.

(37)

RS-FLuc

T. cruzi CL Brener.
Able to identify parasite persistence is the 

gastrointestinal tract.
(13)

T. cruzi CL Brener. Used with drug repositioning purpose. (38)

T. cruzi CL-Luc.
Higher sensitivity limit than that obtained by RT-PCR, 

over than a year after infection.
(39)

NLuc
T. cruzi Colombiana 

(TcCOL-NLuc)

Use in an animal model and the use of the same strain 

in the study of infection of the human placenta.
(43)

RLuc T. cruzi CL-Luc Trypomastigote.
Permit to check on the kinetics of infection in animal 

model and determine the precise sites of infection.
(11)

Fluorescent 

systems
GFP

Tulahuen (DTU TcVI) 

and Colombiana 

(Col.1.7G2, DTU TcVI)

Epimastigote.
Long duration of the signal. Suitable for use in in vivo 

models.
(51, 54)

T. cruzi Tulahuen and JG 

(DTU TcII), Colombiana 

(DTU TcI), Col1.7G2 

(derivada de Colombiana, 

DTU TcI), and CL Brener.

Amastigote; 

trypomastigote; 

epimastigote.

Constitutive expression. (54)

T. cruzi Dm28.
Epimastigote e 

amastigote.

Detection of proliferating parasites. Possibility of 

increasing the screening of compounds in HTS 

systems.

(50)

T. cruzi K98-GFP.

Amastigote; 

trypomastigote; 

epimastigote.

Expresses fluorescence in all biological forms of the 

parasite. Method to determine the activity of 

compounds in just one step, by flow cytometry.

(55)

T. cruzi expressing SMP1-

1-GFP.
Amastigote. Expresses fluorescence locally in the flagellum. (74)

(Continued)
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2 Enzymatic systems

2.1 Chloramphenicol acetyltransferase

Chloramphenicol acetyltransferase (CAT), the first reporter used 
to assess mammalian transcriptional activity of mammalian is stable 
and absent in mammalian cells (24). Early assays were lengthy, costly, 
and required radioactive tracers (20), later replaced by non-radioactive 
fluorescent or immunosorbent methods (24). Thus, this system proves 
to be  inadequate for automated analyses and high-throughput 

screening, which are essential for the discovery of new drugs for 
Chagas disease.

2.2 β-galactosidase

The Escherichia coli lacZ gene encodes β-galactosidase (β-gal), the 
first reporter gene used in T. cruzi for in vitro screening (21). Buckner 
et al. (25) developed the Tulahuen β-gal strain (clone C4 and CL clone 
B5, DTU VI), detectable in host cells, enabling compound screening 

Reporter 
gene 
systems

Reporter 
gene

Parasite Evolutive 
form

Highlighted characteristics References

EGFP

T. cruzi STIB980.
Epimastigote e 

amastigote.

Epimastigotes showed fluorescence 100 times higher 

than non-transfected ones, evaluated by flow 

cytometry.

(49)

T. cruzi expressing EGFP 

and Ds-Red1-1.

Amastigote; 

trypomastigote; 

epimastigote.

The reporter genes did not affect the parasites. 

Epimastigotes have infectious characteristics. 

Possibility of using the proposed model for in vitro 

infection studies.

(49)

mEGFP
T. cruzi Dm28c, 

Sylvio-X10 and Y strains.

Epimastigote; 

Trypomastigote.

Possibility of improving the expression of ectopic genes 

in T. cruzi. A versatile alternative to more sophisticated 

methods, such as CRISPR/Cas9.

(58)

YFP T. cruzi Y-GFP strain.

Amastigote; 

trypomastigote; 

epimastigote.

Use in drug repositioning strategies (carvedilol). (20, 75)

DsRed

T. cruzi Tulahuen, JG, 

Col1.7G2 derived from 

Colombiana and CL 

Brener.

Amastigote; 

trypomastigote; 

epimastigote.

First work describing fluorescent parasites, expressing 

GFP and RFP in animal tissue (BALB/c). It allows in 

vivo studies and the understanding of parasite invasion 

mechanisms, tissue tropism and genetic exchange 

mechanisms.

(54)

T. cruzi CL transfected 

with DsRed and GFP.

Amastigote; 

trypomastigote; 

epimastigote.

Used in coinfection studies; allows 3D graphics with 

the exact location of the forms of T. cruzi.
(61)

T. cruzi (GFP-G) and 

(DsRed-CL).

Amastigote; 

trypomastigote; 

epimastigote.

It allowed the first images of individualized fluorescent 

amastigotes in nests, in the tissues of various murine 

organs, in addition to intermediate forms and ex vivo 

motile trypomastigotes, obtained by confocal 

microscopy.

(62)

tdTomato

T. cruzi CL tdTomato.

Screening of potential anti-T. cruzi, no need for cell 

fixation or permeabilization, scalable to 384-well 

format, allows the development of HTS.

(64)

T. cruzi CL tdTomato.

Screening of potential compounds. Development of in 

vitro and in vivo tests applicable to HTS. Detectable by 

microscopy and flow cytometry. Possibility of 

quantifying fluorescence by plate reader. It allowed 

monitoring replication at the site of infection and 

quickly determining the effectiveness of treatment.

(22)

E2-Crimson

T. cruzi expressing E2-

Crimson (TcTREX-

Crim).

Amastigote; 

trypomastigote; 

epimastigote.

Applications for imaging deep tissues in vivo. (23)

T. cruzi Silvio X10/7 A1.
Epimastigote; 

Trypomastigote.

Permit live-imaging assay of intracellular forms of T. 

cruzi to determine the rate-of-kill (RoK) profile of 

evaluated compounds.

(66)

TABLE 1 (Continued)
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against intracellular parasite by colorimetric assay (25), thus allowing 
the measurement of parasite proliferation under compound exposure.

The Tulahuen strain is compatible with microplate readers assays 
(12) and adaptable to High-Content (26) and HTS systems (27), as 
demonstrated by GlaxoSmithKline HTS campaign, which identified 
500 non-cytotoxic compounds (28). Broad Institute MLPCN T. cruzi 
Inhibition Project (29) used Tulahuen β-gal strain with the GalScreen 
luminescent reporter system on 303,224 compounds, identifying 
4,394 hits (12).

Colorimetric reporters may interfere with enzymatic detection, 
but fluorometric or luminescent readings can resolve it (30). Gulin 
et al. (30) minimized interference by removing the supernatant before 
adding Chlorophenol red-β-D-galactopyranoside (CPRG) substrate 
and validated an in vitro assay using the transfected T. cruzi Dm28c/
pLacZ strain (DTU TcI). The findings enphasized both the reliability 
and reproducibility of the assay and its suitability for HTS systems.

Also, β-galactosidase enables the study of parasitism throughout 
all CD stages in animal models: using 5-bromo-4-chloro-3-indolyl-β-
D-galactopyranoside (X-gal) as a substrate, parasites become visible 
after fixation and blue staining, allowing quantification by microscopic 
scanning post-euthanasia (31). Although well-stablished and reliable, 
the lacZ system is limited by the requirement for cell lysis in order to 
assess enzymatic activity, preventing real-time analysis.

2.3 Luciferase systems

Luciferases catalyze light production by converting a supplemented 
substrate (16). Their efficient oxidation, bioluminescence and 
quantifiable activity make them valuable as reporters (32), particularly 
in T. cruzi transfection, where they reduce interference from colored 
compounds in HTS assays (12). In vivo, luciferase is ideal since animals 
lack endogenous activity, enabling reliable, multiple measurements. 
However, for identifying or quantifying reporter-expressing cells, 
fluorescent proteins are preferable remain more suitable (33).

The studies here presented enabled more accurate host–parasite 
interaction analysis in deep tissues and drug screening, and 
demonstrated the reporters effectiveness in assessing parasite 
replication. However, those systems require specific substrate addition, 
with possible limited bioavailability. It also requires specialized 
bioluminescent detection equipment.

2.3.1 Firefly luciferase
Firefly luciferase (FLuc) emerges as valuable reporter for 

anti-T. cruzi drug development (18) as it detects trace ATP levels and 
emits light efficiently through mammalian tissues (34). Although FLuc 
requires luciferin addition (12), it allows in vivo imaging without cell 
lysis, supporting whole-animal and HTS assays (21). However, its 
sensitivity decreases in deep tissues due to its <600 nm emission, 
which is absorbed by hemoglobin—a limitation that can be addressed 
with reporter emitting above 600 nm (35). Also, FLuc can be inhibited 
by small molecules structurally related to D-luciferin, such as 
benzothiazoles, benzimidazoles, benoxazoles, and biaryl oxadiazoles, 
resulting in false positives during inhibition assays (36).

Despite these limitations, significant advance has been achieved. 
Canavaci et al. (22) used a luciferase-expressing CL strain T. cruzi to 
infect Balb/c mice and developed a 12-day assay comparable to 
traditional 80-days protocols with immunosuppression (22), 

representing an advancement that allows for rapid and non-invasive 
assessment of the drug’s efficacy through bioluminescence.

In another work, Henriques et al. (37) tracked the progression of 
in vivo infection using T. cruzi (Dm28c-luc) in BALB/c mice, 
identifying new infection sites for the first time: the luminescent signal 
was observed at the inoculation site, reaching the peritoneal cavity 1 
day post-infection and spreading to abdominal organs and adjacencies, 
shedding light on both the pathology and the interaction between 
parasite and host. Studies like these advanced the understanding of 
T. cruzi’s pathogenesis with importance for new drugs development.

2.3.2 Red-shifted firefly luciferase
Red-shifted firefly luciferase (RS-FLuc) is a variant of luciferase 

with enhanced sensitivity and stability, offering improved 
visualization in deep mammalian tissues (38); it has been used to 
identify T. cruzi tropisms in mice, as reported by Lewis et al. (13), 
who integrated the thermostable red-shifted luciferase gene into the 
parental CL Brener strain, allowing the monitoring of animals over a 
year, with a detection limit of 100 parasites, and revealed 
gastrointestinal tissue as primary site of parasite persistence.

The luciferase permitted to assess posaconazole’s efficacy against 
acute and chronic CD, Francisco et  al. (38) inoculated mice with 
CL-Brener strain and evaluated them using an in vivo/ex vivo imaging 
system after an strategic use of cyclophosphamide-induced 
immunosuppression to uncover residual in vivo infection, in which 
posaconazole demonstrated inferior performance compared to 
benznidazole in both infection phases. In other study, Calvet et al. CL 
Brenner strain expressing red-shifted luciferase (T. cruzi CL-luc) 
which enabled the detection of live parasites in mouse tissues 
surpassing RT-PCR sensitivity, for over a year post-infection (39), also 
enabling drug efficacy tracking through different phases of the CD.

2.3.3 NanoLuc
NanoLuc (NLuc) derived from the luciferase of Oplophorus 

gracilirostris (A. Milne-Edwards, 1881) (40) (Decapoda, Oplophoridae) 
and furimazine (41), is used in in vivo Bioluminescence Imaging due 
to its sensitivity and intense luminescence (42), enabling multiplexing 
with longer-wavelength reporters (41). Colombian strain of T. cruzi 
expressing NLuc (TcCOL-NLuc) has been applied to study placental 
crossing in 3D cell culture models (43), providing insights into tissue 
tropism and highlighting NLuc’s utility for ADMET evaluation in drug 
screening, under physiologically relevant conditions.

2.3.4 Renilla luciferase
Renilla reniformis (Pallas, 1766) (44) (Scleralcyonacea, Renillidae) 

(RLuc) luciferase catalyzes the oxidation of coelenterazine producing 
“bioluminescence, coelenteramide and CO2” (32), and serves as a 
reporter for bioluminescent imaging in animal models; however, its 
sensitivity depends on the depth of the tissue investigated (45). The 
applications of RLuc are discussed in section 4 (Multiple Gene 
Reporter Systems), to which we direct the reader for further details.

3 Fluorescent systems

Green fluorescent protein (GFP) chromophore emits light without 
needing cofactors or substrates (46), however all fluorescent proteins 
photobleach under prolonged excitation, making photostability essential 
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repetitive imaging experiments (47). Mutations in the GFP gene produce 
reporters with varied colors and intensities based on aminoacid 
sequences (48). This led to the development of T. cruzi strains enhanced 
green fluorescent Protein (EGFP) (49) and red fluorescent proteins, such 
as Discosoma striata (Corallimorpharia, Discosomidae) (DsRed) (21), 
tandem tomato fluorescent protein (tdTomato) (22) and E2-crimson 
(23) which have been applied in drug screening for CD (50). Fluorescent 
proteins enable real-time imaging without cell lysis but require 
specialized equipment and may be affected by tissue autofluorescence.

3.1 Green fluorescent protein

Encoded by a single gene, requiring no substrates, enzymes or 
cofactors (34), GFP is a low cost, non-toxic reporter for in vitro and in 
vivo imaging (23), detectable via microplate readers, fluorescence 
microscope, Fluorescence-Activated Cell Sorter (FACS) or fluorimetry 
(21). Da Rocha et al. (51) stably expressed GFP in Tulahuen (DTU 
TcVI) and Col.1.7G2 (DTU TcVI) epimastigotes, with persistent signal 
for over 5 weeks without drug selection. Despite its stability, GFP’s 
excitation can damage cells (52) and detection is limited to ~1 mm 
depth from the surface, suitable for small/transparent models (53).

Nevertheless, GFP-expressing strains like Tulahuen and JG (DTU 
TcII), Colombiana (DTU TcI), Col1.7G2 (DTU TcI) and CL Brener 
hybrids have shown infectivity in vitro and in vivo, as seen in confocal 
and fluorescence microscopy (54).

The pBEX/GFP strain, derived from Dm28 (DTU TcI) by Kessler 
et al. (50), exclusively expresses GFP in replicative forms of T. cruzi, 
allowing their growth tracking. Kessler et al. (50) also validated a 
screening method based on GFP signal intensity for HTS. Miranda 
et al. (55) developed the K98-GFP strain (DTU TcI) fluorescent in all 
T. cruzi stages facilitating single-step screening. GFP mutations have 
expanded emission spectra, improving signal quality and broadening 
application possibilities (48).

3.2 Enhanced green fluorescent protein 
(EGFP and mEGFP)

EGFP displays stronger fluorescence than GFP (48). Florêncio-
Martínez et al. (56) used T. cruzi expressing EGFP and Ds-Red1-1 to 
investigate the infection process showing that reporter expression did not 
affect parasites infectivity. All forms infected NIH-3 T3 fibroblasts with 
similar kinetics, validating the model for in vitro infection studies (56).

Fesser et al. (49) monitored EGFP-expressing T. cruzi STIB980 
amastigotes every 4 h for 6 days in mouse embrionic fibroblasts, 
using high-content imaging and. Pharmacodynamic analysis and 
flow cytometry revealed EGFP-expressing epimastigotes exhibited 
100-fold higher autofluorescence than non-transfected cells (49). This 
temporal assessment of parasite growth is key in evaluating 
compounds effect on parasite replication, particularly as amastigotes 
represent the main stage for therapeutic targeting (9, 14) and 
epimastigotes once considered non-infective are now recognized for 
their potential in infection studies (57).

Niemirowicz et al. (58) further advanced the genetic engineering 
of T. cruzi by comparing conventional multi-mRNAs vectors to those 
based on 2A self-cleaving peptides for mEGFP expression in Dm28c, 
Sylvio-X10 and Y strains, offering a more efficient alternative to 

CRISPR/Cas9 for endogenous gene labeling and expanding the toolkit 
for reporter-based drug screening platform.

3.3 Discosoma sp. (DsRED)

Red fluorescent proteins (RFPs) expanded the imaging spectrum 
beyond GFP, with the first RFP exhibiting excitation/emission peaks at 
555/585 nm (59). DsRed, isolated from (Discosoma sp.) (20), was the first 
fluorescent protein from a non-photosynthetic organism and is widely 
used due to its high photostability and compatibility with confocal 
microscopy and flow cytometry (52). Pires et al. (54) engineered T. cruzi 
strains expressing RFP or GFP (pROCKRFPNeo and pROCKGFPNeo 
vectors) in epimastigotes of Tulahuen, Col1.7G2 and CL Brener. 
Fluorescence remained stable for over 6 months and dual-color imaging 
revealed coinfection of host cells by different strains, enabling studies on 
invasion dynamics, tissue tropism and genetic exchange.

Usign T. cruzi CL strain coexpressing DsRed and GFP, researchers 
visualized parasite differentiation within Leishmania amazonensis 
Lainson & Shaw, 1972 (L. amazonensis) (60) revealing that metacyclic 
trypomastigotes developed into amastigote-like forms, failing to reach 
the cytosol (61). These findings highlight species-specific requirements 
for intracellular differentiation, offering insights into host–parasite 
relations that may critically interfere in drug targeting.

Ferreira et al. (62) observed T. cruzi in vivo in BALB/c or C57BL/6 
mice infected with G strain (DTU TcI) parasites transfected with GFP 
(GFP-G) or CL strain (DTU TcVI) trypomastigotes transfected with 
DsRed (DsRed-CL). The method provided the first images of fluorescent 
amastigotes in tissue nests as well as intermediate forms and motile ex 
vivo trypomastigotes, visualized by confocal microscopy (62).

These studies demonstrate the potential for direct monitoring of 
tissue infection using DsRed reporter, a critical step in evaluating the 
efficacy of new drug candidates, and potential understanding of the 
infection, refining the design of preclinical assays.

3.4 Tandem dimeric tomato red fluorescent 
protein

Among the brightest and photostable fluorescent proteins, tdTomato 
(a DsRed variant) exhibits excitation/emission peaks at 554/581 nm 
(63). Bustamante et al. (64) used the T. cruzi CL tdTomato strain for 
anti-T. cruzi screening, highlighting its compatibility with HTS abd the 
advantage of not requiring cell fixation or permeabilization (64).

Canavaci et  al. (22) developed a T. cruzi CL tdTomato strain 
constitutively expressing tdTomato suitable for in vitro and in vivo 
HTS. The strong fluorescent signal across all stages enabled replication 
monitoring and rapid treatment efficacy assessment by microscopy, 
flow cytometry and plate reader (22). Trypanosoma cruzi tdTomato 
strains allow non-invasive in vivo monitoring of parasitemia tracking 
and parasite distribution via fluorescent imaging (65).

3.5 E2-Crimson

E2-Crimson, a DsRed fluorescent protein is non-toxic photostable 
rapidly maturing, and suitable for live-animal imaging, flow cytometry 
and stimulated emission depletion (STED) microscopy (23). Aiming 
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applications for imaging deep tissues in vivo infected by T. cruzi, 
Goyard et  al. (23) developed T. cruzi Y expressing E2-Crimson 
fluorescence (TcTREX-Crimson), offering another tool for drug 
screening, particularly in the in vivo context.

In other hand, by combining an in vivo imaging assay that allows 
for real-time, detailed evaluation of parasite clearance without invasive 
techniques and the use of cardiomyocytes with nuclear EGFP, Svensen 
et al. (66) enabled visualization of the parasite (Tc-X10/7-E2Crimson) 
and host interaction as well as the effect of the compound on target 
cells, leading to a more precisa, efficient drug screening.

4 Multiple gene reporter systems

Reporter systems with different substrates, spectra and emission 
kinetics can be used simultaneously in the same animal without cross-
reaction, enabling distinct emissions and timeline readings (34), a 
allowing monitoring of parasite behavior and drug efficacy without 
interference between one another.

EGFP and DsRed1-1 fluorescent proteins were used as T. cruzi 
reporters in Florêncio-Martinez et al. (56) to study infectious process 
in live cells. This model provided insights into molecular mechanisms 
of intracellular microorganism infection (56), permitting real-time 
observation of the infection progress through treatment, in vitro and 
in vivo, as shown by Canavaci et al. (22).

Costa et al. (11) investigated T. cruzi role in CD progression by 
generating a reporter strain, CL-Luc, incorporating a red-shifted 
luciferase/GFP fusion protein (Luc-mNeonGreen). Luminescence 
and fluorescence enabled monitoring of infection kinetics, infection 
sites, and parasite–host interactions at cellular level (11). The strain 
was further modified with CRISPR/Cas9 to generate null parasites 
with fluorescence (11) enabling analysis of gene function and drug 
efficacy at molecular levels.

Taylor et al. (67) used T. cruzi CL-Luc:Neon strains expressing 
chimeric bioluminescent and fluorescent protein to visualize 
individual parasites in mouse tissue and investigate replication in host 
cells. Ward et  al. (68) developed a transgenic T. cruzi expressing 
bioluminescent and fluorescent fusion proteins, proposing a model for 
heart disease development during chronic phase. Precise information 
on parasite persistence site was needed. Using murine tissue, ex vivo 
imaging and confocal microscopy, they visualized host cells infected 
with two strains: T. cruzi CL-Luc:Neon, a CL Brener clone (DTU 
TcIV) expressing red-shifted luciferase linked to mNeonGreen; and 
the JR Clone (DTU TcI) expressing red-shifted luciferase (68).

Dual systems have gained space in drug repositioning: Rivero 
et al. (69) generated the Tulahuen Luc-mNeonGreen strain (DTU 
TcVI), expressing a double reporter gene, and infected mice to 
characterize carvedilol’s efficacy as a promising hit.

Olmo et al. (70) developed a panel of transfected T. cruzi strains, 
expressing bioluminescent/fluorescent fusion proteins—a tool expected 
to enhance data from experimental infection models, in vitro and in vivo, 
and enable studies of mixed infections in CD drug development (70).

5 Conclusion

In conclusion, based on the reviewed literature, genetically 
modified parasites expressing fluorescent and luminescent proteins 
represent a promising approach for real-time monitoring of 

infection and treatment response. The simultaneous use of multiple 
reporter systems, despite potential challenges related to cost and 
optimization, appears to be a promising strategy to combine the 
advantages of different techniques while reducing their limitations. 
These reporter systems facilitate compounds screening with 
trypanocidal potential and enhance the analysis of parasite–host 
interactions, significantly contributing to the development of new 
therapies against T. cruzi.

Transgenic parasites, as crucial tool for drug discovery, offers 
benefits such as reduced costs, time and labor. This review correlates 
the evolutionary forms of transgenic T. cruzi, reporter genes, and their 
applications as valuable tools for screening drug candidates against 
CD, providing a framework for future research models.

Advancements in the application of transgenic parasites mark a 
significant step forward in pharmacological research. However, 
continuous methodological optimization is necessary to maximize 
their potential in the development of new treatments for CD.
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