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Liver diseases, including hepatitis, non-alcoholic fatty liver disease (NAFLD),

cirrhosis, and hepatocellular carcinoma (HCC), remain a major global health

concern, with early and accurate diagnosis being essential for e�ective

management. Imaging modalities such as ultrasound (US), computed

tomography (CT), and magnetic resonance imaging (MRI) play a crucial

role in non-invasive diagnosis, but their sensitivity and diagnostic accuracy can

be limited. Recent advancements in artificial intelligence (AI) have improved

imaging-based liver disease assessment by enhancing pattern recognition,

automating fibrosis and steatosis quantification, and aiding in HCC detection.

AI-driven imaging techniques have shown promise in fibrosis staging through

US, CT, MRI, and elastography, reducing the reliance on invasive liver biopsy.

For liver steatosis, AI-assisted imaging methods have improved sensitivity and

grading consistency, while in HCC detection and characterization, AI models

have enhanced lesion identification, classification, and risk stratification across

imaging modalities. The growing integration of AI into liver imaging is reshaping

diagnostic workflows and has the potential to improve accuracy, e�ciency, and

clinical decision-making. This review provides an overview of AI applications in

liver imaging, focusing on their clinical utility and implications for the future of

liver disease diagnosis.
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1 Introduction

Liver diseases, such as hepatitis, non-alcoholic fatty liver disease (NAFLD), cirrhosis,

and hepatocellular carcinoma (HCC), continue to pose significant health challenges

worldwide (1–3). In 2022, viral hepatitis alone accounts for approximately 1.3 million

deaths, making it one of the leading causes of infectious mortality (4–6). NAFLD, affecting

nearly a quarter of the global population, is becoming more prevalent due to increasing

rates of obesity and metabolic syndrome (7, 8). As these conditions advance, the burden of

cirrhosis and HCC continues to rise (9–11), exacerbating healthcare challenges.

The early and precise diagnosis of hepatic disorders is crucial for optimizing clinical

outcomes and therapeutic strategies (12). Imaging modalities such as ultrasound (US),

computed tomography (CT), and magnetic resonance imaging (MRI) provide non-

invasive insights into liver pathology (13–16). However, conventional imaging approaches

face inherent limitations, including interobserver variability, reduced sensitivity in early

disease stages, and subjective interpretation of subtle pathological changes (17, 18).

Artificial intelligence (AI) is transforming medical imaging (19, 20) by enabling automated
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image analysis, improving pattern recognition, and enhancing

predictive modeling (21–23). AI-driven imaging techniques have

demonstrated significant potential in improving the detection,

classification, and quantification of liver fibrosis, steatosis, and

HCC (24–28). Through the use of deep learning and radiomics,

AI enhances diagnostic accuracy and efficiency (29, 30), aiding

clinicians in makingmore informed treatment decisions (Figure 1).

Given the critical role of imaging in liver disease diagnosis,

the integration of AI into radiology represents a paradigm

shift in diagnostic methodologies. This review explores the

integration of AI into liver imaging, emphasizing its applications

in fibrosis assessment, steatosis quantification, and HCC detection.

Additionally, we discuss the clinical implications of AI-assisted

imaging and the challenges associated with its adoption in routine

clinical practice.

2 Liver fibrosis and cirrhosis

Liver fibrosis, and its advanced stage cirrhosis, are progressive

conditions with significant clinical implications, including

an increased risk of portal hypertension and HCC. Imaging

plays a pivotal role in non-invasive fibrosis staging, reducing

reliance on liver biopsy, which is invasive and prone to

sampling error (31). AI-driven imaging techniques utilizing

US, CT, MRI, and elastography have demonstrated notable

promise in improving diagnostic accuracy and fibrosis staging

(Table 1).

FIGURE 1

AI model building, application, and optimization.

2.1 Ultrasound-based methods

The integration of AI with ultrasonography has demonstrated

significant potential for non-invasive fibrosis staging. Lee et al.

developed a deep convolutional neural network (DCNN) based

on US data from 3,446 patients to stage liver fibrosis, and the

high diagnostic accuracy was confirmed through internal and

external test sets with 266 and 572 patients, respectively (32). In

another study, five US variables were used as input for a neural

network, including liver parenchyma, spleen thickness, hepatic vein

waveform, hepatic artery pulsatilite index, and damping index (33).

The network diagnosed liver fibrosis, achieving an area under the

curve (AUC) of 0.92.

2.2 Computed tomography-based methods

CT imaging provides objective fibrosis assessment, and AI-

driven models have further refined its diagnostic potential. Choi

et al. used a deep learning system (DLS) to analyze contrast-

enhanced CT images of 7,461 patients with histologically confirmed

liver fibrosis stages. The DLS showed an overall diagnostic accuracy

of 79.4%, with AUCs of 0.95, 0.97, and 0.96 for cirrhosis (F4),

advanced fibrosis (≥F3), and significant fibrosis (≥F2) stages,

respectively (34). Another study applied a deep learning model

based on magnified CT images. The fibrosis scores obtained

from deep learning based on CT images (FDLCT scores) showed

significant correlation with the pathological staging of liver fibrosis.
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TABLE 1 The performance of AI in imaging diagnosis of liver fibrosis and cirrhosis.

Imaging
technology

Artificial intelligence
approaches

Role Diagnostic performance References

B-mode US DCNN Fibrosis staging High diagnostic accuracy (32)

US NN Fibrosis diagnosis AUC= 0.92 (33)

CT DL Fibrosis staging Overall accuracy 79.4%; AUC: F4= 0.95, ≥F3=
0.97, ≥F2= 0.96

(34)

CT DL Fibrosis quantification AUC: F4= 0.73, ≥F3= 0.76, ≥F2= 0.74 (35)

MRI CNN Cirrhosis detection High accuracy for portal hypertension (36)

MRI DCNN Fibrosis staging AUC: F4= 0.84, ≥F3= 0.84, ≥F2= 0.85 (37)

Elastography SWE ≥F2 fibrosis detection AUC= 0.89 vs. 0.74 (38)

Elastography DL Fibrosis staging Significantly better than conventional liver
fibrosis index method

(39)

Elastography DL Fibrosis staging AUC: F4= 0.97, ≥F3= 0.98, ≥F2= 0.85 (40)

Using FDLCT scores, the AUCs for predicting stages F4, ≥F3, and

≥F2 were 0.73, 0.76, and 0.74, respectively (35).

2.3 Magnetic resonance imaging-based
methods

MRI-based AI models have advanced fibrosis staging by

integrating radiomics and deep learning approaches. Liu et al.

developed and validated a radiomics signature, radiomics hepatic

venous pressure gradient (rHVPG), as a non-invasive and accurate

tool for detecting cirrhosis. This tool can aid in the rapid and

non-invasive identification of cirrhosis and portal hypertension

and has been extended to MRI (36). In addition, Yasaka et al.

conducted a retrospective study to assess the performance of a

DCNN model based on gadoxetic acid–enhanced hepatobiliary

phase MRI. The fibrosis score obtained through deep learning

showed strong correlation with pathological fibrosis staging. The

AUCs for diagnosing F4, ≥F3, and ≥F2 were 0.84, 0.84, and 0.85,

respectively (37).

2.4 Elastography-based methods

In addition to US, CT, and MRI, elastography has clear

advantages in detecting liver fibrosis and cirrhosis. The automated

framework based on shear wave elastography can provide better

accuracy in detecting ≥F2 fibrosis compared to conventional

stiffness, with AUCs of 0.89 and 0.74, respectively (38). In

another study, 11 image features were extracted from real-

time tissue elastography software. Data were processed using

four classic classifiers, and it was showed that this method

performed significantly better than conventional liver fibrosis

index method (39). Wang et al. also developed a deep learning

radiomics of elastography (DLRE). As a non-invasive tool, DLRE

achieved an AUC of 0.97 for F4, 0.98 for ≥F3, and 0.85 for

≥F2 (40).

3 Liver steatosis

Diagnosing and grading liver steatosis remain challenging due

to the limitations of conventional imaging techniques. While US

is widely used, its sensitivity in detecting mild steatosis is limited

and highly operator-dependent. CT provides objective liver fat

quantification, but exposes patients to ionizing radiation, making

it suboptimal for routine screening. The integration of AI with

these modalities has significantly improved liver fat quantification,

enhancing diagnostic consistency and reducing reliance on invasive

liver biopsy (Table 2).

3.1 Ultrasound-based methods

AI-enhanced US techniques have shown improved sensitivity

in detecting and quantifying liver fat content. Kuppili et al.

demonstrated the potential of the extreme learning machine

model in stratifying the risk of fatty liver from liver US

images, outperforming traditional methods such as support vector

machines (SVM) and improving diagnostic speed by 40% (41).

Similarly, Byra et al. introduced a DCNN method for evaluating

NAFLD (42). In a study, a multi-view ensemble model was shown

to perform more accurately than single-view models in assessing

liver fat (43). Constantinescu et al. contributed to the field by

applying two convolutional neural network (CNN) models for

steatosis detection, with Inception-v3 achieving an impressive AUC

of 0.93 (44). Kim et al. further combined the VGG19 CNN with

multi-view US images, demonstrating that deep learning could

replace MRI in detecting fatty liver and estimating fat fraction

(45). Another study found deep learning algorithms utilizing

radiofrequency US data demonstrated 96% diagnostic accuracy in

diagnosing NAFLD, with fat fraction estimations highly correlated

to MRI-derived proton density fat fraction (46).

The rapid advancements in AI have also elevated the

diagnostic capabilities of US in determining the severity of

liver steatosis. Destrempes et al. combined quantitative US with
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TABLE 2 The performance of AI in imaging diagnosis of liver steatosis.

Imaging
technology

Artificial intelligence
approaches

Role Diagnostic performance References

US ELM Fatty liver risk
stratification

40% faster than SVM (41)

US DCNN NAFLD evaluation Outperformed traditional methods (42)

US MEL Fat content assessment Superior to single-view models (43)

US CNN Steatosis detection AUC= 0.93 (44)

US CNN+MEL Fat fraction estimation Comparable to MRI (45)

US DL NAFLD diagnosis 96% accuracy; high correlation with MRI-PDFF (46)

US DL Steatosis severity Enhance the classification of liver steatosis (47)

US DL Steatosis severity Outperformed SVM (48)

US DL Steatosis grading High classification accuracy (50)

US CNN Classify fatty liver images AUC= 0.9999 (49)

US DL Steatosis grading AUC: mild= 0.85, moderate= 0.91, severe=
0.93

(51)

US DL Steatosis diagnosis 99.91% diagnostic accuracy (52)

CT DL Steatosis grading 93.33% diagnostic accuracy (53)

CT DL NAFLD severity Outstanding diagnostic performance (54)

CT DL Automated fat
quantification

Effective for asymptomatic populations (55)

CT NLP Multi-modal report
analysis

>90% recall/accuracy (56)

shear wave elastography and a random forest model, enhancing

the classification of liver steatosis (47). Further studies have

demonstrated the superiority of random forest classifiers over SVM

in assessing liver steatosis severity (48). Zamanian et al. introduced

a neural network-based model that achieved a remarkable AUC

of 0.9999 in classifying fatty liver images (49). Furthermore, the

ResNet-50 v2 model exhibited high classification accuracy for

varying levels of liver steatosis (50), while Li et al. employed

a deep learning algorithm to quantitatively score liver steatosis

with AUCs of 0.85, 0.91, and 0.93 for mild, moderate, and severe

grades, respectively (51). Rhyou et al. developed a fully automated

model that achieved 99.91% diagnostic accuracy (52). A computer-

aided diagnosis (CAD) system achieved a classification accuracy

of 93.33% for steatosis grading (53). Cao et al. demonstrated

outstanding diagnostic performance of deep learning in US for

evaluating the severity of NAFLD (54).

3.2 Computed tomography-based methods

The application of AI in conjunction with CT holds significant

promise for advancing the diagnosis of liver steatosis. Graffy et al.

leveraged deep learning algorithms to automatically assess the CT

values of the liver, offering an effective and non-invasive method

for evaluating fatty liver in asymptomatic populations undergoing

routine screening (55). Similarly, Redmond et al. applied natural

language processing to develop an algorithm capable of accurately

identifying fatty liver disease, achieving over 90% recall and

accuracy across US, CT, and MRI reports (56). Furthermore,

an automated liver attenuation regions of interest-based method

has been introduced, showing excellent performance in detecting

NAFLD on CT scans (57).

4 Hepatocellular carcinoma

The application of AI in HCC imaging has led to notable

advancements in lesion detection, classification, and risk

stratification. Traditional imaging methods often struggle to

distinguish malignant from benign hepatic lesions, particularly in

early-stage HCC or atypical presentations. AI-driven approaches

have improved diagnostic precision, reduced interobserver

variability, and enabled automated risk assessment across US, CT,

and MRI (Table 3).

4.1 Ultrasound-based methods

AI-based approaches have been developed to enhance the

performance of US imaging, particularly in lesion classification,

risk stratification, and preoperative assessment. Recent studies

have demonstrated the effectiveness of deep learning models in

focal liver lesion (FLLs) classification. A neural network ensemble-

based CAD model achieved a classification accuracy of 95% (58).

Similarly, Bharti et al. developed an ensemble classifier-based

model that improved liver disease staging accuracy to 96.6% (59),

while Schmauch et al. introduced a supervised deep learning model
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TABLE 3 The performance of AI in imaging diagnosis of hepatocellular carcinoma.

Imaging
technology

Artificial intelligence
approaches

Role Diagnostic performance References

US NN FLL classification 95% accuracy (58)

US DL Disease staging 96.6% accuracy (59)

US DCNN FLL classification Mean AUC= 0.935/0.916 (60)

US CNN HCC vs. cirrhotic
parenchyma

Outperformed ML models (61)

US DCNN Benign vs. malignant
lesions

AUC= 0.924 (62)

US Multiple kernel learning FLL classification Classification accuracy of 90.41% (67)

US CEUS+ SVM Atypical HCC vs. FNH Effective differentiation (68)

US CEUS Preoperative grading Superior AUC (69)

CT CNN Lesion
detection/classification

93.4% recall; 82.5% binary accuracy (70)

CT DL HCC vs. other
malignancies

AUC= 0.92 (71)

CT CNN Tumor detection 98.3% classification accuracy and 78% tumor
detection rate

(72)

CT CNN+FCN+SSD Tumor detection 100% detection accuracy (73)

CT CNN+ SVM HCC vs. ICC 88% accuracy (74)

CT DL Tumor detection 98.39%−100% detection accuracy (75)

CT CNN Tumor segmentation Dice= 80.06%; Precision= 82.67% (78)

CT FCN Segmentation
(multi-phase CT)

Volume overlap error: 15.6%→ 8.1% (79)

CT DL Segmentation 85% false-positive reduction; Dice= 69% (80)

CT DL Differentiate HCC from
other FLLs

Diagnostic accuracy with safety considerations (83)

CT CNN Recurrence monitoring Detection rate: 72%→ 86% (84)

MRI DL Lesion classification 77% overall accuracy (85)

MRI 3D CNN Lesion classification 83% accuracy (88)

MRI CNN LI-RADS grading 90% accuracy; AUC= 0.95 (91)

MRI DL HCC differentiation AUC= 0.999 (92)

MRI CNN Automated HCC
delineation

Demonstrated feasibility (93)

MRI 3D CNN Atypical HCC
classification

Overall accuracy= 87.3%; AUC= 0.912 (94)

that achieved mean AUC values of 0.935 and 0.916, respectively

(60). Notably, a CNN model using US images has outperformed

conventional machine learning models in distinguishing HCC

from cirrhotic parenchyma (61). Additionally, for distinguishing

between benign and malignant liver lesions, a DCNN model based

on US images achieved an AUC of 0.924, surpassing the diagnostic

accuracy of experienced radiologists (62).

Ultrasomics, which integrates radiomic feature extraction with

machine learning algorithms, has shown promise in differentiating

primary and metastatic liver tumors. Logistic regression

classifier leveraging ultrasomic features have demonstrated

superior performance compared to conventional imaging

methods (63). Furthermore, ultrasomics combined with clinical

data has significantly improved the accuracy of preoperative

pathological grading of HCC (64) and enhanced non-invasive

differentiation between HCC and intrahepatic cholangiocarcinoma

(ICC) (65).

Contrast-enhanced ultrasound (CEUS) has also benefited

from AI-based approaches. A machine learning-based CAD

system demonstrated enhanced diagnostic accuracy for FLL

classification (66). Guo et al. employed deep canonical correlation

analysis combined with multiple kernel learning in three-

phase CEUS imaging, achieving a classification accuracy of

90.41% (67). Huang et al. developed a SVM-based CAD model

capable of effectively distinguishing atypical HCC from focal

nodular hyperplasia (68). Furthermore, incorporating ultrasound
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radiomics and clinical data in multi-phase CEUS imaging has

further improved preoperative pathological grading of HCC,

achieving superior AUC values compared to single-modality

models (69).

4.2 Computed tomography-based methods

AI-based CT models have been developed to enhance lesion

detection, classification, pathological grading, segmentation, and

imaging protocol optimization. A hierarchical CNN framework

achieved an average lesion detection accuracy of 82.8%, with

a recall of 93.4% and an F1-score of 87.8%, demonstrating

robust lesion identification. Additionally, its binary and six-class

classification accuracies reached 82.5% and 73.4%, surpassing other

neural networks and performing comparably to intermediate-level

radiologists (70). In lesion classification, deep learning models

analyzing dynamic contrast-enhanced CT images reported an

AUC of 0.92 for distinguishing HCC from other malignant

liver tumors (71). A CNN-based CAD system achieved a 98.3%

classification accuracy and a tumor detection rate of 78%,

underscoring AI’s potential as a radiological diagnostic aid

(72). Further advancements leveraging multiphase CT imaging

include models integrating Hounsfield Unit density variations

from four-phase CT scans with Faster R-CNN, R-FCN, and SSD

networks, achieving a tumor detection accuracy of 100% and lesion

classification accuracy of 95.1% (73). Additionally, Ponnoprat

et al. combined CNN and SVM classifiers for distinguishing

HCC from ICC, achieving an accuracy of 88% (74). Ensemble

models integrating multiple classifiers have also been effective,

with detection accuracies ranging from 98.39% to 100% and

classification accuracies between 76.38% and 87.01%, surpassing

individual classifier performances (75).

Beyond lesion classification, AI has been applied to non-

invasive tumor grading, aiding in risk stratification. A study

analyzing 13,920 quantitative imaging features extracted from

three-phase CT scans developed a predictive model that achieved

AUCs of 0.70 and 0.66 in discovery and validation cohorts,

respectively, aiding in the identification of high-risk HCC

patients (76). Another radiomics-based machine learning approach

improved the model’s AUC to 0.8014 when incorporating

radiomic features, reinforcing AI’s role in assessing tumor

aggressiveness (77).

AI has also contributed significantly to automated tumor

segmentation, a crucial step for treatment planning and response

assessment. CNN-based segmentation models have outperformed

conventional methods, with a Dice coefficient of 80.06%, precision

of 82.67%, and recall of 84.34% (78). Another study proposed a

multi-channel fully convolutional network that integrated multi-

phase contrast-enhanced CT images, achieving a volume overlap

error of 15.6 ± 4.3% on the 3Dircadb dataset, which further

decreased to 8.1 ± 4.5% on the JDRD dataset, demonstrating

enhanced accuracy and robustness (79). To further optimize

segmentation, approaches incorporating voxel- and object-level

models have significantly reduced false positives by 85%, achieving

Dice coefficients of up to 69%, comparable to manual segmentation

(80). Furthermore, adversarial training strategies have been

implemented to refine segmentation models, yielding Dice

coefficients of 68.4% while improving multiple segmentation

metrics, including ASD, MSD, VOE, and RVD (81). The Successive

Encoder-Decoder framework has further refined segmentation

workflows, demonstrating Dice coefficients of 92% for liver

segmentation and 75% for tumor prediction, emphasizing its

clinical applicability (82).

AI has also been leveraged for CT imaging protocol

optimization and recurrence monitoring, ensuring effective

diagnosis while minimizing radiation exposure. Shi et al. compared

three-phase and four-phase DCE-CT protocols for differentiating

HCC from other FLLs, and they found that excluding the non-

contrast phase did not significantly impact diagnostic performance,

while substantially reducing radiation exposure, highlighting AI’s

role in balancing diagnostic accuracy with safety considerations

(83). AI-assisted recurrence monitoring has also demonstrated

significant improvements, with a CNN-based classifier integrating

baseline and follow-up CT scans increasing new tumor detection

rates from 72% to 86%, emphasizing AI’s potential in long-term

HCC surveillance (84).

4.3 Magnetic resonance imaging-based
methods

AI applications in MRI have focused on lesion classification,

automated detection, pathological grading, and segmentation.

In HCC classification, deep learning models leveraging multi-

sequence MRI have demonstrated high diagnostic accuracy.

A study integrating dynamic contrast-enhanced MRI and T2-

weighted images with clinical risk factors developed an automated

system that achieved an overall classification accuracy of 0.77 for

five common liver lesions (85). CNN-based models trained on

large MRI datasets have outperformed radiologists, achieving an

accuracy of 92% in lesion classification (86). Further improvements

were seen when AI models incorporated additional MRI features,

Oyama et al. employed texture analysis and topological data

analysis on T1-weighted MRI, achieving an accuracy of 92% in

distinguishing HCC from metastatic lesions (87). Trivizakis et al.

leveraged 3DCNN to analyze diffusion weightedMRI, achieving an

accuracy of 83% and outperforming conventional 2D CNNmodels,

reinforcing the benefits of 3D volumetric feature extraction in liver

lesion classification (88).

In automated HCC detection, a fine-tuned CNNmodel applied

to hepatobiliary phase MRI achieved a sensitivity of 87% and

specificity of 93%, underscoring its potential in early tumor

detection (89). Zhen et al. developed multiple CNN-based models

incorporating contrast-enhanced MRI, non-contrast MRI, and

clinical data. Even when using non-contrast MRI alone, the model

achieved an AUC of 0.946, which further improved to 0.985 when

combined with clinical data, yielding a diagnostic concordance of

91.9%, demonstrating AI’s ability to optimize non-invasive HCC

assessment (90).

AI has also contributed significantly to lesion grading and

segmentation, providing a means for automated Liver Imaging

Reporting and Data System (LI-RADS) classification and tumor

delineation. An AlexNet CNN model applied to multi-phase

contrast-enhanced MRI for classifying LI-RADS grading achieved
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an accuracy of 90% and an AUC of 0.95, demonstrating

performance comparable to expert radiologists (91). Liang et al.

developed MRI-based radiomics models using random forest to

differentiate hepatic epithelioid angiomyolipoma, HCC, and focal

nodular hyperplasia, with an AUC of 0.999 for radiomics alone

and 0.971 for an integrated model incorporating clinical features,

surpassing conventional diagnostic methods (92). In addition,

Bousabarah et al. introduced a CNN-based model trained on

multiphasic contrast-enhanced MRI, demonstrating automated

HCC detection and delineation (93).

Furthermore, advances in 3D CNN architectures have further

improved the classification of atypical HCC. A study using multi-

sequence MRI to differentiate typical and atypical HCC from non-

HCC lesions reported an overall accuracy of 87.3%, with HCC

classification sensitivity/specificity of 92.7%/82.0%, and non-HCC

classification sensitivity/specificity of 82.0%/92.7%, achieving an

AUC of 0.912 (94).

5 Conclusions

AI-driven imaging has significantly improved the detection,

classification, and quantification of liver diseases, including

fibrosis, steatosis, and HCC (Figure 2). By enhancing the

diagnostic accuracy of US, CT, MRI, and elastography,

AI has reduced observer variability and the need for

invasive biopsies, offering a transformative approach to liver

disease assessment.

However, challenges remain in standardizing imaging

protocols, ensuring the generalizability of AI models across

diverse populations and healthcare settings, and improving

interpretability. Many AI models rely on institution-specific

datasets, limiting their broader applicability. In the future,

anonymized datasets across ethnicities, scanners, and disease

etiologies should be established and used to validate these

AI models. Researchers can also develop adaptive AI

frameworks which can dynamically adjust to local imaging

protocols or population characteristics. Besides, we can align

AI validation with FDA/CE guidelines for medical devices.

Additionally, the “black-box” nature of deep learning algorithms

hinders clinical trust, necessitating the development of more

explainable AI frameworks and rigorous validation through

multicenter trials.

Although AI models can assist in the diagnosis of liver

diseases to some extent, they cannot fully replace liver

biopsy, particularly for fibrosis and steatosis, as liver biopsy

FIGURE 2

Application of AI image models in the diagnosis of fibrosis assessment, steatosis quantification, and hepatocellular carcinoma detection.
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remains the gold standard for diagnosing liver fibrosis and

steatosis. While AI models for fibrosis staging and steatosis

quantification have achieved sensitivities >85% and specificities

>90%, they still fall short of biopsy in early-stage disease

(F0-F1 fibrosis or <5% steatosis). In such cases, biopsy

remains indispensable.

Besides, practical challenges such as computational resource

requirements, radiologist acceptance, and regulatory approvals

must also be addressed to facilitate integration into clinical

workflows. For example, AI tools may require specialized

hardware for real-time analysis, and their adoption depends

on demonstrating cost-effectiveness and alignment with existing

diagnostic pathways. Collaborative efforts between clinicians,

data scientists, and policymakers are essential to overcome

these barriers.

Despite these limitations, AI holds great promise for

revolutionizing liver disease diagnostics. Emerging techniques,

such as multi-modal AI integration, are poised to further advance

the field. The combination of imaging data with clinical, genomic,

and laboratory biomarkers will enhance diagnostic accuracy. For

instance, we can couple radiomics features from MRI/CT with

serum biomarkers or genetic risk scores, which may improve

stratification of high-risk patients. Such multi-modal approaches

will address the limitations of single-modality AI by capturing

complementary biological insights. Additionally, integrating

AI with real-time electronic health records (EHR) may enable

dynamic risk prediction models. Future efforts should focus

on enhancing model robustness, integrating AI with EHR and

multi-omics data, and fostering interdisciplinary collaboration

between clinicians, data scientists, and policymakers. With

continued innovation, AI can bridge critical gaps in liver disease

management, ultimately improving patient outcomes on a

global scale.
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