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Multi-omics profiling reveals the 
role of 4-ethylbenzoic acid in 
promoting proliferation and 
invasion of cervical cancer
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Background: Cervical cancer (CC) is a global health challenge, ranking fourth 
among cancers in women. Microbiome–metabolome interactions influence 
human papillomavirus (HPV) associated carcinogenesis, but specific microbial 
metabolites driving malignant progression remain undefined. This study aimed 
to identify potential biomarkers for distinguishing CC, and further explore their 
role in the progression of CC.
Methods: Non-targeted metabolomics was employed to profile alterations 
in the vaginal microenvironment across clinical cohorts, including individuals 
with CC, individuals with cervical intraepithelial neoplasia (CIN), HPV-positive 
individuals, and HPV-negative individuals. Targeted metabolomics was then 
used to confirm the expression of 4-ethylbenzoic acid (4-EA) levels and its 
role in CC was explored using cell counting kit-8, 5-ethynyl-2′-deoxyuridine, 
colony formation, transwell, and wound healing assays. Proteomics was used to 
investigate the effects of 4-EA on CC cells.
Results: The metabolic profiles of vaginal secretions in the CC group differed 
significantly from those in the other three groups. Untargeted metabolomics 
identified 27 CC-specific metabolites (VIP > 2, p < 0.05), revealing a marked 
elevation of 4-EA and its close relationship with vaginal microorganisms. Clinico-
pathological correlations revealed progressive 4-EA accumulation across the 
cervical carcinogenesis stages. Additionally, 4-EA promoted the proliferation, 
migration, and invasion of CC cells in vitro. Proteomic reprogramming of CC 
cells following 4-EA treatment identified 14 highly expressed proteins associated 
with poor prognosis.
Conclusion: This multi-omics investigation identified 4-EA as a novel candidate 
metabolite and a potential biomarker of CC. Identification of key proteins may 
provide new insights for interventions targeting the development of CC.
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1 Introduction

Cervical cancer (CC) is the fourth most prevalent malignancy among women worldwide, 
with 661,021 new cases and 348,189 deaths in 2022 (1). Notably, China accounts for 22.8% of 
this disease burden, reflecting both rising incidence rates and a concerning demographic shift 
toward younger populations (2, 3). The occurrence of CC is a multifactorial process involving 
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dynamic interactions within the cervicovaginal microenvironment—a 
complex ecosystem comprising host epithelial cells, immune 
mediators, microbiota, and metabolites. This microenvironment is 
dominated by Lactobacillus species under physiological conditions, 
which maintain vaginal health through lactic acid production 
(pH ≤ 4.5), bacteriocin secretion, and competitive exclusion of 
pathogens (4). A persistent high-risk human papillomavirus 
(HR-HPV) infection is a key factor in the development of CC (5). 
Additionally, metabolites derived from the vaginal microbiota are 
closely linked to HPV infection and cervical lesion progression (6, 7). 
Microbiome perturbations (Lactobacillus depletion and enrichment 
of Prevotella, Gardnerella, Sneathia) alter metabolic outputs—
including biogenic amines, short-chain fatty acids, and microbial 
derivatives—which modulate epithelial barrier integrity, local 
inflammation, and HPV persistence (7, 8).

Metabolic reprogramming, a hallmark of malignancy (9), 
recognizes metabolites as functional mediators of carcinogenesis and 
potential diagnostic targets. Metabolomics has emerged as a powerful 
tool for identifying cancer biomarkers owing to its capacity to capture 
real-time biochemical activity (10, 11). Emerging research 
emphasizes the functional roles of metabolites in physiology and 
diseases. For example, α-ketoglutarate regulates macrophage immune 
responses (12), and metabolites such as phospholipids and amino 
acids regulate insulin sensitivity (13). Furthermore, 
lysophosphatidylcholine inhibits lung cancer proliferation by 
inducing mitochondrial dysfunction and altering lipid metabolism 
(14). Specifically, in CC, C8 ceramide-1-phosphate exerts tumor-
suppressive effects through the MAPK/JNK1 pathway (15).

HR-HPV infection remodeling of the vaginal microenvironment, 
results in a self-perpetuating cycle of dysbiosis and metabolic 
dysregulation (7, 16). CC-associated metabolomic signatures exhibit 
profound alterations in amino acid, lipid, and carbohydrate pathways 
(17, 18); however, the mechanistic contributions of individual 
metabolites remain unclear. Current studies predominantly catalog 
metabolic shifts without bridging correlative observations to 
functional validation, which is a critical gap hindering 
clinical translation.

In this study, we mapped the cervicovaginal metabolic profile 
throughout cervical carcinogenesis using liquid chromatography-
mass spectrometry (LC–MS). 320 longitudinally vaginal lavage 
samples were collected, and stratified into cervical cancer (CC), 
cervical intraepithelial neoplasia (CIN), HPV-positive, and 
HPV-negative cohorts. We  then validated the role and potential 
mechanisms of these identified metabolites in CC development 
through in  vitro experiments and proteomics. By establishing a 
vaginal microbiome-metabolite-key protein network, this study 
provides a novel theoretical framework for early CC detection and 
lays the foundation for subsequent mechanistic exploration of 
oncogenic pathways.

2 Materials and methods

2.1 Participants

A total of 320 vaginal lavage samples were collected from female 
patients undergoing gynecological examinations for non-targeted 
metabolomics analysis at the First Affiliated Hospital of Chongqing 

Medical University in China from January 2021 to May 2021. The 
characteristics of the patients and their demographic information have 
been previously detailed (19). This study was approved by the Ethics 
Committee of the First Affiliated Hospital of Chongqing Medical 
University (Ethics NO. 2023-24). Based on the HPV test, ThinPrep 
liquid-based cytology test (TCT), and biopsy pathology, the 
participants were classified into four groups: cervical cancer group 
(CC) group, HPV-positive with cervical intraepithelial neoplasia 
group (CIN), HPV-positive without cervical lesions [HPV (+)] and 
HPV-negative healthy control group [HPV (−)], with 80 cases in each 
group. The TellgenplexTM HPV DNA (real-time PCR) Test 
(Tiansheng Biotech Co., Ltd., Shanghai, China), targeting the L1 gene, 
was utilized for 14 HR-HPV subtypes (16, 18, 31, 33, 35, 39, 45, 51, 52, 
56, 58, 59, 66, and 68) assay. For histopathological diagnosis, two 
gynecologic pathologists independently reviewed 4 μm formalin-fixed 
paraffin sections stained with hematoxylin–eosin (H&E), in 
accordance with the WHO 2020 classification guidelines. The 
inclusion and exclusion criteria are previously described (19). In short, 
participants in this study included individuals aged 20 years and older 
who were sexually active, and provided written informed consent. 
Specifically, pregnant, breastfeeding, or menstruating females; those 
who had sexual intercourse or vaginal lavage within the past week; 
those who have used antibiotics within the past month; those receiving 
long-term hormones or immunosuppressants therapy; or those who 
have undergone cervical surgery were excluded. Additionally, 32 
vaginal lavage samples were collected for targeted metabolomic 
detection following the same inclusion and exclusion criteria and 
classification into four groups. Patient characteristics and demographic 
information are provided in Supplementary Table 1.

2.2 Vaginal lavage sample collection for 
metabolomics analysis

A sterile speculum was used to expose the vagina, and a suitable 
amount of sterile physiological saline was used to clean the cervix and 
upper part of the vagina. Approximately 5 mL of the lavage fluid was 
collected and stored at ˗80 °C for subsequent metabolomics analysis.

2.3 Vaginal microbiome analysis

Vaginal microbiome analysis was performed as previously 
described (17). Briefly, vaginal secretion samples were collected using 
sterile swabs. After DNA extraction, PCR amplification, and library 
construction, the PCR products were sequenced on the Illumina® 
MiSeq platform (San Diego, California, USA). Bioinformatics analysis 
of the 16S rDNA sequencing data was conducted using a custom 
QIIME2 software pipeline (University of Colorado Boulder, Boulder, 
CO, USA).

2.4 Non-targeted metabolomics analysis

2.4.1 Metabolite extraction
Vaginal lavage samples from 320 patients were stratified into four 

cohorts (n = 80 per group). Within each group, samples were pooled 
into composite sets (n = 20 samples/set) for aggregate metabolomic 
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profiling. Pooled samples were vortex-mixed for 10 min, followed by 
metabolite extraction where 300 μL aliquots were combined with 
900 μL of methanol and acetonitrile mixture (v/v, 1:1). After vortexing 
(1 min) and centrifugation (17,000 g, 15 min, 37 °C), the supernatant 
was diluted with 80 μL of 50% (v/v) acetonitrile and recentrifuged 
under identical conditions. The resulting supernatant was stored at 
−80 °C for UPLC–MS/MS analysis, with quality control (QC) samples 
generated by pooling 10 μL aliquots from each sample.

2.4.2 Ultra-performance liquid chromatography–
tandem mass spectrometry (UPLC–MS/MS) 
analysis

Chromatographic separation was achieved using an UltiMate 
3,000 UPLC–MS/MS system (Thermo Fisher, Waltham, MA, USA) 
coupled to an AB SCIEX 5600 Triple TOF mass spectrometer (AB 
SCIEX, Framingham, MA, USA). Separations utilized an ACQUITY 
UPLC HSS T3 column (2.1 × 100 mm, 1.8 μm, Waters, Milford, MA, 
USA) with a 400 μL/min flow rate. Mobile phases consisting of solvent 
A (0.1% aqueous formic acid and 0.1% formic acid in acetonitrile), 
and solvent B (2 mM ammonium acetate and pure acetonitrile). The 
gradient elution program initiated with 5% B (0–1.5 min); 5–10% B 
for 1.5–2.5 min; 10–40% B for 2.5–14.0 min; 40–95% B for 14.0–
22.0 min; 95% B for 22.0–25.0 min. The mobile phase was then 
adjusted to initial conditions (5% B) within 1 min and equilibrated for 
4 min. Mass spectrometric parameters included dual electrospray 
ionization (ESI±) with voltages set to 5.0 kV (positive) and 4.0 kV 
(negative). The ion source operated at 650 °C, supported by dual gas 
pressure (GS1/GS2: 60 psi each) and a 35 psi curtain gas pressure.

2.4.3 Data analysis
The converted ABF file was processed using MDIAL 4.24 software 

(RIKEN Center for Sustainable Resource Science, Wako, Japan), 
including peak searching, peak alignment, removal of blank values, 
and identification of results obtained. The parameters for the MSDIAL 
software were established as follows: MS1 tolerance: 0.01 Da; 
Retention time tolerance: 0.2 min; Accurate mass tolerance (MS1): 
0.01 Da; (MS2): 0.05 Da. Identification score cut off: 60%. All features 
detected in QC samples (n = 6 injections) required CV < 30% across 
replicates, and identified metabolites were further verified for 
CV < 30%. Peaks intergroup missing values >50% were excluded. 
Normalization was performed using the total ion current and 
differential and clustering analyses were conducted using 
MetaboAnalyst 6.0 software (McGill University, Montreal, QC, 
Canada). Differential metabolites were identified through a two-tiered 
approach: variables with VIP > 1.0 (p < 0.05) from orthogonal partial 
least squares-discriminant analysis (OPLS-DA) models were retained 
for initial screening. And a stricter threshold of VIP > 2.0 (p < 0.05) 
was applied to prioritize metabolites with the highest discriminatory 
power for downstream validation.

2.5 Targeted metabolomics

2.5.1 Sample and standard curve construction
A standard 4-ethylbenzoic acid (4-EA) stock solution (1 mg/mL) 

was diluted with a 75% methanol solution to a specific concentration 
to prepare the standard working solution. A standard working curve 
was constructed using a standard solution.

2.5.2 Metabolite extraction
Following thawing at 4 °C, aliquots (100 μL) were mixed with 

methanol in a 1:3 ratio (v/v), homogenized by vortexing for 60 s, and 
centrifuged at 17000 g for 15 min to collect clarified extracts for 
subsequent analysis.

2.5.3 UPLC–MS/MS analysis
Chromatographic separation was performed on an ACQUITY 

UPLC BEH Amide column (3.0 × 100 mm, 1.7 μm; Waters, Milford, 
MA, USA) using an ACQUITY UPLC system coupled with an AB 
4500 triple quadrupole mass spectrometer(AB SCIEX, Framingham, 
MA, USA). Detection was conducted in positive ionization mode 
using a mobile phase consisting of solvent A (10 mM ammonium 
acetate with 0.1% formic acid in water) and solvent B (90% acetonitrile 
with 10 mM ammonium acetate and 0.1% formic acid). Solvent A 
multistep gradient protocol was implemented: 5% A (0–5 min), 
5–30% A (5–7 min), 30–80% A (7–10 min), 80–95% A (10–12 min), 
with rapid re-equilibration to 5% A within 0.1 min and stabilization 
for 3 min. Mass spectrometric detection in multiple reaction 
monitoring(MRM) mode utilized optimized parameters: ion source 
and nebulizer temperatures at 500 °C, curtain gas 25 psi, collision gas 
10 psi, and ion spray voltage 4,500 V.

2.5.4 Data analysis
Using MultiQuant3.0.3 analysis software (AB SCIEX Pte. Ltd., 

Singapore), the response of the standard solution at known 
concentrations was used to construct a standard curve to calculate the 
sample concentration.

2.6 In vitro experiments

2.6.1 Cell culture
CC cell lines HeLa and SiHa (Procell Life Science & Technology 

Co., Ltd., Wuhan, China) were purchased and maintained in DMEM 
(Gibco; Thermo Fisher Scientific, New York, USA) supplemented with 
10% fetal bovine serum (FBS) (Gibco) and 1% penicillin–streptomycin 
(Gibco), and incubated at 37 °C with 5% CO2. The cells were passaged 
or seeded using 0.05% trypsin (GenView Co., Shanghai, China) upon 
reaching 80–90% confluence. All cell lines were maintained within 10 
passages and underwent short tandem repeat (STR) profiling (17 loci) 
with quarterly mycoplasma testing via PCR amplification.

2.6.2 Cell treatment
4-EA (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 

DMSO as a stock solution of 100 μM, aliquoted, and stored at 
−20 °C. Working concentrations were freshly diluted in antibiotic-free 
medium, with controls matching DMSO concentrations (≤0.1% v/v) 
to account for solvent effects.

2.6.3 Cell counting kit-8 (CCK-8) cell 
proliferation assay

HeLa and SiHa cells in the logarithmic growth phase were seeded 
in 96-well plates (3,000 cells/well). After 24 h incubation at 37 °C in a 
5% CO₂, cells were treated with varying concentrations (0 nM, 5 nM, 
50 nM, 100 nM) of 4-EA. Then incubated with CCK-8 reagent 
(APExBIO, Shanghai, China) for 1.5 h, and absorbance at 450 nm was 
quantified using a microplate reader.
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2.6.4 Colony formation assay
Single-cell suspensions (HeLa or SiHa cells, 500 cells/well) were 

seeded into 6-well plates and treated with 50 nM 4-EA for 24 h 
attachment. Colonies were allowed to develop for 10–14 days, and the 
medium was renewed after every 3–5 days. Visible colonies (>50 cells) 
were fixed with 4% paraformaldehyde (PFA), stained with 0.1% crystal 
violet, and quantified using ImageJ software.

2.6.5 5-ethynyl-2′-deoxyuridine (EdU) 
proliferation assay

Cell proliferation was assessed using the BeyoClick™ EdU-555 
Kit (Beyotime Co., Shanghai, China). Briefly, HeLa (1 × 105) or SiHa 
(3 × 105) cells were treated with 50 nM 4-EA for 48 h, pulsed with 
10 μM EdU (37 °C, dark), fixed with 4% PFA, and permeabilized with 
0.3% Triton X-100. The cells were incubated with the reaction system, 
and the nuclei were counterstained with Hoechst 33342 (1:1000). 
Images were acquired using fluorescence microscopy and analyzed 
using the ImageJ software.

2.6.6 Wound healing assay
HeLa and SiHa cells were seeded into 6-well plates and cultured 

overnight. Confluent monolayers were scratched using sterile 200 μL 
pipette tips, washed with phosphate-buffered saline, and cultured in 
serum-free DMEM containing 0 or 50 nM 4-EA. Migration 
progression was documented through time-lapse imaging (at 0, 24, 
48 h). The scratch area was calculated by ImageJ software. Migration 
rates were calculated as follows: healing rate (%) = (initial area − 
residual area)/initial area × 100%.

2.6.7 Transwell migration and invasion assay
Cells were pretreated with 0 or 50 nM 4-EA for 48 h before 

seeding into the chamber. For the migration assay, 200 μL of cells 
(1 × 105 cells/mL) in FBS-free medium were loaded into upper 
chambers (Labselect Co., Beijing, China), with 600 μL 20% FBS as 
chemoattractant. After 24 h (HeLa cells) or 36 h (SiHa cells) of 
incubation, the migrated cells were fixed with 4% PFA, stained with 
0.1% crystal violet, and counted using ImageJ software. For the 
invasion assay: Matrigel-coated chambers (Labselect Co.) were 
hydrated with prewarmed medium (500 μL, 2 h, 37 °C) before cell 
seeding. Following 24–36 h of incubation, the transmigrated cells were 
fixed, stained and counted as described above.

2.6.8 Statistical analysis
Graphs were generated using GraphPad Prism 8.0 (GraphPad 

Software, LLC, San Diego, CA, USA), for two-group comparisons, the 
Student’s t-test was utilized, and for multiple groups, p-values were 
determined by one-way analysis of variance (ANOVA) with Tukey’s 
post hoc correction. The final figure assembly in Adobe Illustrator 
2021. Significance thresholds set at *p < 0.05, **p  < 0.01, and 
***p < 0.001.

2.7 Proteomic analysis

2.7.1 Protein sample preparation
HeLa cells were treated with 50 nM 4-EA for 48 h following 

overnight seeding. Total cellular proteins were extracted using RIPA 
lysis buffer (Beyotime Co., Shanghai, China) and quantified using a 

BCA protein assay kit (Beyotime Co.). Aliquots containing 20 μg 
protein were reduced with 100 mM tris(2-carboxyethyl) phosphine 
(Sigma-Aldrich) in 50 mM ammonium bicarbonate (56 °C, 60 min), 
then alkylated using 200 mM chloroacetamide (freshly prepared) in 
the dark (25 °C, 30 min). Trypsin digestion (Sigma-Aldrich) was 
performed overnight at 37 °C using 50 mM ammonium bicarbonate. 
Peptides were purified using C18 spin columns (150 μm × 100 mm, 
3 μm), lyophilized, and reconstituted in 10 μL 0.1% formic acid prior 
to LC–MS/MS analysis.

2.7.2 UHPLC–MS/MS configuration
Chromatographic separation employed an Easy-nLC 1,200 system 

coupled to a Q Exactive HF-X mass spectrometer (Thermo Fisher 
Scientific) through a reversed-phase analytical column (C18, 
100 mm × 150 μm, 3 μm; Thermo Fisher Scientific). The mobile 
phases contained 0.1% formic acid in water (solvent A) or 80% 
acetonitrile (solvent B). The gradient profile was progressed as follows: 
2% B (0–5 min), 8–40% B (5–81 min), 40–95% B (81–83 min), 95% B 
(83–90 min), 95–2% B (90–95 min), and 2% B (95–100 min) at a 
0.6 μL/min flow rate. MS parameters were as follows: Full MS scan: 
400–1,200 m/z, 60 k resolution, 3.0 e6 automatic gain control (AGC) 
of the first-order mass spectrometry; 20% high-energy collision 
dissociation, 30 k resolution, and 1.0 e5 AGC of the secondary mass 
spectrometry fragmentation mode.

2.7.3 Data analysis
The raw files were processed using MaxQuant v2.1.3 (Max Planck 

Institute for Biochemistry, Martinsried, Germany) by searching the 
UniProt human database.1 The results were annotated using the 
Metascape software,2 including Gene Ontology (GO) enrichment 
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis. Differentially expressed proteins (DEPs) were 
identified using Student’s t-test. To account for multiple testing, p-values 
were adjusted via the Benjamini–Hochberg procedure to control the false 
discovery rate (FDR) at 5%. Proteins with FDR < 0.05 and log2FC > 0.58 
were deemed statistically significant. These DEPs were subsequently 
queried against the Cancer Genome Atlas Cervical Squamous Cell 
Carcinoma and Endocervical Adenocarcinoma (TCGA-CESC) datasets,3 
with prognostic associations evaluated by Kaplan–Meier analysis and 
log-rank testing using the survminer package (v0.4.9) in R.

3 Results

3.1 Distinct metabolic profiling of CC 
associated with vaginal microbiota

Non-targeted metabolomic profiling via UPLC–MS/MS revealed 
significant intergroup metabolic disparities, as evidenced by principal 
component analysis (PCA) segregation between the CC group and 
comparator cohorts—CIN, HPV(+), and HPV(−) groups (Figure 1A). 
We conducted differential indicator screening and cluster analysis, with 
VIP > 1 and p < 0.05 as the selection screening criteria for selecting 

1  https://www.uniprot.org/

2  https://metascape.org

3  https://portal.gdc.cancer.gov/

https://doi.org/10.3389/fmed.2025.1591531
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.uniprot.org/
https://metascape.org
https://portal.gdc.cancer.gov/


Huang et al.� 10.3389/fmed.2025.1591531

Frontiers in Medicine 05 frontiersin.org

FIGURE 1

Cervical cancer had a unique vaginal metabolomic profile and was associated with vaginal microbiota. (A) Discrimination of groups using principal 
component analysis. (B–D) Hierarchical clustering heat map of differential metabolites in (B) CIN patients, (C) HPV (+) patients, and (D) HPV (−) patients 
compared with CC patients. And each data point represents pooled samples (n = 20/set). (E) Spearman correlation analysis between metabolic 
signatures and vaginal microbiome. (F) Venn diagram visualizing the number of shared significantly differential metabolites in CC groups.
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differential metabolites. Comparative analyses demonstrated 135, 124, 
and 143 differentially abundant metabolites distinguishing CC from 
the CIN, HPV (+), and HPV (−) groups, respectively (Figures 1B–D). 
Building upon our prior microbiota investigation (19), we performed 
Spearman’s correlation analysis between these metabolic signatures and 
vaginal microbial taxa (Figure 1E). CC-elevated metabolites, including 
4-EA, PAF C-16, fexofenadine, docosahexaenoic acid ethyl ester, and 
oxidized glutathione, were positively correlated with CC-enriched 
genera (Prevotella, Ralstonia, Sneathia, and Porphyromonas) and 
negatively correlated with Lactobacillus, which was dominant in HPV 
(−) controls. This finding demonstrated a close correlation between 
differential vaginal metabolites and microorganisms.

3.2 4-EA is a potential carcinogenic 
metabolite in CC

Intersectional analysis of shared and unique differential 
metabolites across the groups was performed using stringent criteria 
(VIP > 2.0, p < 0.05) to screen for more specific differential 
metabolites. The Venn diagram revealed 27 consensus metabolites 
that distinguished CC from the other three groups (Figure 1F). The 
27 identified metabolites are listed in Table 1. Among these candidate 
biomarkers, 4-EA was elevated in CC specimens, and correlation 
analysis (Figure 1E) revealed that 4-EA was negatively correlated with 
the abundance of beneficial Lactobacillus species and positively 
correlated with the pathogenic bacterium Prevotella, suggesting that 
4-EA may be a potential carcinogenic metabolite for cervical cancer. 
ROC analysis demonstrated an AUC of 0.84 (95% CI: 0.23–0.93) for 
4-EA, indicating moderate diagnostic utility in cervical cancer 
detection (Supplementary Figure 1).

3.3 4-EA potentiates CC cell proliferation

To mechanistically link 4-EA abundance with oncogenic potential, 
we performed targeted metabolomics profiling of vaginal lavage fluids 
throughout disease progression stages. Targeted metabolomics revealed 
the lowest 4-EA concentration in healthy individuals, with a gradual 
increase observed with the progression of cervical lesions (Figure 2A). 
Using this clinical concentration range (0–100 nM), we conducted 
dose–response studies in cervical carcinoma cells (HeLa and SiHa 
cells). The CCK-8 viability assays demonstrated the proliferative effects 
of 4-EA, with the most effective stimulation at 50 nM (Figure 2B). This 
optimal concentration was subsequently employed for functional 
validation. EdU proliferation and colony formation assays confirmed 
the pro-proliferative effect of 50 nM 4-EA (Figures 2C–F).

3.4 4-EA promotes the migration and 
invasion of CC cells

A comparison of the migration rate of 4-EA (50 nM)-treated cell 
lines and the control group revealed a significantly increased 
migration rate in the 4-EA group (Figures  3A,B). Furthermore, 
transwell migration and invasion assays revealed significantly 
increased numbers of migratory and invasive cells following treatment 
with 4-EA (Figures 3C,D).

3.5 Changes in protein expression in HeLa 
cells following 4-EA treatment

UHPLC–MS/MS-based proteomic profiling of 4-EA-treated HeLa 
cells (50 nM, 48 h) identified 254 DEPs compared with untreated 
controls. Quantitative analysis revealed 103 upregulated proteins 
(FC ≥ 1.5 and p < 0.05, n = 4) and 151 downregulated proteins 
(FC ≤ 1/1.5 and p < 0.05, n = 4) proteins (Figure 4A). KEGG pathway 
analysis highlighted 10 perturbed metabolic networks, including 
galactose metabolism, N-glycan biosynthesis, starch and sucrose 
metabolism, amino sugar and nucleotide sugar metabolism, and ether 
lipid metabolism (Figure 4B). Furthermore, GO enrichment analysis 
demonstrated a significant association of DEPs with the glycogen 
catabolic process, glucan catabolic process, organic compound 
oxidation, and polysaccharide catabolic process (Figure 4C).

3.6 Key proteins associated with the 
prognosis of CC

Survival analysis was conducted using TCGA data to evaluate the 
254 HeLa-derived DEPs. Notably, 14 upregulated proteins (CAPN2, 
CAVIN3, CDK8, CIP2A, HEXA, HK2, NCKAP1, RTCA, SEC24C, 
SLAIN2, SUCLA2, TM9SF2, TRAM1, and RBM28) exhibited adverse 
prognostic impacts (p < 0.05), whereas 7 downregulated proteins 
(ECI1, IFT27, IFT122, MAP2K2, SETX, SLC1A4, OXLD1) correlated 
with improved survival (p < 0.05). The Kaplan–Meier curves for all 21 
candidates are presented in Supplementary Figure 2. The levels of 
these 21 proteins are shown in Figure 5.

4 Discussion

Metabolic reprogramming has emerged as a hallmark of 
carcinogenesis, and metabolomics provides critical insights into 
pathogenic mechanisms through precise biomarker identification 
(20, 21). This approach holds great significance in elucidating 
cervical carcinogenesis and developing diagnostic and therapeutic 
strategies. Current descriptive investigations of cervical tissues, 
serum, urine, and cervicovaginal secretions have confirmed 
metabolic perturbations during cervical carcinogenesis (6, 22–24). 
Emerging studies have indicated that vaginal dysbiosis can alter 
cervicovaginal metabolic landscapes (primarily amino acids, 
dipeptides, polyamines, and ketone body pathways), potentially 
affecting the occurrence of CC (25, 26). Furthermore, biogenic 
amines, glutathione derivatives, and lipid mediators are associated 
with HPV infection (17). However, although these descriptive studies 
catalog metabolic shifts, the functional impact and mechanistic 
interplay of vaginal microbiome metabolites on the host responses 
remain poorly characterized.

We performed untargeted metabolomic profiling to map the 
metabolic characteristics of CC cohort to elucidate the functional 
significance of cervicovaginal metabolites in carcinogenesis. PCA 
revealed a significant separation trend in the CC metabolic profile 
compared with the CIN, HPV (+), and healthy cohorts. We conducted 
the Venn diagram to revealed consensus differentially metabolites 
that distinguished CC from the other groups. Among these 
metabolites, elevated levels of PC, LPC, and nilotinib align with 
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established reports of their upregulation in CC (15, 27). However, 
several metabolites demonstrate previously undocumented 
associations with cervical carcinogenesis, warranting mechanistic 
investigation into their pathogenic roles. Our concurrent vaginal 
microbiota sequencing data demonstrated Prevotella, Ralstonia, and 
Gardnerella enrichment coupled with Lactobacillus depletion in the 
CC group (19). These findings suggest associations between microbial 
community restructuring (Prevotella enrichment, Lactobacillus 
depletion) and metabolic dysregulation in cervical carcinogenesis. 
The marked elevation of 4-EA in CC specimens strongly correlated 

with Prevotella abundance and was inversely associated with 
Lactobacillus colonization, indicating that 4-EA, as a candidate 
metabolite, is closely related to vaginal microorganisms. In addition, 
4-EA exhibited comparable differential diagnostic performance to 
established serum biomarkers such as HE4 and SCC-Ag (28). 
Critically, its non-invasively collected vaginal lavage samples provide 
logistical advantages over blood-based markers. The diagnostic 
efficacy was potentially enhanced when combined with HPV testing, 
suggesting 4-EA has certain synergistic value in clinical 
screening workflows.

TABLE 1  The significant dysregulated metabolites found in the CC group.

Metabolites Class VIPa p-valueb FDRc

CC to CIN CC to HPV(+) CC to HPV(−)

Upregulated

Eicosapentaenoic acid Fatty acyls 3.6083 2.3755 2.93 0.014 0.051

LPC 18:2 Glycerophospholipids 3.4926 3.5007 3.5493 ≤0.001 0.004

4-Ethylbenzoic acid Benzene and substituted derivatives 3.265 3.4005 3.5273 0.003 0.018

Nilotinib Benzene and substituted derivatives 3.175 3.6057 3.396 ≤0.001 ≤0.001

PC (16:0/0:0)[U]/PC (16:0/0:0) Glycerophospholipids 3.1344 3.1511 3.2987 ≤0.001 0.003

Convallatoxin Steroids and steroid derivatives 3.1174 2.567 2.1022 ≤0.001 ≤0.001

Desferrioxamine B Carboxylic acids and derivatives 3.0654 3.3046 2.7418 ≤0.001 0.003

PC (14:0/0:0) Glycerophospholipids 2.9507 2.6957 2.8383 0.001 0.009

LPC 18:3 Glycerophospholipids 2.8042 2.7306 2.8091 ≤0.001 0.004

Arachidonic acid (peroxide free) Fatty acyls 2.749 2.1903 2.2285 ≤0.001 ≤0.001

Docosahexaenoic acid ethyl 

ester

Fatty acyls 2.4747 2.6408 2.2539 ≤0.001 ≤0.001

LPC 18:1 Glycerophospholipids 2.3284 2.1936 2.3712 ≤0.001 0.006

1-arachidonoyl-2-hydroxy-sn-

glycero-3-phosphate

Fatty acyls 2.2833 2.8513 2.4087 0.003 0.017

Fexofenadine Benzene and substituted derivatives 2.264 2.3243 2.3799 ≤0.001 0.004

PAF C-16 Glycerophospholipids 2.1696 2.2821 2.329 ≤0.001 0.007

Glycocholic Acid Steroids and steroid derivatives 2.1517 2.4592 2.1564 ≤0.001 0.006

Smenospongiarine Prenol lipids 2.0861 2.7619 2.3637 ≤0.001 0.003

Downregulated

Scalarin Prenol lipids 3.8072 3.6738 4.7667 0.007 0.031

SB 939 Cinnamic acids and derivatives 3.8015 3.799 3.5592 0.004 0.02

Dihydrokaempferol Flavonoids 3.5501 3.2527 2.9084 ≤0.001 0.004

Notoamide B Benzopyrans 3.4404 3.5106 3.1179 ≤0.001 0.004

2′,6′-Dihydroxy-4-

methoxychalcone-4’-O-

neohesperid

Flavonoids 3.3072 2.9876 3.1763 ≤0.001 0.005

(+)-Catechin Flavonoids 3.1187 3.0898 3.0687 ≤0.001 ≤0.001

Catechin 7-arabinofuranoside Flavonoids 3.1149 2.7434 2.6453 ≤0.001 0.007

Bifemelane Benzene and substituted derivatives 2.3984 2.1317 3.0793 0.01 0.041

(−)-Epicatechin Flavonoids 2.2541 2.1695 2.045 0.001 0.009

PC (6:0/6:0) Glycerophospholipids 2.0183 2.3707 2.0247 ≤0.001 0.004

aVariable importance in the projection (VIP) was obtained by the orthogonal partial least squares-discriminant analysis(OPLS-DA) model.
bp-values were calculated using the student’s t-test.
cFalse discovery rate (FDR) were adjusted via the Benjamini–Hochberg procedure.
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FIGURE 2

4-EA plays a promoting role in the growth and migration of cervical cancer cells. (A) The concentration of 4-EA in vaginal lavage fluids in people with 
different health conditions by targeted metabolomics. (B) Cell viability of HeLa and SiHa cells after 4-EA treatment was detected by CCK-8 assay. (C,D) 
Cell proliferation was examined by EdU assay. (E,F) The clone ability of HeLa and SiHa cells was determined by colony formation assay with 4-EA 
treatment. Data are presented as the mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001. NILM, negative for intraepithelial lesion or malignancy; LSIL, low-
grade squamous intraepithelial lesion; HSIL, high-grade squamous intraepithelial lesion; CC, cervical cancer.
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FIGURE 3

4-EA promoted migration and invasion of cervical cancer cells. (A,B) The activity of cell migration was measured by wound healing assay. (C,D) The 
effect of 4-EA on the migration and invasion of cervical cancer cells was detected by transwell migration and invasion assay. Data are presented as the 
mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 4

Proteomic analysis of HeLa cells. (A) Volcano plot of HeLa cell proteins. The thresholds for p-value and |log2FC| were set at 0.05 and 0.58, respectively. 
FC, fold change of treated group to control group; up, up-regulation; down, down-regulation. Top 10 pathways of differential metabolites for (B) KEGG 
enrichment analysis and (C) GO enrichment analysis. Each group included 4 biological replicates.

FIGURE 5

Expression levels of key proteins related to the prognosis of cervical cancer after 4-EA intervention. *p < 0.05; **p < 0.01; ***p < 0.001.

https://doi.org/10.3389/fmed.2025.1591531
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al.� 10.3389/fmed.2025.1591531

Frontiers in Medicine 11 frontiersin.org

As a benzoic acid derivative, 4-EA belongs to the aromatic 
carboxylic acid family and occurs naturally occurring in plants and 
microbial metabolites (29). Benzoic acid alters gut microbial diversity 
and changes gut barrier function through specific immune responses, 
nonspecific barrier mechanisms, and microbiota (30). Notably, 
4-EA-induced metabolites are involved in steroid hormone 
biosynthesis (31). Specifically, plasma metabolomics studies have 
documented age-dependent 4-EA accumulation, with higher levels in 
older individuals than in younger individuals (32). Benzoic acid and 
its derivatives are associated with breast and colorectal malignancies 
(33, 34), while their involvement in CC was previously unreported. 
Our multi-omics approach firstly reveals 4-EA as the metabolite 
linked to cervical malignancy, but its mechanistic roles remain to 
be explored.

To determine the pathophysiological concentrations of 4-EA, 
we  conducted targeted metabolomic quantification of vaginal 
lavage fluid across clinical cohorts. The CC group exhibited the 
highest 4-EA levels. Reportedly, 4-EA is associated with a tobacco 
smoke-induced increase in the permeability of human lung 
fibroblast membranes, with the effect becoming more pronounced 
with prolonged exposure and alkyl substitution of the aromatic 
ring (35). We hypothesized that pathological accumulation of 4-EA 
was associated with cervicovaginal dysbiosis and 4-EA potentially 
acted as a cofactor in cervical carcinogenesis. We then conducted 
in vitro experiments using clinically relevant concentrations to 
explore its biological effects on CC cells. CCK-8 assays revealed the 
proliferative stimulation of CC cells (HeLa/SiHa) following 4-EA 
treatment, with the most effective response at 50 nM. Subsequent 
experiments further validated that 4-EA promotes the 
proliferation, migration, and invasion of CC cells in vitro. Our 
research first revealed the promoting effect of 4-EA on CC cells. 
Notably, although our in vitro studies confirmed 4-EA’s oncogenic 
effects, direct evidence linking Prevotella to 4-EA biosynthesis 
in  vivo remains limited. Future studies should explore 4-EA 
production in gnotobiotic models colonized with clinical Prevotella 
isolates and assess causality via microbiota-depletion experiments.

Carcinogenesis necessitates profound metabolic reprogramming 
to sustain rapid proliferation and bioenergetic demands, driving 
critical alterations in metabolic pathways (36). Proteomics analysis 
is used to directly investigate the possible mechanisms behind the 
observed phenotypic changes. It showed that the differentially 
expressed genes were mainly enriched in glycolytic and lipid 
metabolic pathways, providing new mechanistic insights. Glycolysis 
is the most widely used to drive various metabolic activities and 
energy production in tumor cells (37), also lipid metabolism is a key 
part of tumor energy metabolism (38). This metabolic rewiring 
aligns with the Warburg effect—a hallmark of malignant 
progression—while lipid metabolic activation supports membrane 
biosynthesis for metastatic dissemination (39). It was indicated that 
4-EA may play a role in the progression of CC by regulating glucose 
and lipid metabolism. Subsequently, we  combined the TGGA 
database to conduct survival analysis on 254 DEPs in HeLa cells, 
identifying 21 prognosis-linked candidates. Among these, 14 
adverse prognostic markers that were significantly upregulated after 
4-ethylbenzoic acid intervention were identified, and 7 favorable 
prognostic indicators that were significantly downregulated were 
identified. Specifically, 4-EA may potentiate glycolytic dependency 

by upregulating HK2 via HIF-1α stabilization—a mechanism 
reported for structurally analogous compounds (40). Notably, the 
suppression of SLC1A4 (a glutamine transporter) suggests 4-EA 
may rewire glutamine metabolism to favor glutathione synthesis, 
countering oxidative stress induced by microbial dysbiosis (41). 
This aligns with prior observations that benzoic acid derivatives 
deplete intracellular GSH pools in cervical epithelia (42). These key 
proteins had the potential to become targets for intervention 
and therapy.

This study identifies Prevotella-associated 4-EA as a novel 
candidate metabolite in cervical carcinogenesis, several limitations 
warrant acknowledgment. While Spearman correlations suggest 
microbe-metabolite associations, our analysis cannot resolve 
whether these relationships reflect direct causation or shared 
dependencies on unmeasured confounders. Future studies with 
larger cohorts and metatranscriptomic data are needed to dissect 
genus-specific contributions. Our targeted validation cohort 
remains insufficient for clinical translation. While our pooled 
sample design enhanced detection sensitivity for low-abundance 
metabolites, it inherently precluded individual-level correlation 
analyses between clinical variables and metabolic signatures—a 
necessary trade-off that future studies with larger cohorts should 
address. We  propose a multicenter validation initiative to 
be conducted over 3 years across six tertiary hospitals in high-risk 
Chinese provinces (Guangdong, Henan, Sichuan; total catchment 
area >50 million). This will enroll 1,200 participants (200/site) for 
standardized sample collection and centralized UPLC–MS/MS 
analysis, with stratification by HPV subtype, menopausal status, 
and socioeconomic factors. This expanded cohort is essential to 
verify the diagnostic robustness of 4-EA across diverse populations 
and confounding variables. In addition, proteomics revealed 4-EA 
regulated glycolytic and lipid metabolic pathways, the precise 
molecular triggers remain unresolved. The 21 key proteins 
identified from proteomic analysis require orthogonal verification 
(Western blot and qPCR) in vitro and vivo models, and mechanistic 
insights into 4-EA’s metabolic reprogramming require 
deeper interrogation.

5 Conclusion

Cervical carcinogenesis displays a distinct cervicovaginal 
metabolic signature, with microbiome-derived metabolites actively 
contributing to the malignant progression. Our multi-omics 
investigation identified 4-EA as a Prevotella-associated candidate 
metabolite, with a significant increase in patients with CC 
compared with the healthy controls. Furthermore, functional 
validation revealed that 4-EA promotes the proliferation, 
migration, and invasion abilities of CC cells and regulates their 
protein profile, highlighting 4-EA as a non-invasive biomarker. 
Additionally, proteomic profiling and TCGA survival analysis 
identified 21 prognosis-linked targets, which may serve as potential 
targets for the intervention and treatment of CC. In this study, 
4-EA was found to be  a candidate metabolite related to 
microorganisms, which has the potential to serve as a biomarker 
for recognizing CC and provides novel mechanistic insights into 
CC intervention strategies.
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