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Background: Diabetic retinopathy (DR) screening faces critical challenges

in early detection due to its asymptomatic onset and the limitations of

conventional prediction models. While existing studies predominantly focus on

image-based AI diagnosis, there is a pressing need for accurate risk prediction

using structured clinical data. The purpose of this study was to develop,

compare, and validate models for predicting retinopathy in diabetic patients via

five traditional statistical models and deep learning models.

Methods: On the basis of 3,000 data points from the Diabetes Complications

Data Set of the National Center for Population Health Sciences Data, the

differences in the characteristics of patients with diabetes mellitus and diabetes

combined with retinopathy were statistically analyzed using SPSS software.

Five traditional machine learning models and a model based on deep neural

networks (DNNs) were used to train models to assess retinopathy in diabetic

patients.

Results: Deep learning-based prediction models outperformed traditional

machine learning models, namely logistic regression, decision tree, naive Bayes,

random forest, and support vector machine, on all the datasets and performed

better in predicting retinopathy in diabetic patients (accuracy, 0.778 vs. 0.753,

0.630, 0.718, 0.758, 0.776, respectively; F1 score, 0.776 vs. 0.751, 0.602, 0.724,

0.755, 0.776, respectively; AUC, 0.833 vs. 0.822, 0.631, 0.769, 0.829, 0.831,

respectively). To enhance the interpretability of the deep learning model, SHAP

analysis was employed to assess feature importance and provide insights into

the key drivers of retinopathy prediction.

Conclusion: Deep learning models can accurately predict retinopathy in diabetic

patients. The findings of this study can be used for prevention and monitoring

by allocating resources to high-risk patients.
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1 Introduction

Diabetes mellitus (DM), a complex metabolic disorder
characterized by chronic hyperglycemia, is marked by persistently
elevated blood glucose levels and impaired carbohydrate
metabolism (1, 2). This condition is associated with microvascular
and macrovascular complications, including damage to the
kidneys, nerves, and eyes and an increased risk of cardiovascular
diseases (3). The pathogenesis of diabetes mellitus is complex,
with varied manifestations and progressive development (1, 4).
Diabetes is a rapidly growing global health emergency in the
21st century, with approximately 536.6 million adults living with
diabetes (both diagnosed and undiagnosed, type 1 and type 2)
according to the International Diabetes Federation’s 2021 report
(5, 6). Diabetic retinopathy (DR) is a common microvascular
complication of diabetes mellitus and a leading cause of vision
loss in elderly individuals (7). In the early stages of diabetic
retinopathy, hyperglycemia and altered metabolic pathways lead to
oxidative stress and neurodegeneration (8). Chronic hyperglycemia
damages retinal capillaries, which disrupts light perception and
signal transmission, ultimately leading to DR. DR is particularly
common among the working-age population and is widespread
globally, with an estimated 191 million cases projected by 2030
(9). Although advanced DR can result in blindness, early detection
is difficult because its visual symptoms are not easily detectable.
However, consistent screening and early diagnosis can potentially
lower the risk of vision impairment and treatment costs by
57.0% (9). Patients diagnosed with referable DR need a thorough
ophthalmologic evaluation and appropriate medical or surgical
intervention to prevent vision loss.

Artificial intelligence (AI) technologies have been employed
for over two decades to address the significant screening demand
for diabetic retinopathy. Initially, AI methods for DR detection
focused on identifying pathological signs in fundus images,
such as hemorrhages, new blood vessel formation, and exudates,
which were then used to assess the presence of DR (10–12).
As computational capacities have improved, deep learning (DL)
has emerged as the dominant AI approach in DR screening,
with many deep learning models now surpassing traditional
feature-based machine learning techniques (13). This technological
evolution is reflected across medical imaging domains, where novel
architectures continue to push diagnostic boundaries. Notably,
Haq et al. developed DCNNBT, achieving 99.18% brain tumor
classification accuracy through optimized convolutional layers and
hyperparameter tuning (14), while Kumar et al. demonstrated
96.2% detection accuracy using transfer learning with augmented
MRI data (15). Parallel advances in segmentation are exemplified
by Yousef et al.’s systematic optimization of U-Net variants
for brain tumor localization (16). Particularly noteworthy is
the Alhussen et al. introduced XAI-RACapsNet system, which
combines capsule networks with explainable AI for mammography
diagnosis, addressing critical challenges in model interpretability
(17). While these image-based breakthroughs showcase DL’s
capabilities in radiological interpretation, our study addresses
a distinct clinical need: leveraging structured electronic health
records for DR prediction.

DL is a subset of machine learning that performs automatic
feature learning via a multilayer algorithmic structure, an

artificial neural network inspired by human neural networks (18).
Recent advancements in DL have shown considerable promise
in enhancing diagnostic accuracy, indicating that deep neural
network (DNN) is a valuable tool for improving the early
diagnosis and classification of diseases (19). For example, Moya-
Albor et al. developed a DL-based method for DR classification,
employing knowledge distillation (KD) strategies to improve model
performance on imbalanced datasets (20). Similarly, Lombardo
et al. explored sex differences in cardiovascular complications
among diabetic patients using three-dimensional contingency
table analysis (21). Rehman et al. emphasized the importance of
handling missing blood glucose data for predicting postprandial
hypoglycemia, finding that random forest models were robust
to missing data (22). Tašić et al. proposed a fuzzy multi-layered
system for predicting type 2 diabetes risk by incorporating physical,
behavioral, and environmental factors, aiding doctors in assessing
patient risk more accurately (23). Furthermore, Moya-Albor
et al. introduced a bio-inspired watermarking method for privacy
protection in medical image analysis without compromising
diagnostic quality (24). Additionally, Neamtu et al. revealed the
crucial role of disease features, complications, and socioeconomic
factors in blood glucose control prediction for children with type 1
diabetes, using machine learning algorithms (25).

Several developed countries have established DR screening
programs aimed at the early diagnosis, monitoring, and timely
treatment of DR (26). However, the diagnostic accuracy may not
be optimal, and there is a paucity of relevant research.

Therefore, the purpose of this study was to assess the
discriminative accuracy of a deep learning-based prediction
model for diabetes and diabetic-complicated retinopathy using
the Diabetes Complications Data Set of the National Center for
Population Health Sciences Data (27) and compare it with five
traditional machine learning models. The key novelty of this
study lies in its integration of deep learning techniques with a
robust feature learning framework to predict DR more accurately
than traditional statistical and machine learning models. By
systematically comparing the performance of deep neural networks
with five classical models, this study demonstrates the superior
predictive power of DL in handling complex, high-dimensional
data from diabetic patients. Furthermore, the findings highlight
the potential of DL to inform targeted interventions and resource
allocation for high-risk populations, ad-dressing gaps in existing
DR screening programs and contributing to the early detection and
management of DR.

2 Materials and methods

2.1 Study design and population

This research employed the Population Health Scientific
Data Warehouse (PHDA), which focuses on managing scientific
data in the area of population health derived from scientific
and technological projects supported by national governmental
funding. It also includes data processed by partnering institutions
to meet specific requirements and data produced by various
institutions and individuals.
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FIGURE 1

Flowchart showing the selection of the study population.

The detailed study design is illustrated in Figure 1. We utilized
the Diabetes Complications Data Set (DCDS), which contained
3,000 data points. All data points had complete information;
thus, no exclusions were necessary. The dataset included 1,500
individuals with diabetes and 1,500 with diabetes complicated by
retinopathy. Statistical analyses were performed on these groups.

This study received approval from the National Population
Health Sciences Data Center-Clinical Medical Center, and obtain
a license to use the data1. Since this was a retrospective analysis,
informed consent was not needed. Owing to legal and ethical
considerations, the authors are unable to share the dataset publicly.
The data can be accessed through a formal request to the National
Center for Population Health Sciences Data Warehouse.2

2.2 Research variables

In this study, we utilized data from the PHDA to explore the
factors associated with diabetes and diabetes-related retinopathy.
The analysis incorporated variables namely, the latest age, sex,
and diabetes classification. Additionally, body mass index (BMI),
fasting blood glucose (GLU), systolic blood pressure (SBP), diastolic
blood pressure (DBP), total cholesterol (TC), blood urea (BU),
hemoglobin (HB), total bilirubin (TBILI), globulin (GLO), and
other physical activity measures were examined. To account for
medical history, we analyzed the frequency of hospital visits,
prescribed medications, and duration of hospital stays over
the past 2 years.

2.3 Algorithm development and
statistical analysis

The data preprocessing pipeline comprised three sequential
steps: (1) exclusion of variables with over 50% missing values
to ensure data quality; (2) univariate feature selection using chi-
square tests for categorical variables and independent t-tests for
continuous variables (significance threshold p < 0.05); and (3)

1 http://creativecommons.org/publicdomain/zero/1.0/

2 https://www.ncmi.cn//phda/dataDetails.do?id=CSTR:A0006.11.A0005.
201905.000282

normalization of all continuous variables to zero mean and unit
variance using Z-score transformation, along with binary (0/1) or
one-hot encoding of categorical variables.

Deep neural networks (DNNs) are a type of artificial neural
network (ANN) with multiple hidden layers between input and
output layers, enabling them to learn complex features from data
through hierarchical abstraction. Inspired by the human brain,
DNNs process data via interconnected neurons, each applying
weighted inputs and non-linear activation functions. DNNs excel at
analyzing large, high-dimensional datasets; thus, they are ideal for
tasks such as image recognition, natural language processing, and
healthcare predictions, including for diabetic retinopathy. In this
study, a predictive model for diabetic retinopathy was developed
using a DNN approach. The data processing pipeline for the
DNN model is illustrated in Figure 2. The dataset was randomly
divided into a training set and a validation set at a 7:3 ratio to
enhance the model’s learning and prediction accuracy for unseen
data (28, 29). The DNN architecture consisted of an input layer
(41 features), two hidden layers (40 and 50 nodes with rectified
linear unit (ReLU) activation), and a sigmoid output layer, ensuring
progressive abstraction of high-level features from the data. We
applied a ReLU activation function in the hidden layer. ReLU is a
widely used function that introduces nonlinearity by outputting the
input directly if it is positive and zero otherwise, allowing the model
to learn complex patterns more effectively. This choice enhances
the model’s capacity to handle intricate relationships in the data.

To mitigate the risk of overfitting, we implemented a dropout
rate of 0.2 during training, randomly disregarding 20% of the
neurons in each iteration. This approach aids in improving the
model’s generalization capabilities. The model was optimized using
the Adam optimizer, a widely used algorithm that combines
momentum and adaptive learning rates. Adam dynamically adjusts
each parameter’s learning rate based on gradient moment estimates.
This approach enhances efficiency and makes the optimizer
particularly suitable for large, noisy datasets. In this study, the
Adam optimizer was employed with a learning rate of 0.00001,
which was determined through systematic evaluation of multiple
candidate values (1e-4, 1e-5, and 1e-6) on the validation set.
Alternative optimizers, such as stochastic gradient descent (SGD),
RMSprop, or Adagrad, could also be considered. However, Adam is
particularly suitable for this setting due to its ability to handle sparse
gradients and adaptively adjust learning rates, making it robust and
effective for complex models like DNNs.

Additionally, we incorporated an early stopping mechanism
that monitors validation accuracy and halts training if no significant
improvement occurs within 80 consecutive epochs, thus conserving
computational resources and preventing overfitting. For model
evaluation, we utilized various performance metrics, including
accuracy, precision (positive predictive value), recall (sensitivity),
and the area under the ROC curve (AUC), which collectively
reflect the classification performance. The optimal classification
threshold was determined via the Yuden index, which accounts for
sensitivity and specificity to establish the best decision boundary.
All the statistical analyses were performed via SPSS (version 26)
and Python (version 3.8.0), with two-tailed p values; a p value of
less than 0.05 was considered to indicate significance.

The deep learning model was interpreted utilizing Python’s
SHAP module (version 0.38.1). The SHAP plots functioned as a
crucial resource for understanding machine learning models (30).
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FIGURE 2

The structure of the DNN model for outcome classification. The circles represent neurons. DNN, sdeep neural network.

In these plots, the width of the horizontal axis linked to each
variable denoted its impact on the outcome, while the dot colors
illustrated the strength of that influence. This methodological
framework establishes a solid foundation for developing and
evaluating deep learning models, ensuring the reliability and
validity of the findings.

2.4 Computational implementation

The model was trained on a laptop (Intel Core i7-13700H,
16GB RAM; NVIDIA GeForce RTX 4060 GPU) using TensorFlow
with CUDA 12.7 acceleration. Dynamic GPU memory allocation,
batch processing (64 samples/batch), and early stopping
(patience = 80 epochs) enabled efficient training, completing
200 epochs in approximately 6.6 h with modest resource utilization
(peak VRAM: 1.1GB/8GB)

3 Results

3.1 Patient characteristics

The study analyzed 3,000 individuals diagnosed with diabetes,
consisting of 1,500 with diabetes alone and 1,500 with diabetes
accompanied by retinopathy. The DCDS dataset included 88
variables; independent samples were assessed via chi-square tests
and t tests. Significant differences were identified across most
variables, except for SEX, NATION, MARITAL_STATUS, BUN,
CP, and INS. The baseline characteristics of all participants are
presented in Table 1.

Patients with diabetes and retinopathy were younger
(56.59 ± 10.94 vs. 58.99 ± 11.24 years), had higher hemoglobin A1c
(HBA1C) levels (8.15 ± 1.87 vs. 7.44 ± 1.52), lower hemoglobin

levels (HB) (127.11 ± 23.83 vs. 136.30 ± 21.44), and a higher
proportion of nephropathy (60.20% vs. 24.90%). More of these
patients had lower extremity atherosclerotic disease with diabetic
peripheral polyneuropathy (LEADDP) (23.80% vs. 7.90%) and
hematonosis (21.80% vs. 7.80%). Conversely, these patients had
lower incidences of myocardial infarction (MI) (4.50% vs. 8.20%),
hyperlipidemia (16.60% vs. 27.10%), and coronary heart disease
(CHD) (24.90% vs. 40.70%). In addition, the levels of albumin
(ALB), alanine aminotransferase (ALT), aspartate aminotransferase
(AST), gamma-glutamyl transferase (GGT), alkaline phosphatase
(ALP) and activated partial thromboplastin time (APTT) were
lower in the retinopathy group than in the diabetes alone group.

3.2 Results of the DNN prediction model

Figure 3 shows the changes in DNN accuracy, precision, recall,
and loss during training and validation. The DNN demonstrated
significant improvements across key performance metrics
throughout the training process, evaluated in accordance with the
standardized indices for ophthalmic AI models (e.g., sensitivity,
specificity, AUC) recommended by the Guidelines on clinical
research evaluation of artificial intelligence in ophthalmology
(2023) (31).

Training accuracy, precision, and recall were calculated using
the formulae defined in Section “Commonly-used indices and
formulae for ophthalmic artificial intelligence diagnostic model
evaluation” of the Guidelines (31), highlighting the model’s
ability to learn effectively from the training dataset and capture
underlying patterns. Validation accuracy followed a similar trend,
plateauing slightly earlier than training accuracy and remaining
marginally lower, indicating strong generalization with minimal
overfitting. Similarly, validation precision closely mirrored the
steady improvement observed in training precision, suggesting
the model’s effectiveness in minimizing false positives across
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TABLE 1 Baseline characteristics of the study participants in diabetes alone and diabetes with retinopathy groups.

Variables Presence of diabetes with retinopathy Variables Presence of diabetes with retinopathy

No
(n = 1,500)

Yes
(n = 1,500)

p-value No
(n = 1,500)

Yes
(n = 1,500)

p-value

AGE 58.99 ± 11.24 56.59 ± 10.94 < 0.001 IBILI 7.84 ± 5.13 7.03 ± 3.88 < 0.001

BP_HIGH 135.00 ± 19.92 142.36 ± 21.42 < 0.001 GLO 26.45 ± 4.95 25.74 ± 4.81 < 0.001

BP_LOW 78.96 ± 11.88 81.97 ± 11.81 < 0.001 CHD < 0.001

GLU 8.20 ± 3.69 8.69 ± 4.08 0.001 No 1126 (75.10) 889 (59.30)

HBA1C 7.44 ± 1.52 8.15 ± 1.87 < 0.001 Yes 374 (24.90) 611 (40.70)

TC 4.48 ± 1.31 4.75 ± 1.51 < 0.001 MI < 0.001

LDL_C 2.73 ± 1.02 2.97 ± 1.24 < 0.001 No 1433 (95.50) 1377 (91.80)

FBG 6.45 ± 35.48 9.32 ± 41.56 0.043 Yes 67 (4.50) 123 (8.20)

BU 6.04 ± 3.68 8.19 ± 5.78 < 0.001 LEADDP < 0.001

SCR 85.24 ± 89.99 127.93 ± 139.18 < 0.001 No 1143 (76.20) 1381 (92.10)

HB 136.30 ± 21.44 127.11 ± 23.83 < 0.001 Yes 357 (23.80) 119 (7.90)

PCV 0.40 ± 0.06 0.37 ± 0.07 < 0.001 HEMATONOSIS < 0.001

TBILI 12.19 ± 15.52 9.77 ± 5.35 < 0.001 No 1173 (78.20) 1383 (92.20)

DBILI 4.35 ± 12.40 2.73 ± 1.86 < 0.001 Yes 327 (21.80) 117 (7.80)

TP 67.31 ± 6.57 63.66 ± 7.84 < 0.001 RHEUMATIC_
IMMUNITY

0.004

ALB 40.85 ± 5.15 37.92 ± 6.20 < 0.001 No 1463 (97.50) 1434 (95.60)

ALT 27.56 ± 35.44 20.54 ± 15.50 < 0.001 Yes 37 (2.50) 66 (4.40)

AST 22.87 ± 30.01 17.81 ± 9.55 < 0.001 ENDOCRINE_
DISEASE

< 0.001

GGT 50.39 ± 86.79 34.81 ± 47.90 < 0.001 No 896 (59.70) 1102 (73.50)

ALP 77.65 ± 55.85 72.72 ± 31.56 0.003 Yes 604 (40.30) 398 (26.50)

APTT 36.96 ± 8.56 36.42 ± 5.19 0.036 MEN 0.031

HYPERTENSION < 0.001 No 1457 (97.10) 1435 (95.70)

No 407 (27.10) 547 (36.50) Yes 43 (2.90) 65 (4.30)

Yes 1093 (72.90) 953 (63.50) DIGESTIVE_
CARCINOMA

< 0.001

HYPERLIPIDEMIA < 0.001 No 1466 (97.70) 1381 (92.10)

No 1251 (83.40) 1093 (72.90) Yes 34 (2.30) 119 (7.90)

Yes 249 (16.60) 407 (27.10) UROLOGIC_
NEOPLASMS

0.019

CEREBRAL_
APOPLEXTY

< 0.001 No 1491 (99.40) 1478 (98.50)

No 1352 (90.10) 1424 (94.90) Yes 9 (0.60) 22 (1.50)

Yes 148 (9.90) 76 (5.10) GYNECOLGICAL_
TUMOR

< 0.001

FLD 0.013 No 1470 (98.00) 1431 (95.40)

No 1000 (66.70) 1063 (70.90) Yes 30 (2.00) 69 (4.60)

Yes 500 (33.30) 437 (29.10) LUNG_TUMOR < 0.001

NEPHROPATHY < 0.001 No 1491 (99.40) 1454 (96.90)

No 597 (39.80) 1126 (75.10) Yes 9 (0.60) 46 (3.10)

Yes 903 (60.20) 374 (24.90) OTHER_TUMOR < 0.001

RENAL_FALIURE < 0.001 No 1427 (95.10) 1327 (88.50)

No 1341 (89.40) 1476 (98.40) Yes 73 (4.90) 173 (11.50)

Yes 159 (10.60) 24 (1.60)

BP, blood pressure; GLU, glucose; HBA1C, hemoglobin A1c; TC, total cholesterol; LDL_C, low-density lipoprotein cholesterol; FBG, fasting blood glucose; BU, blood urea; SCR, serum
creatinine; HB, hemoglobin levels; PCV, packed cell volume; TBILI, total bilirubin; DBILI, direct bilirubin; TP, total protein; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, gamma–glutamyl transferase; ALP, alkaline phosphatase; APTT, activated partial thrombin time; IBILI, indirect bilirubin; FLD, fatty liver disease; IBILI, indirect
bilirubin; GLO, globulin; CHD, coronary heart disease; MI, myocardial infarction; LEADDP, lower extremity disease of diabetes patients; MEN, multiple endocrine neoplasia.
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FIGURE 3

Changes in the accuracy, precision, recall, and loss of the DNN during training and validation. (A) training and validation accuracy, (B) training and
validation precision, (C) training and validation recall, and (D) training and validation loss.

both datasets. Regarding recall, the training recall showed a
continuous upward trajectory, demonstrating the model’s capacity
to capture true positives. Validation recall showed improvement
overall. However, slight fluctuations occurred in later epochs. These
may reflect variations in unseen data distribution or possible
class imbalances. Regarding loss, training loss steadily decreased
throughout the process, reflecting the model’s efficiency in learning
from the data, whereas validation loss dropped sharply in the early
epochs before stabilizing, signifying strong generalization during
the initial stages and the model’s ability to avoid overfitting.

These comparisons highlight the consistency between training
and validation trends across all metrics, emphasizing the DNN’s
reliability in predicting unseen data. The model successfully
balanced effective learning from the training data with robust
performance on the validation set, underscoring its ability

to achieve generalizable and reliable predictions. This balance
between learning and generalization, evident across all four metrics,
demonstrates the robustness of the DNN in achieving stable and
accurate performance.

3.3 Comparison of model for outcome
prediction

Five traditional machine learning models were employed
to evaluate performance, each with distinct characteristics and
applications. Logistic regression (LR) is a statistical method widely
used for binary classification tasks, modeling the relationship
between features and class probabilities through a sigmoid function
(28). Decision trees (DT) construct a flowchart-like structure
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where decisions are made at nodes based on feature values,
offering interpretability and flexibility in handling diverse data
types (32). Naive Bayes (NB) is a probabilistic classifier based
on Bayes’ theorem that assumes independence among features
and is effective for tasks like text classification (33). Random
forest (RF), an ensemble learning method, combines multiple
decision trees to improve accuracy and robustness by aggregating
their predictions (34). Support vector machines (SVM) identify
an optimal hyperplane to separate classes, excelling in high-
dimensional datasets and adaptable for nonlinear problems with
kernel functions (35). These models provide a comprehensive
baseline for performance evaluation in machine learning tasks.
All the traditional models were implemented in Python (version
3.8.0). The scikit-learn library (version 0.24.2) of the Python
machine learning package was used for RF, LR, DT, NB, and
SVM. The TensorFlow library (version 2.5.0) was used for the
DNN. The model training and prediction processes were completed
with the Python (version 3.8.0), with all data processing steps
handled via the pandas library (version 1.1.5) and NumPy library
(version 1.19.5).

Tables 2, 3 show the evaluation results of each model. The
DNN model consistently outperformed the other models across
all datasets and metrics, meeting the criteria for “referable diabetic
retinopathy prediction models” as defined in the Guidelines
(section “Evaluation of ophthalmic artificial intelligence prediction
models”) (31). The differences were significant for all datasets
(p < 0.05) in the ROC curve comparisons. Regarding overall
prediction, the DNN model performed 0.769 or better in the
diabetic group with or without retinopathy (accuracy, 0.778;
precision, 0.783; recall, 0.769; F1 score, 0.776; AUC, 0.833),
outperforming most traditional machine learning models. This
high level of accuracy suggests that the DNN is highly effective
at managing complex features and nonlinear patterns, particularly
when working with large datasets and high-dimensional inputs.

Figure 4 compares the ROC curves of all the models across the
dataset, highlighting that the DNN model’s curve was consistently
above the others (AUC: 0.833 for DNN, 0.822 for LR, 0.631 for
DT, 0.769 for NB, 0.829 for RF, and 0.831 for SVM), demonstrating
superior performance (Table 3). The AUC of 0.833 falls within the
performance range as defined by the Guidelines (31). Conversely,
models such as SVM and DT display flatter curves, underscoring
their limitations in capturing complex nonlinear relationships.

3.4 Assessment and interpretation of the
models

The SHAP analysis was employed to interpret the model’s
predictions, aligning with the Guidelines’ emphasis on model
interpretability evaluation (section “Evaluation of artificial
intelligence model development in ophthalmology”) (31).
As shown in Figure 5, the results revealed that HbA1c
and nephropathy were the most significant predictors, with
SHAP values validated against clinical reference standards for
feature importance in diabetic retinopathy. Cardiovascular-
related features, such as CHD, LEADDP, and BP_HIGH, also
demonstrated substantial contributions, aligning with clinical
evidence that links cardiovascular health to diabetic complications T
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TABLE 3 Comparative performance of DNN, LR, DT, NB, RF, and SVM for overall prediction.

Variable DNN LR DT NB RF SVM

Accuracy 0.778 0.753 0.630 0.718 0.758 0.776

Precision 0.783 0.761 0.571 0.710 0.767 0.776

Recall 0.769 0.741 0.636 0.738 0.743 0.776

F1 Score 0.776 0.751 0.602 0.724 0.755 0.776

AUC 0.833 0.822 0.631 0.769 0.829 0.831

AUC, area under the curve; DNN, deep neural network; LR, logistic regression; DT, decision tree; NB, naive Bayes; RF, random forest; SVM, support vector machine. p < 0.05 for both groups.

FIGURE 4

Comparison of ROC curves. (A) DNN, (B) LR, (C) DT, (D) NB, (E) RF, (F) SVM. ROC: receiver operating characteristic, DNN: deep neural network, LR:
logistic regression, DT: decision tree, NB: naive Bayes, RF: random forest, SVM: support vector machine, AUC: area under the curve.

(36–38). Additionally, features like age, TP, and hyperlipidemia
showed moderate influences, further enriching the model’s
predictive capability. Figure 6 illustrates the SHAP dependence
plots, which highlighted non-linear relationships, such as the
impact of age on complication risk, while individual force
plots provided transparent explanations for specific predictions.
Overall, the SHAP analysis not only validated the model’s
alignment with established clinical knowledge but also enhanced
its interpretability, offering valuable insights into the key drivers
of diabetic complications and supporting its potential for clinical
decision-making.

4 Discussion

In this retrospective cohort study based on the Diabetes
Complications dataset, we developed a deep learning model to
evaluate the future risk of diabetes and diabetic retinopathy

and compared its performance with that of traditional statistical
models. To our knowledge, this is the first study using deep
learning to predict both diabetes and its associated retinopathy
complications in a real-world context. We observed that the deep
learning model outperformed five conventional machine learning
methods across all classification tasks according to five commonly
used evaluation metrics.

As one of the most prevalent microvascular complications, DR
affects visual function in 14.77% to 22.43% of diabetic individuals
in China (39). The pressing need to offer targeted advice on
preventing and managing DR underscores the importance of
examining the factors contributing to its occurrence. Numerous
studies have explored the risk factors for DR across various
populations and clinical samples (40–43). As demonstrated by
previous research, the complexity of DR arises from various
factors influencing both diabetes and DR development, such
as the duration of diabetes, blood glucose levels, HbA1c, and
hypertension (43, 44). These factors align with our study’s findings,
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FIGURE 5

SHAP Feature Importance Map. SHAP values of each feature on the diabetes complications prediction model are shown, with features listed in
descending order of importance. The horizontal coordinate is the SHAP value, which indicates the effect of the feature on the model output
(positive values indicate a positive effect and negative values indicate a negative effect); the vertical coordinate is the name of the feature.

as significant differences were identified between diabetic patients
with and without retinopathy regarding key variables such as
HbA1c levels, blood pressure, and nephropathy rates (Table 1).
The statistical analyses performed on the DCDS data using chi-
square tests and independent samples t-tests provided robust
evidence supporting these associations. Moreover, our DNN-based
predictive model for DR leveraged these and other variables
to effectively extract complex patterns and enhance prediction
accuracy, demonstrating the relevance of these factors in both
statistical and machine-learning contexts. This integrated approach
underscores the importance of combining traditional statistical
methods with advanced machine learning techniques to deepen
our understanding of DR’s multifactorial nature. Studies such
as those by Oh et al. showed that the LASSO model achieved
an AUC of 81%, surpassing traditional metrics such as fasting
glucose (AUC 54%) and glycosylated hemoglobin (AUC 69%) for
diagnosing DR (45). Additionally, by comparing multiple machine
learning algorithms, Tsao et al. identified insulin use and diabetes
duration as key factors in determining high-risk patients for DR
(42).

Given the numerous variables that contribute to DR
occurrence, a substantial sample size is necessary to analyze
risk factors thoroughly and build accurate predictive models.
Deep neural networks are advantageous over traditional machine

learning algorithms when dealing with large data sets and high-
dimensional data. For example, logistic regression, a linear model,
is prone to distortions in weight estimation when independent
variables are highly correlated (46). On the other hand, the
XGBoost algorithm, based on decision trees, is a nonparametric
estimation method and does not suffer from the same issue,
although its predictive performance is typically inferior to that of
deep neural networks (47).

The rapid accumulation of extensive medical datasets has
been fueled by the establishment of large-scale cohort studies
involving tens of thousands to millions of participants worldwide.
These datasets offer powerful opportunities to address complex
health questions beyond the limitations of traditional clinical
and observational research. Their vastness and ease of processing
critical information, such as mortality rates and disease registries,
enable the identification of previously unknown risk factors and
statistically significant associations with disease incidence (48–
50). For this study, such advantages guided the choice of the
PHDA as the data source. Its comprehensive and high-quality
datasets, designed to reflect real-world conditions, were particularly
suited to exploring diabetes and its complications. This alignment
between the PHDA’s focus and the study objectives ensured the
robustness and applicability of the findings, providing a meaningful
foundation for our analyses.
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FIGURE 6

Results of SHAP analysis. (A) SHAP feature importance plot: demonstrates the mean SHAP value [mean(|SHAP value|)] of each feature for the diabetes
complications prediction model. (B) SHAP dependency plot: demonstrates the relationship between AGE (age) and SHAP value, indicating that the
effect of age on the risk of diabetic complications is nonlinearly distributed. (C) SHAP force diagram: demonstrates the interpretation of SHAP values
for a sample of individuals. A base value of 0.5 indicates the default predictive probability of the model in the absence of feature information.

Additionally, the advent of machine learning has addressed
the shortcomings of conventional risk prediction methods that
rely on traditional regression analysis (51). Unsupervised deep
learning models identify relevant patterns through weight and
bias adjustments. This process occurs automatically, enabling
detection of subtle patterns. Such patterns might escape
notice in conventional human analysis. These models have
the computational power to simultaneously evaluate a broad
range of variables. Our DNN model utilized a straightforward
architecture with two hidden layers, yet achieved clinically
meaningful performance (AUC = 0.833) in predicting diabetic
retinopathy risk. The model’s strength lies in its ability to integrate
routinely collected clinical variables into an automated screening
tool, facilitating early detection of high-risk patients through
pattern recognition that surpasses conventional prediction
methods. While this demonstrates the potential for improved
risk stratification, future studies should explore more diverse
deep-learning architectures to further optimize predictive accuracy
and enable personalized treatment strategies.

Future efforts should aim to enhance model performance
and interpretability by improving dataset diversity to ensure
generalizability across different populations, incorporating
interpretable elements into deep learning architectures to support
clinical decision-making, and establishing mechanisms that allow
the model to dynamically update as clinical practice patterns
evolve. These strategies would help address current limitations
while maintaining the model’s strong predictive capacity.

5 Study limitations

Our study’s findings should be interpreted considering
several potential limitations. First, while our dataset specifically
identified DR cases, it did not stratify by clinical severity
stages (e.g., nonproliferative vs. proliferative DR) or distinguish
referable/vision-threatening DR [as defined by international
standards (52)]. This may affect the clinical interpretability of
predictions, as the model treats all DR cases as a homogeneous
group despite varying intervention needs.

We did not perform external validation to assess the
reproducibility or generalizability of our results. While the
individual cohorts were validated by dividing them into
development and validation datasets, prediction accuracy may still
decline when applying the model to cohorts from diverse regions,
ethnicities, countries, or healthcare settings. Future studies should
prioritize external validation using multicenter datasets to address
this challenge, ensuring broader applicability and reliability across
varying contexts.

Next, since the specific risk factors contributing to the events
remain unidentified, concrete recommendations for managing
these factors are currently infeasible. Future research should
explore hybrid approaches that integrate interpretable models with
deep learning techniques, allowing for a balance between prediction
accuracy and the identification of actionable risk factors. These
approaches could help tailor interventions and improve outcomes
in real-world applications.
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Third, while internal validation showed promising results, the
model requires external validation using independent datasets from
diverse healthcare settings to confirm generalizability.

Finally, as the training data were derived from a single
national registry, the model’s performance may vary when applied
to populations with different demographic characteristics or
healthcare practice patterns. Additionally, the lack of granular
DR staging data limits the model’s utility for triaging patients
by clinical urgency. Future studies should validate these findings
across multiple regions and healthcare systems while incorporating
standardized DR severity classifications.

6 Conclusion

DR, a major microvascular complication of DM, presents
considerable challenges for early detection and effective
management, particularly due to the limitations of traditional
screening methods. By leveraging advanced machine learning
techniques on high-quality big data, we demonstrated that a
DNN-based approach significantly outperforms five conventional
statistical methods in predicting retinopathy among diabetic
patients. Future studies should focus on developing predictive
models with diverse deep-learning techniques. These models can
accurately identify diabetic retinopathy cases. Such capability will
enable personalized treatments and optimal resource allocation for
high-risk patients.
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