AUTHOR=Gong Weijun , Pu You , Ning Tiao , Zhu Yan , Mu Gui , Li Jing TITLE=Deep learning for enhanced prediction of diabetic retinopathy: a comparative study on the diabetes complications data set JOURNAL=Frontiers in Medicine VOLUME=Volume 12 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1591832 DOI=10.3389/fmed.2025.1591832 ISSN=2296-858X ABSTRACT=BackgroundDiabetic retinopathy (DR) screening faces critical challenges in early detection due to its asymptomatic onset and the limitations of conventional prediction models. While existing studies predominantly focus on image-based AI diagnosis, there is a pressing need for accurate risk prediction using structured clinical data. The purpose of this study was to develop, compare, and validate models for predicting retinopathy in diabetic patients via five traditional statistical models and deep learning models.MethodsOn the basis of 3,000 data points from the Diabetes Complications Data Set of the National Center for Population Health Sciences Data, the differences in the characteristics of patients with diabetes mellitus and diabetes combined with retinopathy were statistically analyzed using SPSS software. Five traditional machine learning models and a model based on deep neural networks (DNNs) were used to train models to assess retinopathy in diabetic patients.ResultsDeep learning-based prediction models outperformed traditional machine learning models, namely logistic regression, decision tree, naive Bayes, random forest, and support vector machine, on all the datasets and performed better in predicting retinopathy in diabetic patients (accuracy, 0.778 vs. 0.753, 0.630, 0.718, 0.758, 0.776, respectively; F1 score, 0.776 vs. 0.751, 0.602, 0.724, 0.755, 0.776, respectively; AUC, 0.833 vs. 0.822, 0.631, 0.769, 0.829, 0.831, respectively). To enhance the interpretability of the deep learning model, SHAP analysis was employed to assess feature importance and provide insights into the key drivers of retinopathy prediction.ConclusionDeep learning models can accurately predict retinopathy in diabetic patients. The findings of this study can be used for prevention and monitoring by allocating resources to high-risk patients.