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Advances in ocular aging:
combining deep learning,
imaging, and liquid biopsy
biomarkers
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Ageing is a significant risk factor for a wide range of human diseases. Yet, its
direct relationship with ocular ageing as a marker for overall age-related diseases
and mortality still needs to be explored. Non-invasive and minimally invasive
methods, including biomarkers detected through ocular imaging or liquid
biopsies from the aqueous humour or vitreous body, provide a promising avenue
for assessing ocular ageing. These approaches are particularly valuable given the
eye’'s limited regenerative capacity, where tissue damage can result in irreversible
harm. In recent years, artificial intelligence (Al), particularly deep learning, has
revolutionized medical research, offering novel perspectives on the ageing
process. This review highlights how integrating deep learning with advanced
imaging and liquid biopsy biomarkers has become a transformative approach
to understanding ocular ageing and its implications for systemic health.
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1 Introduction

Ocular aging constitutes a multifaceted and intricate process, entailing a successive
cascade of structural and functional metamorphoses. Ocular aging is not the same as the
aging or biological age of other organs. In the anterior segment, the cornea undergoes
alterations such as a diminution in endothelial cell density and a perturbation in collagen
fibril organization, which potentially culminate in impairments to corneal transparency
and refractive power. Scholarly investigations have divulged that, after 40, the corneal
endothelial cell density wanes slowly (1). Likewise, succumbing to the inexorable passage of
time, the lens accrues crystalline and other proteins, precipitating cataract formation and
a consequent loss of accommodative faculty. By the age of 80, over half of the populace
will have manifested cataracts to some degree (2). In the posterior segment, the retina
and choroid encounter their own set of tribulations. The retinal pigment epithelium
progressively forfeits its efficacy in phagocytosing photoreceptor outer segments, while
the choroid attenuates and its vascular supply becomes less efficient, both of which can
undermine retinal function and visual acuity (3).

The advent of deep-learning imaging has instigated a revolutionary transformation
within the realm of ophthalmology. By capitalizing on the potency of convolutional
neural networks and other advanced machine learning architectures, extracting exquisitely
intricate details from ocular images has become feasible. High-resolution optical coherence
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tomography (OCT) images can now be dissected to unearth
minuscule changes in retinal layer thicknesses, microstructural
irregularities, and even incipient signs of macular degeneration.
When applied to OCT images, DL algorithms could detect
early signs of macular degeneration with an accuracy surpassing
80%, which has been convincingly demonstrated (4). When
amalgamated with deep learning algorithms, fundus photography
can identify fine vascular alterations and patterns that correlate
with ocular aging and disease progression. This technological
innovation not only augments the sensitivity and specificity of
diagnosis but also facilitates the earlier detection of latent problems,
potentially paving the way for more opportune interventions.

Concomitant with this imaging revolution, liquid biopsy
biomarkers have emerged as a highly promising avenue in ocular
aging research. Bodily fluids like blood and aqueous humor harbor
a cornucopia of biomolecules that can serve as proxies for the
physiological state of the eye. Proteins, whether secreted or shed
from cells, can also mirror changes in ocular tissue metabolism and
inflammation. In a recent proteomics study, researchers ascertained
that proteins in the aqueous humor could prognosticate ocular
aging, and patients afflicted with certain eye diseases exhibited
proteins that signified a markedly higher age compared to healthy
individuals (5). By dissecting these biomarkers, we can plumb
the depths of the molecular underpinnings of ocular aging and
potentially identify novel therapeutic targets.

The integration of deep learning imaging and liquid biopsy
biomarkers epitomizes a paradigm shift in ocular aging research.
On one hand, deep learning imaging can orchestrate the sampling
of body fluids by precisely pinpointing areas of concern within the
eye. When a deep learning model discerns a suspicious region in
the retina, it can prompt the collection of aqueous humor from the
corresponding area to search for relevant biomarkers. On the other
hand, biomarker data can be fed back into the deep learning models
to augment their predictive capabilities. If a particular biomarker
is associated with a certain aging or disease phenotype, the model
can be trained to recognize the imaging features that accompany
it. This symbiotic relationship between the two approaches has the
potential to unlock novel diagnosis strategies, which is precisely
the motivation underpinning this comprehensive exploration of the
advances in this integrated field.

2 Application of deep learning in
anterior segment aging

2.1 Deep learning in ocular anterior
segment aging

Many anterior segment ocular diseases are closely associated
with the aging process. Deep learning technology has been

Abbreviations: CNN, convolutional neural network; GNN, graph neural
network; AD, Alzheimer's disease; TRT, retinal thickness; AMD, age-related
macular degeneration; CKD, chronic kidney disease; CVD, cardiovascular
disease; DL, deep learning; DR, diabetic retinopathy; FD, fractal dimension;
Cl, cognitive impairment; MCI, mild cognitive impairment; MetS, metabolic
syndrome; OCT, Optical coherence tomography; OCTA, OCT angiography;
PD, Parkinson’s disease; RNFL, retinal nerve fiber layer; RPE, retinal pigment
epithelium; DCP, deep capillary plexus; SCP, superficial capillary plexus.
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harnessed to engineer automated diagnostic systems, such as
feature extraction and classification networks predicated on deep
learning architectures, for the identification and management of
anterior segment diseases. An age prediction model was erected
based on a copious quantity of correlated features gauged by
an anterior segment analyzer. Subsequently, three DL modalities
(neural network, Lasso regression, and extreme gradient boosting)
were employed to unearth the alterations in the estimated actual
age contingent upon anterior segment morphology (6).

Deep learning has become a leading sentinel in diagnosing
diseases. Deep learning models have been enlisted to automatically
assimilate and appraise the severity of cataract. The automatic
grading of nuclear cataracts has been actualized by meticulously
scrutinizing anterior segment images. A hybrid global-local
representation convolutional neural network (CNN) model based
on DL principles has been devised for the automated categorization
of cataracts (7) (Figure 1). In addition, deep learning also has
strong performance in identifying degenerative keratopathy such
as corneal rings, and the proposed model achieves 100% accuracy
in identifying ocular images into normal and AS categories by using
AlexNet as a pre-trained network for transfer learning (8).

Al has increasingly been used in the assessment of the
anterior segment, precision in anterior chamber and iris tissue
measurements (9) (Figure 1). Presbyopia, a typical vision
impairment caused by aging, has an insidious onset but a
widespread impact. Deep learning models integrate anterior
segment biometric data, including dynamic parameters such as
lens elastic modulus and ciliary muscle contraction amplitude (10)
(Figure 1). Pterygium is an ocular surface disease induced by
the synergistic effect of long-term ultraviolet radiation, wind and
sand stimulation and aging, which affects the microenvironment
of limbal stem cells, which may lead to damage to limbal stem
cells (11). In recent years, the three types of intelligent lightweight
auxiliary pterygium diagnostic models using the MobileNet model
combined with anterior segment images have greatly improved the
sensitivity and specificity of disease diagnosis (12).

2.2 Ocular surface biomarkers associated
with aging

A novel category of non-invasive visual aging biomarkers,
namely PhotoAgeClock, which solely employs anonymous images
of the eye corners, has ascertained that high-resolution imagery
proves to be highly advantageous when estimating age from
facial images. Notably, wrinkles and skin pigmentation have
emerged as dependable non-invasive visual biomarkers of aging,
thereby endowing them with the potential resource for discerning
the condition and health status of the human body. When
PhotoAgeClock was harnessed for age prediction on an anonymous
image dataset, it was unveiled that, compared to other regions
within the surveyed images, the skin encircling the eyes as the area
exhibiting the highest correlation with age (13).

Another important point is the tear, which contains many
proteins, cytokines, and other substances that participate in the
regulation of the function and metabolism of various cells in the
eye, and then reflect the pathophysiological state of the individual,
which has a certain role in predicting aging (14). In tear samples,
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Retinal imaging techniques such as OCT (optical coherence tomography), OCTA (optical coherence tomography angiography), and RNFL (retinal
nerve fiber layer) are combined with deep learning algorithms to analyze eye conditions. The process involves identifying cataracts, pterygium, and
arcus senilis, and calculating a Reti-aging score using multimodal analysis. Additionally, it aids in screening and identifying conditions like
age-related macular degeneration (AMD), Parkinson’s disease (PD), and cognitive impairment (Cl)

the levels of some inflammatory factors, such as MCP-1 and IL-
6, were positively correlated with the incidence of age-related
diseases such as cataracts (15). Tear-related proteomics showed
a high correlation with age, with seventeen tear proteins that
showed a significant correlation with age, including cytoplasmic
actin (ACTB and ACTGI1), albumin (ALB), and annexin Al
(ANXA1), which were positively associated. Additionally, proteins
such as ubiquitin-like modification-activating enzyme 1 (UBA1)
and Golgi membrane protein 1 (GOLMI1) were identified.
Furthermore, some transcriptional regulators, including the
activation of NF-kB, are observed in the tears and aging ocular
surface (16).

In addition, the expression levels of p16INK4a and p21CIP1
in senescent corneal cells increased with age. These factors
are often associated with cell cycle arrest and are important
markers of cellular senescence. Senescent corneal cells secrete a
variety of pro-inflammatory factors such as IL-6, IL-18, MMP-
3, MMP-9, and TNF-a. Increased secretion of these factors is
associated with an ocular inflammatory response, which may
lead to inflammation and dysfunction of the corneal surface.
The study found that aging corneal cells secreted GDFI15
increased, while LTBP3 levels decreased. This alteration may lead
to the activation of TGF-f, which in turn triggers a cascade
of cellular senescence-related responses, such as the activation
of NF-kB and secondary cellular senescence, exacerbating the
inflammatory response. Senescent corneal cells exhibit features of
increased keratinization and decreased neurophenotyping. This
may indicate that keratinization and neural phenotype-associated
proteins are involved in corneal cell differentiation and functional
alterations, affecting the normal physiological function of the
cornea (17).
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3 Application of deep learning to
aging retinal images in the fundus

3.1 Identification and diagnosis related to
aging diseases

Deep learning technology has been extensively deployed to
automatically identify and classify retinal aging-related ailments,
such as diabetic retinopathy (DR) and age-related macular
degeneration (AMD). These advanced technologies possess the
prowess to autonomously categorize pathologies and diseases
manifesting in retinal images, thereby remarkably augmenting
the efficiency of early diagnosis and impeding the progression
of diseases. The application of transfer learning in the automatic
classification of retinal images has also been the subject of extensive
research. By fine-tuning pre-trained models on large-scale image
classification datasets like VGG, InceptionV3, MobileNetV2,
ShuffleNetV2, and GAN, OCT retinal images can be efficaciously
categorized, enabling the automatic classification and diagnosis of
diabetic macular edema, age-related macular degeneration (18, 19).

Yow et al. suggested a new methodology aimed at
differentiating the retinal vascular and neuronal elements in
the retinal nerve fiber layer (RNFL) for thickness assessment.
This is achieved by effectively integrating structural and vascular
data obtained from OCT and OCT angiography (OCTA) images
(Figure 1). The method utilizes the segmented RNFL from
cross-sectional OCT imaging alongside blood flow information
from enface OCTA imaging to accurately determine the positions
of major vessels and microvasculature in both lateral and axial
dimensions. Furthermore, an analysis of RNFL thickness in
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relation to the vessel proportion revealed a notable relationship
between thickness and age (20).

As we age, the thickness of the RNFL usually becomes
progressively thinner. This change may be related to the natural
aging and apoptosis of retinal ganglion cells, resulting in a decrease
in the number of nerve fibers, which in turn thins the RNFL
(Figure 1). Thinning of the RNFL may affect the function of the
optic nerve, leading to problems such as vision loss and visual
field defects, which is an important factor in visual dysfunction
during aging. Age is inversely correlated with vascular density in
the macula. As individuals age, there is a reduction in the vascular
density of the deep capillary plexus (DCP) and the superficial
capillary plexus (SCP) within the macula (21). Moreover, it was
generally observed that when all detected vessels were excluded, the
average thickness profiles along the micropapillary RNFL in healthy
subjects exhibited a lower absolute variability. This innovative
approach potentially holds the key to enhancing the precision of
diagnostics and the enhancement of identifying and measuring
neuronal and vascular degeneration in individuals suffering from
eye-related conditions like glaucoma and diabetic retinopathy (20).

In studies where convolutional neural networks (CNN)
were amalgamated with OCTA, it was established that retinal
vascular density and fractal dimension (FD) were correlated with
event mortality. Particularly in patients with type 2 diabetes or
hypertension, low FD and vascular density were conspicuously
related with a higher likelihood of prevalent and incident
cardiometabolic phenotypes (22). Furthermore, a reduction in the
density of retinal blood vessels was notably linked to both overall
mortality and premature death. A research project utilizing the UK
Biobank database discovered that a reduction in retinal vascular
density was notably linked to both overall mortality and early
death, even after considering demographic, health, and lifestyle
variables (23). There exists a significant association between the
retinal vasculature system and both systemic and ocular diseases,
encompassing aging-related diseases such as myopia, age-related
macular degeneration, retinal detachment, glaucoma, and cataracts
(Figure 1).

3.2 Application of multimodal analysis in
fundus aging prediction

Multimodal data fusion is an important development direction
for the diagnosis of retinal aging. By combining multiple imaging
modalities such as OCT and fundus images, deep learning models
can more comprehensively assess the aging status of the retina and
improve the accuracy of diagnosis. Multimodal imaging technology
can achieve the fusion of OCT and fundus images, and OCT
can provide high-distinguishability cross-sectional images of the
retina, revealing subtle structural changes in the retinal layer.
Fundus images, on the other hand, can visualize the overall
morphology and vascular distribution of the retina. Combining
these two imaging modalities, the deep learning model can more
comprehensively identify the features of retinal aging.

Multimodal
techniques (fundus images, OCT, OCTA, etc.) can provide richer

analysis combined with multiple imaging

information for predicting biological age and assessing the risk
of aging-related diseases. For example, one study developed a
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Transformer-based multimodal architecture to estimate biological
age by integrating images of the face, fundus, and tongue. The
results suggest that the fusion of multiple image modalities can
achieve more accurate biological age prediction and the variance
between biological age and chronological age (AgeDiff) may serve
as a promising biomarker for the stratification of chronic disease
risk (24). In one study, VisionFM is a multimodal, multitasking,
vision-based model capable of handling multiple aging-related
ophthalmic diseases and imaging modalities. The model excels in a
variety of fundus disease diagnoses, including DR and AMD, and
can predict glaucoma progression and the presence of intracranial
tumors from fundus images (24). In addition, retinal vein occlusion
is a retinal vascular disease associated with vascular degeneration
and dysfunction. A research effort created a deep learning model
that utilizes multiple modalities to predict branching retinal vein
occlusion (BRVO) by integrating fundus images with features of
retinal vasculature. The model significantly improved prediction
accuracy by analyzing the retinal vascular structure (25) (Figure 1).

Deep learning models can also be used to predict vascular
aging from retinal fundus images related to retinal aging closely.
Prediction of vascular aging involves utilizing deep learning
models to assess vascular aging based on retinal fundus
images. Combined with clinical parameters for training, the
model shows high potential in identifying new hypertension
and carotid plaque. In addition to imaging techniques, some
studies have combined transcriptomics and proteomics to
analyze gene and protein expression changes in the retina
during aging. Research indicates that proteins specific to
photoreceptors undergo changes prior to a decline in function,
suggesting a possible biomarker for the early detection of retinal
aging (26).

3.3 Multi-disease screening and
identification by integrating deep
learning with ocular imaging

The analysis of the retinal vasculature assumes a pivotal
role in the diagnosis of numerous ocular and
diseases, and recent research has highlighted its

systemic
potential
significance in the context of neurodegenerative diseases.
Retinal microvasculature shares similar anatomy and physiology
with cerebral vasculature, making it a valuable non-invasive
window for studying neurovascular changes associated with
neurodegenerative conditions. Against this backdrop, changes
in retinal thickness can be used to accurately predict some
neurodegenerative diseases in combination with the deposition
of fundus-related pathological proteins (27).
accurate detection of vascular features has been modeled

In addition,

as multi-instance heatmap regression in fundus images.
Deep learning models, such as NFN + neural networks, can
extract vascular features from raw fundus images to improve
accurate identification and prediction of associated cognitive

dysfunction (28).
3.3.1 Application for Alzheimer’s disease (AD)

Deep learning models have demonstrated a remarkable
capacity not only to identify retinal diseases with precision
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but also to concurrently screen and discern multiple systemic
neurodegenerative conditions. This dual functionality is of
paramount importance as it empowers physicians to make
preliminary and astute judgments, especially in scenarios where a
single patient may present with a complex array of comorbidities.
Relevant researchers have indicated that the characteristic
pathological signs of Alzheimer’s Disease (including Ap and pTau
accumulation) can emerge in the retina of affected individuals,
which provides unique insights into the preclinical progression
of the disease, and retinal amyloid/tau pathological imaging is the
frontier direction of AD biomarker research. Some studies have
analyzed structural changes in the retina to look for biomarkers
associated with AD through OCT and OCTA techniques (29). In
recent years, studies have found that changes in retinal microvessels
are closely related to the early pathology of AD. Microvascular
alterations within the retinal deep vascular complex (DVC) are
recognized as significant indicators of cognitive decline. Recent
research introduces an innovative deep learning model known
as Eye-AD, designed specifically to identify the early stages of
Alzheimer’s disease (EOAD) and mild cognitive impairment
(MCI) by utilizing OCTA images. This advancement represents
a promising approach to diagnosing cognitive deficits at their
onset, potentially improving early intervention strategies. The
model uses a multilayer graph neural network (GNN) to analyze
the relationship between different layers of the retina, thereby
improving detection performance. Eye-AD performed well in
distinguishing AD patients from healthy controls, with an AUC
value of 0.93. Another study developed a deep learning-based
classification system capable of distinguishing AD patients
from healthy individuals by analyzing changes in the retinal
vascular network (30). Retinal imaging techniques, such as OCTA,
have been shown to detect microvascular changes associated
with AD. For example, increased tortuosity of retinal veins is
associated with the presence of B-amyloid plaques in the brain. In
addition, thinning of the RNFL and reduction of retinal vascular
density are also considered potential biomarkers for AD (31)
(Figure 1).

The hallmark pathological manifestations of AD, namely Ap
and pTau deposition, may potentially transpire in the retina of
AD patients (32), thereby proffering unique insights into the
preclinical progression of the disease. Herein, we undertake a
comprehensive review of current research pertaining to imaging
amyloid/tau pathology in the retina and explore the implications
for the development of retinal biomarkers of AD (33). In addition,
retinal thickness (TRT) in animal models of AD has been
shown to be associated with the prediction of age and aging.
A research endeavor employing OCT to scrutinize TRT of wild-
type (WT) and 3 x Tg-AD mice (Alzheimer’s disease models)
unearthed that the TRT of both groups diminished with age.
Remarkably, the retina of WT mice was conspicuously thicker
than that of 3 x Tg-AD mice at all ages, barring the 16-month
mark. Two convolutional neural network models were trained to
prognosticate the age of mice from OCT B-scans, signifying that
the age of mice could be reasonably and accurately predicted.
Moreover, the retinal aging patterns of WT and 3 x Tg-AD
mice diverged, with projections indicating that the age of WT
retinas would exceed that of 3 x Tg-AD retinas after the fourth
month (34).
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3.3.2 Application for Parkinson's disease (PD)

A network predicated on frequency domain learning has been
devised for automatic Parkinson’s disease (PD) screening. By
amalgamating prior clinical knowledge, it automatically zeroes
in on specific retinal structures (RNFL, GCIP, OPL, ONL), thus
circumventing the challenge of PD being arduously identifiable
due to the subtle alterations in retinal structures. A module was
meticulously designed using Discrete Wavelet Transform (DWT),
integrating low-frequency and high-frequency domain information
and capitalizing on the unique traits of each frequency band to
accurately screen for PD (35). Recent clinical investigations have
hinted at retinal layer atrophy and decreased microvascular density
in individuals with Parkinson’s disease (PD), predominantly
detected via OCT and OCTA image. These modalities have
been utilized to assess classification accuracy throughout various
stages of PD progression, specifically incident (encompassing pre-
symptomatic or prodromal) and prevalent PD. The Automorphy
deep learning segmentation algorithm was employed to delineate
key retinal components, including arteries, veins, optic cup, optic
disk, and a manually annotated fovea. Notably, changes in the size,
thickness, and other attributes of the optic cup, optic disk, and fovea
have been identified as indicators of PD progression (36) (Figure 1).

3.3.3 Application for cognitive impairment (Cl)

The NFN + deep learning model has been employed to analyze
retinal vessel characteristics for the recognition of CI. Ocular
examinations can serve as a non-invasive screening implement
to explore pathological changes in brain microcirculation and
relevant cognitive impairment. Rui Li et al. revealed a tendency
to have a positive correlation between cognitive function and
retinal vascular fractal dimension (FD). In contrast, a negative
correlation exists between cognitive function and global vein
width. The study harnessed random forest to prognosticate the
development of cognitive decline. The order of importance of
predictors in the model was as follows: age (0.193), Body Mass
Index (BMI) (0.154), global vein width (0.106), retinal vessel FD
(0.099), and Central Retinal Artery Equivalent (CRAE) (0.098). The
area under the curve (AUC) values predicted by the model were
0.799. The NEN + model, which can extract vascular features from
fundus images, exhibits a high degree of recognition and predictive
prowess for cognitive function and can be utilized as a screening
modality for CI (28).

These results also suggest that changes in the complexity
of fundus blood vessels—such as fractal dimension (FD) and
vein width—could be useful as potential biomarkers for cognitive
dysfunction. Since the retina and brain share similar vascular
development and characteristics, changes in retinal blood vessels
may reflect the condition of the brain’s microcirculation. This
makes fundus vascular measurements a promising, non-invasive
method for early screening of cognitive issues. However, its
important to recognize that fundus aging doesn’t always match
systemic or biological aging. The condition of blood vessels in
the retina can be affected by various factors, including genetics,
environment, lifestyle, and diseases like hypertension and diabetes.
Therefore, retinal aging may provide a unique perspective on both
local and overall aging processes.

These findings highlight the potential of the retina not only as
a window into brain health but also as a valuable tool for studying
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aging (28) (Figure 1). Deep learning models can help distinguish
between normal retinal aging and early signs of disease by analyzing
changes in thickness, vessel structure, and other features. This is
important because aging and disease can cause similar changes
in the retina. With Al, it’s possible to detect both patterns—
those related to natural aging and those linked to diseases like
Alzheimer’s—at the same time. This approach helps improve early
diagnosis and also gives us a better understanding of how aging
affects the eye and overall health.

4 Retinal imaging biomarkers
associated with deep learning in
aging diseases

4.1 RetiPhenoAge

RetiPhenoAge manifests as a cutting-edge, deep-learning-
empowered biological aging marker. It astutely amalgamates
retinal images with PhenoAge, a comprehensive biomarker
emblematic of phenotypic age, for the purpose of prognosticating
morbidity and mortality rates with an unprecedented level of
precision. The cardinal aim of this seminal investigation is to
anticipate the vicissitudes associated with kidney function, immune
function, liver function, inflammation, energy metabolism, and
chronological age. This is accomplished by meticulously discerning
retinal patterns and nuanced characteristics that are inextricably
linked to the fluctuations in blood biomarkers.

The study has unearthed a remarkable revelation: for each
incremental augmentation of 1 year in the retinal age gap, there
exists an independent and statistically significant correlation with
a 10% elevation in the risk of incident PD. The retinal age gap
has incontrovertibly emerged as a reliable and valid biomarker of
aging, endowing it with the capacity to prognosticate mortality
risk and presenting itself as a highly promising candidate for the
early detection of PD (37). Intriguingly, a conspicuous positive
mean differential has been observed in the retinal age gap
between diabetic patients afflicted with DR and those devoid of
the condition. Moreover, this disparity progressively amplifies in
tandem with the exacerbation of DR severity. These outcomes
potentially intimate an underlying nexus between the pathological
evolution of the disease and the premature senescence of the retina
(38). The latest research findings have accentuated a correlation
between the retinal age gap, computed via a state-of-the-art
deep learning model, and metabolic syndrome (MetS) as well as
inflammation. Specifically, the more pronounced the retinal age
gap, the greater the susceptibility of individuals to developing MetS
and its constituent elements (abdominal obesity, hypertension,
hyperglycemia), accompanied by an upsurge in inflammatory
markers. In comparison to those individuals exhibiting the
narrowest retinal age gap, those with a more substantial gap face
an augmented risk ranging from 10 to 27% for abdominal obesity
and hypertension, 14%-19% for hypertension in isolation, and a
staggering 25%-104% for hyperglycemia (39). Moreover, it can be
efficaciously harnessed to dissect the relationship with the incidence
of chronic kidney disease (CKD) and cardiovascular disease (CVD)
(40, 41).
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4.2 RetiAGE and reti-aging

RetiAGE, as an alternative yet superlatively efficacious
biomarker, has demonstrated exemplary performance in predicting
the mortality of CVD and related pathologies. By homing in on
the macula, optic disk, and retinal vasculature, and synergistically
integrating fundus images, the predictive potency of the risk model
is exponentially enhanced with the incorporation of DL-predicted
RetiAGE scores (42). The deep learning retinal vascular aging score,
denominated as the Reti-aging score and proffered by the Reti-
aging scoring model, has emerged as a novel and revolutionary
methodology for predicting vascular aging through the painstaking
analysis of retinal fundus images. It furnishes a novel metric
that augments the prognostic capabilities for the incidence of
cardiovascular diseases (32) (Figure 1).

4.3 Extraocular biomarkers combined
with retinal imaging techniques

Furthermore, retinal imaging can be synergistically conjoined
with other biomarkers such as inflammatory markers (e.g., IL-
6, TNF-a) and metabolic markers (e.g., HbAlc, lipid profiles) to
conduct a holistic and comprehensive appraisal of the body’s health
status. Utilizing retinal images as input, a deep learning (DL)
model can calculate an individual’s cardiac BioAge. This approach
enables the DL cardiac BioAge model to effectively categorize
individuals according to conventional cardiovascular disease risk
biomarkers (43).

5 Ocular aging at the molecular level

5.1 Corneal aging under sunlight
exposure

Quantitative scrutiny of the ocular structures pertaining
to mtDNAT414G divulged an age-correlated accretion of
mtDNAT414G within the corneal stroma. The mtDNAT414G
mutation, which stems from cumulative solar exposure, holds the
potential to serve as a reliable biomarker of solar exposure. As
the frequency of mtDNAT414G mutations mounts, the ocular
aging process unfolds, rendering it feasible to amalgamate these
disparate levels of mtDNA mutations, thereby facilitating a precise
measurement of the total solar radiation exposure an individual
has experienced over their lifetime (44).

5.2 Molecular mechanisms of
age-related ocular diseases

Several age-related ocular conditions have been identified as
having strong associations with molecular and structural changes
observed during ocular aging. Diseases that manifest associations
in this context are AMD and cataracts. AMD represents a
localized malfunction within the macular photoreceptors/retinal
pigment epithelium/Bruch’s membrane/choroid-capillary complex,
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culminating in photoreceptor attrition and, ultimately, central
vision impairment. It stands as an almost quintessential hallmark
of aging-induced ocular degeneration (45). The etiological
mechanism underpinning cataract genesis is multifaceted,
encompassing oxidative stress, protein denaturation, DNA damage
and repair inefficacy, as well as perturbations in lens epithelial cells.
Oxidative stress occupies a central position in lens senescence and
cataract formation, given that lens epithelial cells orchestrate key
metabolic activities and maintain intimate connections with lens
fibroblasts via interstitial junctions. Consequently, they exhibit
heightened susceptibility to the metabolic perils besetting lens
epithelial cells, especially those of oxidative origin (46, 47). Age-
related cataracts (ARCs) have been linked to deficiencies in DNA
repair mechanisms within lens epithelial cells (LECs). Reactive
oxygen species (ROS)-induced DNA damage is postulated to be a
pivotal determinant in ARC development (48).

In a parallel vein, oxidative stress is also posited as a cardinal
factor in the pathogenesis of AMD (45). Dysregulation of the
complement system emerges as a significant impetus driving
AMD pathogenesis, as immune-mediated damage, consequent
to excessive complement activation, expedites the progression
of the disease (49). Cellular senescence represents an important
predisposing factor for AMD, since cells transition into a
permanent cell cycle arrest state following a finite number of
divisions. With the inexorable march of age, the population of
senescent cells swells and exhibits a robust correlation with a
plethora of age-related chronic maladies (50).

Ocular aging at the molecular level is a complex process
involving dynamic changes in various cellular and molecular
pathways. Recent advancements in liquid biopsy techniques,
combined with proteomics, have provided unprecedented insights
into the molecular mechanisms underlying eye aging. By analyzing
biomarkers in ocular fluids such as aqueous humor or vitreous
humor, researchers can now identify specific proteins and cellular
signatures associated with normal aging and age-related ocular
diseases. This integration of liquid biopsy biomarkers with
proteomics not only enhances our understanding of the molecular
trajectory of ocular aging but also offers potential for early
detection, diagnosis, and personalized treatment strategies for age-
related ocular conditions (51).

The relevant study has found that telomere shortening and
declining NAD + levels are key molecular mechanisms of aging as
we age. Telomere dysfunction activates the DNA damage response,
leading to cell cycle arrest, apoptosis, and aging, which in turn leads
to chronic inflammation and age-related diseases. In addition, the
decrease in NAD + levels can affect cellular energy metabolism
and accelerate the aging process. In the field of ophthalmology, the
combination of liquid biopsy and proteomics provides new tools
for early detection and intervention of age-related eye diseases.
By detecting biomarkers in intraocular fluid, apoptosis of retinal
ganglion cells, changes in retinal vascular density, and decreased
optic nerve function can be identified earlier. Changes at these
molecular levels may occur before clinical symptoms appear, so

early intervention is essential to slow disease progression (52).
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6 Liquid biopsy biomarkers
combined with proteomics in eye

aging

An in-depth cell-derived analysis, which entailed the
integration of proteomics from liquid biopsy and single-
cell transcriptomic analysis of diverse ocular cell types, was
conducted on 5,953 proteins detected in the aqueous humor. This
comprehensive investigation unveiled that liquid biopsy, when
synergistically combined with proteomics and deep learning,
holds the potential to vigilantly monitor and accurately diagnose
a spectrum of complex disorders, including retinitis pigmentosa,
diabetic retinopathy, Alzheimer’s disease, and Parkinson’s disease.
It thereby proffers novel and promising targets for the early
detection of age-related retinopathy and degenerative neurological
ailments. Moreover, leveraging advanced AI models, the overall
molecular age as well as the cellular molecular age of the eye
was predicted. Notably, endothelial cells and the retinal pigment
epithelium/choroid complex in the retina emerged as the principal
contributors to Al vascular markers. Meanwhile, B cells, vitreous
cells, and T cells were identified as the driving forces behind Al
Immunosenescence markers, while bipolar cells, rod cells, and
ganglion cells played a pivotal role in powering the AI retinal
senescence models (51) (Figure 2).

Through the application of liquid biopsy technology, protein
molecules associated with aging have been discerned in tears,
aqueous humor, and vitreous humor. Subsequently, an Al protein
circadian clock has been ingeniously developed using TEMPO
technology. Intriguingly, these AI clocks have demonstrated the
capacity to predict the age of corresponding cell types, such
as blood vessels, retinal cells, or immune cells. When the Al
circadian clock was applied to diseased eyes, it was observed that
ailments like diabetic retinopathy and uveitis could precipitate
accelerated aging of specific cell types. Proteomics has proven to
possess high diagnostic value, especially in the detection of specific
proteins during the analysis of age-related retinal inflammatory
diseases. Previous studies have meticulously examined liquid
biopsies from the fovea, macula, and beneath the peripheral
retina within the proteome of the human choroid-retinal pigment
epithelium (RPE). The findings of these studies revealed that,
on average, 4403 unique proteins were identified in each fovea,
macula, and peripheral choroidal RPE tissue. Among these, the
671 differentially expressed proteins encompassed risk factors
for retinal diseases linked to oxidative stress, inflammation, and
the complement cascade. Significantly, the complement cascade
represents a potential therapeutic target for AMD (53).

Furthermore, related research has indicated that immune cells
predominantly comprise T cells present in the vitreous cavity,
as ascertained through vitreous fluid biopsy. Notably, neutrophils
were conspicuously absent, while a comprehensive repertoire of
adaptive T cells, including CD4+, CD8+, regulatory T cells (Treg),
and innate immune system effector molecules (i.e., natural killer
T cells), were detected in the vitreous humor. These findings
suggest CD4+ and CD8+ activation of memory T cells and the
occurrence of vitreous-specific ligand receptor interactions. By
harnessing the potential of vitreous humor biopsy, the revelation
of the immune system’s involvement in regulatory mechanisms
has furnished invaluable insights into the etiological underpinnings
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and potential treatments of vitreoretinal-related aging diseases in
humans (54). At the cellular and tissue levels of eye diseases,
remarkable strides have been made in elucidating age-related
changes. Mounting evidence substantiates the fact that both innate
and recruited immune cells play a crucial role in modulating innate
immunity in eye diseases, a phenomenon that is increasingly being
recognized as a pivotal factor in the pathogenesis of both infectious
and non-infectious eye diseases (55) (Figure 2).

Eye aging in certain animal models, such as fruit flies, exhibits
some parallels with human eye aging. In a particular study focused
on fruit flies, researchers delved into proteomic alterations in
aging eyes. By employing proteomics techniques, they discovered
that the overall changes in protein abundance in the fruit fly
eyes mirrored the collective contributions of multiple cell types,
potentially obscuring the more subtle changes in individual cell
types, such as photoreceptors. Additionally, the discrepancies
between the senescent transcriptome and proteome in the eye
might signify changes in protein synthesis or post-translational
abundance, rather than being solely attributable to transcript
abundance (56).

A comparative analysis of diagnostic methods for ocular
aging was conducted, focusing on deep learning-based imaging,
traditional imaging techniques, and liquid biopsy biomarkers.
These approaches differ in terms of accuracy, cost, invasiveness,
and potential for early detection. A detailed comparison is
presented in Table 1.
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7 Discussion

Ocular aging can include ocular surface senescence and fundus
senescence related to deep learning technology, in which deep
learning technology has been increasingly integrated into the
evaluation and diagnosis of ocular surface aging-related diseases,
but in liquid biopsy, the proteome of ocular surface biomarkers
such as tears and relevant inflammatory factors are not particularly
clear related to aging. Aqueous humor sampling is invasive
and risks infection, restricting longitudinal studies. No universal
consensus exists for biomarker quantification, complicating inter-
study comparisons.

Deep learning can be used for preoperative planning and
intraoperative navigation. For example, models based on deep
learning can analyze the anatomical structures of the anterior
segment of the eye and provide precise recommendations for the
location and depth of incisions in cataract surgery. Deep learning
can also monitor and evaluate the progression of anterior segment
diseases. By analyzing images of the anterior segment taken at
different times, the model can identify subtle changes in lesions
and provide clinicians with information on the progression of
the disease. Deep learning has also shown great performance
in the diagnosis of retinal diseases, being able to identify a
variety of lesions such as diabetic retinopathy, glaucoma, and
age-related macular degeneration. For example, convolutional
neural networks (CNN) can analyze color fundus photographs
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TABLE 1 Comparison of diagnostic methods for ocular aging.

Evaluate
dimensions

Deep learning Imaging Traditional imaging Liquid biopsy biomarkers

10.3389/fmed.2025.1591936

interpretability; Risk of data bias

Technical principle CNN/GNN and other algorithms to Manual interpretation of single-modal | Detect proteins, metabolites, inflammatory factors, etc.
multi-modal images (OCT, fundus images (e.g., slit lamp, basic OCT) in tears/aqueous humor (15)
photography, OCTA)

Accuracy High (AUC 0.85-0.95, as detected by Moderate (physician High (specific proteins such as IL-6 are associated with
the Eye-AD model) (30) experience-dependent, AUC aging > 0.9) (15)

0.65-0.80)

Early detection Identification of subclinical Only visible lesions can be detected Early changes at the molecular level may be detected

capabilities microstructural changes (e.g.,
thinning of RNFL)

Cost Medium (requires high-performance Low (device widespread) High (high cost of mass spectrometry/sequencing,
computing equipment, but can be invasive sampling) (51)
used at scale)

Viability Datasets and algorithm training need Routine clinical application Depending on laboratory conditions, limited sampling
to be labeled (e.g., risk of aqueous humor puncture) (5)

Advantage Multimodal data fusion; Simple operation; Revealing molecular mechanisms; Discovery of potential
Automate screening of large Immediate diagnosis therapeutic targets
populations

Limitations The black box model has poor Subjectivity; The dynamics of biomarkers are highly variable;

Limited resolution

Standardization is difficult

Typical applications

Retinal Age Prediction
(RetiPhenoAge) (37-39);

Cataract grading;
Glaucoma optic disk assessment

mtDNA mutation detection for corneal senescence (44);

Inflammatory factor monitoring

neurodegenerative diseases screening

to automatically detect lesion areas. Deep learning models can
also accurately segment lesion areas in retinal images, such as
retinal vessel segmentation and optic disk segmentation, which
helps doctors more accurately assess the extent and severity of
the lesions. Retinal imaging equipment is showing a trend toward
"integration” and "low cost." Multimodal deep learning technology,
by integrating data from multiple imaging modalities (such as color
fundus photographs, OCT, fluorescein angiography, etc.), can more
comprehensively evaluate retinal lesions. But deep Learning has
still some limitations. DL models require large, diverse datasets to
generalize effectively. Bias in training data (e.g., underrepresented
ethnic groups) may compromise diagnostic accuracy. Some models
hinder clinical trust. For example, Eye-AD achieves AUC = 0.93 for
Alzheimer’s detection but lacks transparency in feature selection.
Complex architectures demand high computational power, limiting
accessibility in low-resource settings.

Fundus aging is a complex biological process that involves
degenerative changes in various tissues such as retinal blood vessels,
nerve cells, and retinal pigment epithelium. Traditional single-
modal analysis methods such as retinal image analysis alone) can
provide some diagnostic information, but they have limitations in
predicting the early stages of fundus aging and potential disease
risk. For example, analysis based solely on fundus photography
is difficult to capture changes in the microstructure of the retina
and the characteristics of aging at the molecular level. Multimodal
integration (e.g., OCT, fundus vascular imaging, and proteomic
data combined) can significantly improve predictive performance,
such as the VisionFM model, which improves the accuracy of age
prediction by 20% by fusing multimodal imaging data and can
identify molecular risk markers for diseases such as AMD at an
early stage. Multimodal analysis can more comprehensively reflect

Frontiers in Medicine

the physiological and pathological state of the fundus by integrating
multiple data sources. For example, combining fundus images
with proteomic data from liquid biopsies allows for simultaneous
assessment of structural changes in the retina and markers of aging
at the molecular level. This method not only improves the accuracy
of prediction of fundus aging but also enables early detection of
potential disease risks. In addition, multimodal analysis has been
applied to predict the molecular age of the fundus. Using Al
machine learning models, researchers have developed tools that
can predict the molecular age of the eye based on proteomic data
from eye fluids.

In the future, deep learning will more deeply integrate
medical imaging data from multiple modalities, further improving
the accuracy and comprehensiveness of diagnosis. For example,
combining various imaging techniques for the anterior segment
of the eye and the retina will provide more precise diagnosis for
complex ophthalmic diseases. Currently, the “black box” nature
of deep learning models is a major challenge in their clinical
application. Researchers will strive to enhance the interpretability
of these models, enabling clinicians to better understand and
trust the diagnostic results produced by them. Deep learning
holds promise for advancing personalized ophthalmic care. By
analyzing large amounts of patient data, models can predict disease
progression and treatment responses in individual patients, thereby
providing personalized treatment plans. The interdisciplinary
collaboration between ophthalmology and fields such as computer
science, physics, and mathematics will continue to deepen.
Interdisciplinary teams will jointly develop more efficient and
accurate deep learning models, driving continuous innovation in
ophthalmic artificial intelligence technology.
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7.1 Ethical considerations and data
privacy in Al-driven diagnostics

The integration of Al-driven diagnostics in ocular aging
research raises important ethical considerations, particularly
concerning data privacy and security. The use of deep learning
models often requires large datasets of patient images and
biomarker data, which may include sensitive health information.
Ensuring the anonymization and secure storage of such data is
paramount to protect patient confidentiality. Additionally, the
potential for algorithmic bias must be addressed to ensure equitable
diagnostic outcomes across diverse populations. Transparent
reporting of model performance and validation in independent
cohorts can help mitigate these concerns and foster trust in Al-
driven diagnostic tools.

8 Conclusions and perspectives

Advances in deep learning imaging technology have shown
that retinal photograph-based deep learning (DL) algorithms are
able to predict biological age and stratify the risk of death
and major diseases in the general population. This technique
offers a new, alternative way to measure aging. Deep learning
models using ophthalmic images, such as OCTA, have shown
potential for accurate identification and rapid screening in large-
scale populations in the detection of early neurological cognitive
dysfunction diseases. The combination of liquid biopsy proteomics
and artificial intelligence enables the identification of cellular
drivers of ocular aging and disease in vivo, and machine learning
is increasingly being used in the field of liquid biopsy research
through the integration of multi-omics data for multiplexing
of ocular aging biomarkers to build models that outperform
traditional and existing diagnostic methods. With the development
of deep learning technology, the role of non-invasive diagnostic
methods such as retinal imaging and liquid biopsy in early
disease detection will become increasingly important, especially in
resource-limited settings. Future studies can further explore and
validate the biomarkers found in liquid biopsies, as well as how they
behave and change in different disease states.

8.1 Summary of key applications of deep
learning in ocular aging

e Anterior Segment Aging: Deep learning models have
been successfully applied to automate the diagnosis of
cataracts, presbyopia, and pterygium, improving accuracy
and efficiency in clinical settings. These models leverage
anterior segment imaging to detect subtle structural
changes associated with aging.

Fundus Aging: Multimodal deep learning approaches
and OCTA
have enhanced the early detection of retinal aging
and neurodegenerative diseases. These tools provide a

combining OCT, fundus photography,
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comprehensive assessment of retinal health, enabling
timely interventions.

8.2 Future directions

e Biomarker Validation: Further research is needed to
validate the specificity and sensitivity of newly identified
biomarkers in diverse populations.

e Integration of Multi-Omics Data: Combining genomics,
proteomics, and metabolomics with imaging data could
provide a more holistic understanding of ocular aging.

e Ethical AI Development: Continued efforts to address
data privacy and algorithmic bias will be critical for the
widespread adoption of Al-driven diagnostics.
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