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Medical image segmentation faces critical challenges in renal histopathology

due to the intricate morphology of glomeruli characterized by small size,

fragmented structures, and low contrast against complex tissue backgrounds.

While the Segment Anything Model (SAM) excels in natural image segmentation,

its direct application to medical imaging underperforms due to (1) insu�cient

preservation of fine-grained anatomical details, (2) computational ine�ciency on

gigapixel whole-slide images (WSIs), and (3) poor adaptation to domain-specific

features like staining variability and sparse annotations. To address these

limitations, we propose V-SAM, a novel framework enhancing SAM’s architecture

through three key innovations: (1) a V-shaped adapter that preserves spatial

hierarchies via multi-scale skip connections, recovering capillary-level details

lost in SAM’s aggressive downsampling; (2) lightweight adapter layers that

fine-tune SAM’s frozen encoder with fewer trainable parameters, optimizing

it for histopathology textures while avoiding catastrophic forgetting; and (3) a

dynamic point-prompt mechanism enabling sub-pixel refinement of glomerular

boundaries through gradient aware localization. Evaluated on the HuBMAP

Hacking the Human Vasculature and Hacking the Kidney datasets, V-SAM

achieves state-of-the-art performance, surpassing 89.31%, 97.65% accuracy,

86.17%, 95.54% F1-score respectively. V-SAM sets a new paradigm for adapting

foundation models to clinical workflows, with direct applications in chronic

kidney disease diagnosis and biomarker discovery. This work bridges the gap

between SAM’s generalizability and the precision demands of medical imaging,

o�ering a scalable solution for resource constrained healthcare environments.

KEYWORDS

V-SAM, deep learning, adapter layer, Segment Anything Model, point-based prompt

1 Introduction

Histopathological analysis of kidney biopsies plays a pivotal role in diagnosing
and monitoring chronic kidney diseases, where precise segmentation of functional
tissue units (FTUs), such as glomeruli and microvasculature, is critical for quantitative
assessment. While convolutional neural networks (CNNs) have advanced medical image
analysis enabling breakthroughs in retinal fundus imaging, lesion detection, and MRI
interpretation their reliance on large, well-annotated datasets and computational intensity
remains a barrier to clinical adoption. The emergence of foundation models like the
Segment Anything Model (SAM) offers transformative potential, yet its application to
histopathology reveals critical gaps in handling the unique challenges of medical imaging.

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1591999
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1591999&domain=pdf&date_stamp=2025-06-18
mailto:wangcl@cqu.edu.cn
mailto:s.alkhalaf@qu.edu.sa
https://doi.org/10.3389/fmed.2025.1591999
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1591999/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wajeeh Us Sima et al. 10.3389/fmed.2025.1591999

Trained on over a billion natural image masks, SAM
achieves remarkable zero-shot segmentation by leveraging prompt-
guided inference (1). However, its performance on medical
images, particularly high-resolution histopathology data, remains
inconsistent. Recent benchmarks across 12 medical datasets
highlight SAM’s limitations in capturing fine-grained anatomical
structures, with accuracy variations of up to 40% compared to
specialized models (2). In renal histopathology, these shortcomings
manifest in three key areas: (1) failure to distinguish texturally
similar but biologically distinct regions (e.g., sclerotic vs. healthy
glomeruli), (2) oversimplification of irregular microvascular
boundaries, and (3) sensitivity to staining artifacts and low-contrast
features prevalent in periodic acid-Schiff (PAS)-stained whole-slide
images (WSIs).

Prior work in renal tissue analysis underscores these challenges.
Hybrid architectures like CNN-TransXNet (3) and DLRS systems
(4) have improved glomerular segmentation by combining multi-
scale feature extraction with attention mechanisms. Yet, these
methods require extensive task-specific tuning and lack the
generalizability of foundation models. SAM’s prompt driven design
could bridge this gap, but its native architecture optimized for
natural image semantics struggles with the hierarchical complexity
of histology, where a single WSI contains structures spanning
four orders of magnitude in scale (from 2µm capillaries to
200µm glomeruli).

To address these limitations, we propose a novel method that
integrates SAM with a U-Net adapter to enhance segmentation
performance in histological images of kidney biopsy. Our approach
involves incorporating a U-Net adapter for downsampling and
upsampling, along with a residual block in the image encoder
to improve feature extraction. In this framework, SAM guides
pixel-level segmentation, while the U-Net adapter extracts
multi-scale features and refines the segmentation. The residual
block enhances the capture of fine-grained details by learning
residuals across layers. The detected regions are transformed into
prompts and embedded in the SAM prompt encoder, which
guides the segmentation process. This method aims to achieve
efficient segmentation with reduced computational requirements
by focusing SAM on relevant tissue areas, thereby simplifying
the prediction process and eliminating the need for extensive
preprocessing. Our approach introduces three key innovations:

The key contribution to this research work is given below:

• Introduce a U-Net adapter into the SAM framework,
enhancing multi-scale feature extraction through skip
connections, which improves segmentation accuracy and
detail in complex medical images.

• A Point-Prompt Mechanism enables sub-pixel precision
through adaptive refinement of point prompts via spatial
gradient backpropagation, achieving precise segmentation
of intricate glomerular structures while maintaining
computational efficiency.

• Lightweight modules inserted into SAM’s frozen encoder
enable domain-specific adaptation through minimal trainable
parameters (down/up-projections with ReLU). This preserves
SAM’s pretrained knowledge while allowing targeted feature
refinement for medical textures, reducing overfitting risks on
limited histopathology datasets.

• Experiments using the two datasets demonstrates
the effectiveness of V-SAM. The results show
significant performance improvements compared to
current architectures.

The article is organized into several key sections. Section
2 provides a comprehensive review of related work in
kidney segmentation, highlighting current advancements and
challenges. Section 3 outlines the methodology employed in the
proposed framework, detailing the approach used for improving
segmentation accuracy. Section 3.2 presents a description
of the datasets used in the experiments, including the data
characteristics and their relevance to the study. Section 4 discusses
the implementation details, covering the experimental setup,
parameters, and hyperparameters that were fine-tuned for optimal
performance. Section 5 showcases the results of the experiment,
along with an ablation study to analyze the contribution of different
components of the framework. Section 6 provides a discussion
on the findings, interpreting the results in the context of existing
literature. Finally, Section 7 concludes the paper with a summary of
key findings and suggests directions for future research in kidney
segmentation.

2 Related work

In medical image segmentation, U-Net’s architecture has
evolved with the integration of residual blocks to enhance
gradient flow and feature extraction. Recent advancements like U-
Net++ and Attention U-Net further refine segmentation accuracy.
The Segment Anything Model (SAM) introduces promotable
segmentation, offering interactive and flexible approaches in
medical imaging. Table 1 provides an analysis of different studies
in kidney segmentation methods. In kidney segmentation research,
state-of-the-art models have primarily focused on accurate
glomerulus identification, along with the metrics used for their
validation. A chord plot (Figure 1) visualizes the contribution of
these models across different validationmetrics, highlighting which
metrics are most commonly employed revealing key trends in
evaluation practices.

2.1 UNet

An early approach to semantic segmentation using CNNs
was the Fully Convolutional Network (FCN), which struggles to
recover fine details during upsampling due to spatial reduction
in the downsampling process, even with transpose convolutions,
resulting in coarse outputs. To address this, Ronneberger et al.
(5) introduced skip connections in U-Net’s encoder-decoder
framework, improving segmentation accuracy. However, U-Net
still faces challenges in capturing multi-scale features due to the
fixed receptive field of its convolutional kernels. To improve
this, Kaur et al. (6) proposed a modified U-Net model for
the detection of glomeruli in images of whole-slide kidney
tissue. The model improves feature extraction by adjusting filter
numbers, feature map dimensions, and adding extra convolution
blocks to the encoder and decoder. MLP-UNet (7) introduces a
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TABLE 1 State-of-the-art kidney segmentation methods: purpose, approach, and performance metrics.

References WSIs Glom. Approach Purpose Performance

(27) 47 1,245 UNet SegNet AlexNet Using deep learning for semantic segmentation to classify glomeruli
for detecting glomerulosclerosis.

Acc: 0.99 F1: 0.99
CK: 0.99

(28) 26 2,772 SegNet DeepLabv3+ Segmentation and classification of glomeruli for reliable estimation of
the Karpinski histological score.

Rec: 0.47 Pre: 0.97
F1: 0.63

(29) 400 12,418 LSTM-GCNet 2D V-Net Locate glomeruli and identify lesions like sclerosis, crescents, or none. CK: 0.91 Pre: 0.93
Rec: 0.94

(30) 61 1,334 Mask-RCNN DeepLabv3 Downsampling critical glomeruli features reduces instance
segmentation accuracy in high-resolution WSIs.

DSC: 0.95

(31) 258 24,133 VGG Unet Developing deep learning models to automate glomeruli quantification
in kidney biopsies.

DSC: 0.83 F1: 0.87
Rec: 0.93 Pre: 0.81

(32) 348 8,665 Cascade Mask R-CNN Developing a robust model for glomeruli segmentation and
classification across stains and pathologies.

Pre: 0.95 Rec: 0.92
F1: 0.94 IoU: 0.87

(33) 15 4,500 FCN-ResNet DeepLabv3 Quantification and classification of glomeruli for histopathologic
assessment of renal tissue.

Acc: 0.97 Pre: 0.92
Rec: 0.90 F1: 0.91

(34) 146 5,459 Mask R-CNN LSTM Examine kidney biopsies to identify glomeruli and differentiate
glomerulonephritis types.

Acc: 0.94 F1: 0.94
ROC: 0.94

(35) 660 5,309 DS-FNet Boundary-aware glomerulus segmentation aims to generalize across
various staining methods.

DSC: 0.95

(36) 130 2,340 CNB-MVN-MLS Evaluating spatial deformation augmentation for glomeruli
segmentation in histopathology.

DS: 0.85

(37) 459 1,751 Omni-Seg Addressing scale variations in renal WSIs with tissue-optimized
multi-network segmentation.

DS: 0.87

(38) 20 — LinkNet Glomeruli detection through segmentation using neural networks. Acc: 0.99DC: 0.94

(39) — 500 HistoStar-GAN UDA-GAN Enable multi-stain transfer, normalization, and segmentation for
unseen stains.

Pre: 0.85 Rec: 0.90
F1: 0.87

(3) 20 — TransXNet OSRA Capture fine details and broader context for precise segmentation. Acc: 0.85MIoU:

0.77

(40) 20 21,000 SegNext MobileNet Enhancing glomeruli segmentation through cross-species pre-training
on diverse kidney tissue data.

MIoU: 0.92DS:

0.96

(41) 1,536 — ECSA-SUNet Variable morphology and indistinct boundaries blending with
surrounding renal tissue.

DS: 0.92 IoU: 0.92

(42) 210 20,868 UniMatchsf The resolve inter-observer variability in analyzing histopathology
images.

Pre: 0.95 Rec: 0.76
DC: 0.81

Ours 14 13,440 V-SAM Integration of FTU for segmenting blood vessels and glomeruli. Acc: 0.98 Pre: 0.96
Rec: 0.95 F1: 0.95

WSI, Whole Slide Image; Glom, Number of Glomeruli; Pre, Precision; Rec, Recall; Acc, Accuracy; F1, F1-Score; CK, Cohen Kappa; DSC, Dice-Similarity Coefficient; DS, Dice Score; IoU,
Intersection over Union; MIoU, Mean Intersection over Union; ROC, Receiver Operating Characteristic; Sens, Sensitivity; Spec, Specificity.

novel design avoiding traditional convolutions and self-attention
mechanisms, and compares various approaches, including U-
Net. For the first time, it trains the TransUNet model on the
kidney WSI dataset. The TransXNet block (3), designed for
glomerular segmentation, captures both fine details and broader
context through a two-phase process: down-sampling with CNNs
for detailed features and up-sampling with deconvolution to
restore spatial resolution and enhance feature representation.
UNet++ (8), an enhanced version of U-Net with a nested layer
network, improves kidney biomarker predictions. DeepLabV3 (9)
further enhances segmentation accuracy with atrous convolutions
and atrous spatial pyramid pooling (ASPP), making it ideal for
identifying four histopathological structures in acute renal tubular
injury: glomeruli, necrotic tubules, healthy tubules, and tubules
with casts.

2.2 Segment Anything Model (SAM)

The Segment Anything Model (SAM) has shown promise in
medical image segmentation, leveraging its ability to generalize
across diverse datasets with zero-shot learning. Its flexible
prompt-based design allows for efficient segmentation of complex
structures, reducing reliance on large annotated datasets. SAM’s
adaptability makes it a valuable tool for automated and accurate
medical image analysis. SAM, originally designed for natural
images, requires improvements for optimal performance on
medical images (10). Leveraging SAM’s ability to generate pixel-
level annotations from box annotations, the authors use these
SAM-generated labels to train a segmentation model. The
SAM-assisted molecular-empowered learning (SAM-L) approach
reduces the efforts to label the annotations of lay annotators
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FIGURE 1

Chord plot to visualize the distributions of di�erent models contribution for kidney glomerulus identification.

by requiring only weak box annotations (11). A novel detector
method is used to perform automatic prompted segmentation,
offering a low-cost alternative to other SAM customization
processes for specific tasks. det-SAM (12) features a detection
head in its architecture, which provides additional domain-specific
information to SAM through prompt engineering, enhancing
its performance in medical segmentation tasks. DeSAM (13)
introduces a decoupled SAM architecture with domain-specific
prompt tuning, enhancing generalization across diverse medical
imaging tasks. The framework adapts SAM’s segmentation
capability through anatomical-aware prompt engineering while

preserving its foundational strengths. SAM2-UNet (14) integrates
SAM’s vision transformer encoder into a U-Net structure,
demonstrating robust feature transferability for both natural and
medical image segmentation. This hybrid approach achieves strong
performance by combining SAM’s pretrained representations with
U-Net’s hierarchical decoding.

Skip connections also play a vital role in preserving spatial
details within encoder-decoder architectures. SAttisUNet (15)
replaces direct skip pathways with an attentive module that fuses
Swin Transformer features using cross-covariance attention,
enhancing multi-scale context representation. The 3D framework
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FIGURE 2

V-SAM Model: integrating a U-Net adapter into the SAM framework for enhanced multi-scale feature extraction.

in (16) employs convolutional blocks (CIRU, CIRC) to aggregate
encoder outputs, prompt embeddings, and raw image features
for improved prediction quality. Meanwhile, Yang et al. (17)
propose a Deformable Squeeze-and-Attention (DSA) block
that leverages deformable convolutions to adaptively refine
segmentation details by learning flexible receptive fields. In
contrast, our V-SAM incorporates structurally-guided skip
connections that deliver multi-resolution encoder features through
attention-based pathways aligned with U-shaped topology.
Tailored for histological precision, these connections emphasize
glomerular boundary fidelity using class-aware fusion. Unlike
existing approaches, V-SAM addresses the unique challenges
of glomerulus segmentation–namely, the need for fine-grained
boundary preservation and prompt-driven contextual adaptation.

2.3 Adapter layer

The use of adapter layers in medical image segmentation has
recently gained significant attention due to their ability to enhance
model efficiency without the need for extensive retraining. Zhu
et al. (18) introduced AdaptFormer, a transformer-based model
that incorporates adapter layers, showing improved performance
in medical image segmentation tasks, particularly for CT and
MRI scans. Li et al. (19) also explored this concept with their
dual adapter networks, which optimized segmentation accuracy
for abdominal organ segmentation in CT images by combining
a general-purpose backbone with task-specific adapters. Wang
et al. (20) demonstrated the effectiveness of transformer-adapter
networks for brain tumor segmentation in MRI scans, highlighting
their capacity to extract key features with fewer parameters.
Finally, Yuan et al. (21) developed dynamic adapters for multi-
class segmentation tasks in lung CT scans, achieving better accuracy
and efficiency in complex cases. These advancements emphasize
the power of adapter layers to improve the performance of medical
image segmentation models, especially when data are limited.

3 Methodology

Applying SAM to medical image segmentation has garnered
increasing attention, with many approaches focusing on
transferring knowledge from natural image domains. While
SAM has demonstrated promising results in tasks involving
organs or regions with large and well-defined structures,
such as liver or lung segmentation, its performance declines
when dealing with finer anatomical details. Tasks like blood
vessel or glomerulus segmentation, which involve low-contrast
boundaries, intricate morphologies, and small-scale structures, still
present significant challenges highlighting the need for further
architectural adaptation. In this study, we propose V-SAM, a novel
architecture designed to overcome these limitations and enhance
segmentation performance in the medical domain, specifically
for glomerulus segmentation in kidney histology images. V-SAM
integrates a promptable paradigm to improve lesion localization
and more effectively capture the complex and subtle structural
variations inherent in glomerular regions. It incorporates three
key components: promptable information (points) for precise
target area localization, a V-shaped structure to capture low-level
glomerulus details, and skip connections to preserve and recover
spatial information throughout the encoding-decoding process, as
illustrated in Figure 2.

Segmenting FTU in kidney images presents a unique challenge
due to the small size and complex shape of the glomerulus.
The kidney’s anatomical complexity makes it difficult for
conventional segmentation models [e.g., U-Net (5), DeepLabv3+
(22), TransUNet (23), Swin-Unet (24), UNet++ (23)]. Inspired
by the success of the Segment Anything Model (SAM) and
its promptable segmentation paradigm (e.g., bounding boxes,
points, and text), we propose to adopt this paradigm to improve
the localization of glomeruli and address the unique challenges
presented by kidney images. However, SAM alone struggles to
achieve precise segmentation in regions with low contrast or
intricate structures, as seen in kidney tissue. This challenge is
particularly critical in glomerulus segmentation.
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3.1 V-SAM framework

Following the principles of SAM, our V-SAMmodel uses a two-
step upsampling scheme to recover the image resolution. Unlike
the long-stride upsampling strategy in the original SAM, V-SAM
introduces a pair of V-shaped adapters to improve segmentation
accuracy. The pipeline is divided into two major phases: the
downsampling encoder and the upsampling decoder. In the
following sections, the image encoder is treated as part of the
downsampling process, while the mask decoder is responsible for
the upsampling.

3.1.1 Downsampling adapter
The downsampling encoder in V-SAM serves as the

hierarchical feature extractor tailored for glomerulus segmentation
in gigapixel WSIs. Designed as a U-Net-inspired contraction
path with V-shaped adapters, it progressively condenses spatial
resolution while expanding channel capacity to capture multi-
scale glomerular features from capillary-level textures to global
structural contexts.

Each downsampling block implements a resolution halving
operation governed by:

fi+1 = Conv(MaxPool(fi)) (1)

where fi and fi+1 denote input/output feature maps. The
MaxPool (kernel=3, stride=2) first suppresses spatial redundancy
while preserving dominant activations critical for detecting
glomerular capsules. The subsequent Conv layer (kernel=3,
padding=1) doubles channel depth (except at f4) to expand
receptive fields without sacrificing feature density – a deliberate
trade-off forWSI processing where excessive downsampling erodes
subtle tuft boundaries.

The five-stage feature pyramid is structured as:

f0 ∈ R
C
8 ×H×W

f1 ∈ R
C
4 ×

H
2 ×

W
2

f2 ∈ R
C
2 ×

H
4 ×

W
4

f3 ∈ R
C×H

8 ×
W
8

f4 ∈ R
2C× H

16×
W
16

(2)

With C = 256 matching the Channel Attention Module
(CAM)’s latent dimension, this scaling ensures compatibility with
SAM’s pretrained weights while preventing channel explosion.
The exponential channel growth (C → 2C at f4) compensates
for spatial information loss, preserving texture gradients vital
for distinguishing sclerotic glomeruli (collapsed capillaries) from
healthy ones.

V-SAM integration: The deepest features f4 feed directly
into SAM’s image decoder as positional priors, while f0-f3
are routed via V-shaped skip connections to the upsampling
decoder (Figure 2). This dual-path strategy merges SAM’s semantic
understanding (via f4) with U-Net’s boundary precision (via
skip features), crucial for resolving overlapping glomeruli in
crowded WSI regions. The adapter layers (Figure 3) refine

these features through lightweight down/up-projections, enabling
domain adaptation without compromising SAM’s generalization.
For better understanding the architecture pseudo-code for V-SAM
is given in Algorithm 1.

1: Input: Image I of size 224× 224× 3
2: Output: Segmentation mask S of size 224× 224× N
3: let f0,f1,f2,f3,f4 be the feature maps at each

downsampling stage

4: let SAM_output be the output from SAM decoder

5: let S_refined be the final refined segmentation

output

6: Step 1: Pre-process Input Image

7: I← normalize(I)

8: Step 2: Downsampling Encoder

9: for i = 0 to 3 do

10: fi ← Encoder_Block(I,in_channels,out_channels)

11: I← MaxPool(I,kernel = 3,stride = 2)

12: I← Conv(I,kernel = 3,padding = 1)

13: end for

14: Step 3: Adapter Layer

15: f4 ← Adapter_Layer(f4)

16: Step 4: SAM Image Encoder Processing

17: SAM_encoded← SAM_Encoder(f4)

18: Step 5: SAM Decoder Processing

19: SAM_output← SAM_Decoder(SAM_encoded)

20: Step 6: Upsampling Decoder

21: for i = 3 down to 0 do

22: ri ← Upsample_Block(SAM_output,fi)

23: SAM_output ← Upsample(SAM_output,

scale_factor = 2)

24: end for

25: Step 7: Final Refinement

26: S_refined← Final_Refinement(SAM_output,f1,f0)

27: Step 8: Final Segmentation Mask Output

28: S← Final_Convolution(S_refined)

29: Return: S

Algorithm 1. V-SAM Algorithm

3.1.2 Adapter layer in image encoder
We integrate adapter layers into the image encoder of the

Segment Anything Model (SAM) to adapt the pre-trained encoder
for medical image segmentation tasks. Adapter layers serve as
lightweight modules inserted into the encoder, introducing task-
specific transformations without modifying the majority of the
model’s pre-trained parameters. This allows for computational
efficiency by reducing the number of trainable parameters, while
maintaining the encoder’s generalization capability. The adapter
layer is composed of twomain components: a down-projection and
an up-projection. The adapter layer and ViT block can be visualize
in Figure 3 is The down-projection reduces the dimensionality of
the feature map hl, and the up-projection restores the original
dimension. The transformation of the input feature map hl through
the adapter layer is mathematically defined as:
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FIGURE 3

Left shows the ViT block capturing context, while the right depicts the adapter layer for enhanced multi-scale feature extraction and segmentation

accuracy.

ĥl = hl +Wup · σ (Wdown · hl + bdown)+ bup (3)

Where hl represents the output from the previous layer,Wdown

and Wup are the weight matrices for the down-projection and up-
projection layers, respectively. The activation function is denoted
by σ , and bdown and bup correspond to the bias terms for the
down-projection and up-projection layers.

Here, hl is the input feature map from the encoder layer, The
term σ is a non-linear activation function ReLU. The output ĥl
represents the adapted feature map, which is used for downstream
segmentation tasks. For fine-tuning, the parameters of the adapter
layers, i.e., Wdown,Wup, bdown, bup, are trained, while the other
encoder parameters are kept frozen. The fine-tuning objective
is to minimize the segmentation loss Lseg, which measures the
difference between the model’s predicted segmentation S(ĥl) and
the ground truth ygt:

Lseg = Lseg(S(ĥl), ygt) (4)

Where S(ĥl) is the segmentation output generated from the adapted
feature map, and ygt is the ground truth label. The parameter
efficiency of the adapter layer is given by:

Padapter = (d× r)+ (r × d)+ r + d (5)

This results in significantly fewer trainable parameters compared
to fine-tuning the entire encoder. The computational complexity of
the adapter layer is:

O(d× r)+ O(r × d) = O(2× d× r) (6)

Since r ≪ d, the computational cost is minimal. Furthermore,
by training only the adapter layer parameters, we reduce the
risk of overfitting, which is particularly beneficial when working
with smaller medical datasets. This efficiency enables faster
convergence and makes the approach suitable for resource-
constrained environments.

3.1.3 Prompt (point-based)
Unlike the default static point prompt strategy in SAM, our

method introduces an enhanced point-based prompt mechanism
tailored for multi-class medical segmentation and improved spatial
precision. The proposed approach provides sparse but highly
informative guidance by integrating three key innovations:

Ep =
K
∑

k=1
MLP

(

PE(xk, yk)⊕ φ(ck)
)

(7)

Here, PE :R2 → R
dp generates positional embeddings

using sinusoidal encoding, while φ(ck) ∈ R
dc maps discrete
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class identifiers (e.g., glomeruli, vessels, uncertain regions) to
learned embeddings. The concatenation ⊕ allows the prompt
to encode both spatial and semantic (class-level) information.
This formulation supports multi-class segmentation directly within
the prompting mechanism, a functional extension beyond SAM’s
binary (foreground/background) prompt treatment.

To integrate the point prompts with the model’s features,
we introduce a constrained cross-attention mechanism between
encoded prompts and encoder outputs fi:

Am = σ

(

QK⊤√
d

)

V,















Q =WqEp

K =Wkfi

V =Wvfi

(8)

where σ denotes row-wise softmax, and W{q,k,v} are linear
projection matrices. This constrained attention formulation allows
the model to selectively focus on relevant spatial regions while
significantly reducing memory usage compared to dense attention
used in SAM. Finally, we introduce a gradient-based refinement
step during training, which adapts the prompt coordinates by
backpropagating segmentation loss gradients with respect to
spatial positions:

1xk = −η
∂Lseg

∂xk
= −η

∑

i,j

∂Lseg

∂A
(i,j)
m

∂A
(i,j)
m

∂xk
(9)

where η is the learning rate. This approach allows the prompt
positions to be optimized during training for finer localization
accuracy, resulting in sub-pixel alignment without any additional
inference cost.

3.1.4 Upsampling adapter
The V-SAM decoder extends SAM’s mask generation through a

hierarchical refinement process that progressively recovers spatial
resolution using multi-scale encoder features. Given the initial

mask source Ssrc ∈ R
C× H

16×
W
16 and transformed mask tokens

M′t from SAM’s core processing, our architecture introduces three
sequential upsampling stages:

r3 = Upsample4(Ssrc ⊕ f4)

r2 = Upsample3(r3 ⊕ f3)

r1 = Upsample2(r2 ⊕ f2)

(10)

where ⊕ denotes channel-wise concatenation with skip
connections from the downsampling encoder’s feature pyramid.
Each Upsamplei operation consists of 2× bilinear upscaling, 3×3
convolution with stride 1, ReLU activation and feature fusion with
encoder skip connection fi+1.

The final resolution enhancement to H
2 ×

W
2 is achieved through

an additional refinement layer:

L = Upsample1(r1 ⊕ f1 ⊕ f0) (11)

where f0 ∈ R
C
8 ×H×W provides high-frequency spatial details

from the initial encoder stage. This contrasts with SAM’s original
approach that directly upscales low-resolution logits ( H16 →
H) through a single 4× bilinear interpolation, resulting in lost
boundary details critical for glomerulus segmentation.

The complete upsampling chain reduces effective stride from
16× to 2× through:

Total Upscale Factor =
4
∏

i=1
2 = 16→ 1

2
(12)

preserving morphological details through four gradual
refinement stages rather than SAM’s single coarse upsampling. This
proves essential for maintaining capsule boundary continuity and
resolving sub-glomerular structures in high-magnification WSIs.

3.2 Datasets

In this following section we will briefly explain the
characteristics of two datasets used in our experiments.

3.2.1 HuBMAP - Hacking the Human Vasculature
(HubMAP-1)

The HubMAP-1 dataset, originally part of the
HuBMAP-Hacking the Human Vasculature challenge on Kaggle, is

FIGURE 4

From left to right: the first image shows the age distribution among patients, the second displays weight distribution, the third illustrates body mass

index (BMI) distribution, and the last image presents the dataset’s gender distribution (male vs. female) in percentages.
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now publicly available for open use. This dataset aims to support
mapping the human vascular system, focusing on functional tissue
units like glomeruli and blood vessels. It includes 2D periodic acid-
Schiff (PAS)-stained tiles (512×512 pixels) from 14 whole slide
images (WSIs) of human kidney histology, selected specifically
for microvascular structure segmentation. The demographic data
from the data set are shown in Figure 4, with expert-verified
annotations for accuracy. Additional tile information provided by
dataset distributor is provided in Table 2, and training set examples
are displayed in Figure 5.

3.2.2 HuBMAP—hacking the kidney (HubMAP-2)
The National Institutes of Health (NIH) funded the

HubMAP-2 project, which is now publicly available on Kaggle.
HuBMAP—Hacking the Kidney, project aimed to create a detailed
map of the human vascular system, with a particular focus on
functional tissue units known as glomeruli. The dataset includes
11 fresh frozen and 9 Formalin Fixed Paraffin Embedded (FFPE)
PAS kidney images. The TIFF images, with dimensions exceeding
19,780 × 26,840 (ranging from 182.65 MB to 4.87 GB), feature
annotations of glomeruli in two formats: RLE-encoded and
unencoded (JSON). Additional metadata is provided in Table 3,
and sample image tiles from the training set are shown in Figure 6.
Demographics for HubMAP-2 is given in Figure 7.

4 Implementation

The experiments were carried out on a single NVIDIA RTX
3090 GPU using the PyTorch framework. To prevent overfitting,
we applied data augmentations and other image slide pre-
processing techniques, detailed in Table 4. Pre-trainedweights from

TABLE 2 Attributes and metadata of the HubMAP-1 dataset.

Attributes Description

source_wsi The tile is extracted from which WSI

ID ID number of the tile

i | j The location of the upper corner from
which the WSI is cropped

Age, sex, race, height, weight, BMI Demographics of the tissue donors

SAM on natural images were utilized to accelerate convergence
and enhance training stability. During training, we froze the
parameters of SAM’s prompt encoder for the same purpose.
While SAM was originally designed for larger input sizes, such
as 1024x1024, we adapt it to handle smaller inputs like 224x224,
similar to how TransUNet adapts Transformer-based architectures
for reduced image sizes. In TransUNet (25), the model effectively
processes smaller input sizes by leveraging a Transformer encoder-
decoder structure that captures long-range dependencies while
preserving fine-grained details through skip connections. For our
implementation, the input resolution is set to 224x224, with a
batch size of 8, enabling efficient processing while maintaining
segmentation accuracy. The model was trained end-to-end using
the Adam optimizer (26), with an initial learning rate of 0.0001
to speed up convergence. The parameters setting is listed in
Table 5. The masking for HubMAP-1 and HubMAP-2 is given in
Figures 8, 9 respectively.

The loss function used is a combination of binary cross-entropy
and the Dice coefficient. It is formulated as:

L(Y , Ŷ) = − 1

N

N
∑

b=1

(

1

2
Yb log Ŷb +

2YbŶb

Yb + Ŷb

)

(13)

Where Ŷb and Yb denote the predicted probabilities and the ground
truth values (both flattened) for the b-th image in the batch,
respectively, and N represents the batch size.

5 Results

5.1 Results on HubMAP-1

The results demonstrate that V-SAM achieves exceptional
performance on the HubMAP-1 dataset, with an Accuracy of
89.31%, a Recall of 87.29%, and F1-Score of 86.17%.These

TABLE 3 Attributes and metadata of the HubMAP-2 dataset.

Attributes Description

width/height pixels Image resolution details

patient number Tissue donor patient identifier

Race, Ethnicity, Sex, Age Demographics of the tissue donors

FIGURE 5

Some examples of image tiles taken from HubMAP-1.
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FIGURE 6

Some examples of image tiles taken from HubMAP-2.

FIGURE 7

Demographic distribution by tissue composition. Left: age, sex, and race distribution in relation to medulla percentage. Right: age, sex, and race

distribution in relation to cortex percentage for HubMAP-2 dataset.

scores consistently surpass a range of existing models, including
both convolution-based and transformer-based architectures.
Compared to UNet++ (ResNet-50), V-SAM delivers a ↑3.69%
gain in Accuracy, ↑3.77% in Recall, and ↑3.26% in F1-Score.
Against nnUNet, which uses a standard UNet backbone, V-
SAM improves Accuracy by ↑3.12%, Recall by ↑3.02%, and
F1-Score by ↑2.18%. When compared with DRA-Net (ResNet-
34), V-SAM achieves ↑2.05% higher Accuracy, ↑1.66% higher
Recall, and ↑1.48% higher F1-Score. Notably, although DET-
SAM employs the same ViT-B backbone, V-SAM significantly
outperforms it by ↑4.52% in Accuracy, ↑3.54% in Recall, and
↑5.03% in F1-Score.

These consistent improvements highlight key limitations
in convolution-based models like ResNet, which struggle with
modeling long-range dependencies and preserving fine-grained
spatial details due to their localized receptive fields. While

DET-SAM shares the ViT-B transformer backbone with V-
SAM, its performance is hindered by suboptimal prompting and
lack of targeted skip connection design. In contrast, V-SAM
incorporates a structurally guided attention mechanism, topology-
aware prompting, and class-sensitive skip connections, which
collectively contribute to robust segmentation of fine structures
such as glomeruli. Full quantitative results are summarized in
Table 6, and the corresponding performance trend is visualized in
Figure 10.

Furthermore, V-SAM’s performance is compared with recent
state-of-the-art (SOTA) models on the HubMAP-1 dataset. V-
SAM achieves an Accuracy of 89.31% and an F1-Score of
86.17%, surpassing UniMatch_sf (MiT-B1 backbone) by 4.77%
and Omni-Seg (ReS-UNet backbone) by 3.87% in F1-Score, while
achieving a remarkable 28.17% improvement over FastAI U-
Net (ResNet-50 backbone), which only achieves an F1-Score of
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TABLE 4 Augmentation parameters for the experiment.

Attributes Description

CLAHE True

Diagonal shift True

Horizontal shift True

Hue saturation True

IAAPiecewiseAffine 0.3

Optical distortion 0.3

Random brightness True

Random contrast True

Vertical shift True

TABLE 5 Parameters settings for the experiment.

Parameters Setting

Batch size 8

Epoch 100

Initial learning rate 1× 10−4

Loss function LBCE + LDice

Optimizer Adam

Patch size 224× 224

58.00%. This performance gap underscores the effectiveness of V-
SAM’s transformer-based architecture, which excels at capturing
global context and long-range dependencies, unlike convolutional
backbones such as ResNet or ReS-UNet. Although UniMatch_sf
and Omni-Seg demonstrate strong performance, their reliance
on convolutional architectures limits their ability to model
complex structures and global context effectively. In contrast,
V-SAM’s advanced fine-tuning techniques and adaptability to
complex structures in medical images contribute to its superior
performance, making it a robust and reliable model for medical
image segmentation tasks. The comparison with SOTA models is
provided in Table 7.

The segmentation results reveal a clear distinction in the
performance of different models. UNet++ captures most major
vascular structures but struggles with fine details and boundary
precision, often displaying over-segmentation in certain regions,
as highlighted in the red boxes. DRA-Net demonstrates improved
continuity and connected component detection but still faces
challenges with boundary refinement and misses smaller structural
elements. Det-SAM further enhances boundary precision and
reduces over-segmentation; however, it under-segments certain
areas, leading to the loss of finer vessel branches. In contrast, the V-
SAM achieves the most accurate segmentation, closely replicating
the ground truth. It effectively captures both large and small
structures with clean, precise boundaries and maintains detail
even in complex regions. This superior performance is likely
attributed to advanced spatial, channel, and temporal attention
mechanisms that enhance feature extraction and boundary
refinement. Additionally, V-SAM appears to generalize better,

handling variations in noise and texture more effectively than the
other models. Overall, V-SAM strikes the optimal balance between
accuracy and detail preservation, making it the best-performing
model in this evaluation.

5.2 Results on HubMAP-2

The performance of V-SAM on the HubMAP-2 dataset
is thoroughly evaluated against several competitive models in
Table 8, using Accuracy, Recall, and F1-Score as key metrics.
V-SAM achieves the highest results across all three: 97.65%
Accuracy, 95.62% Recall, and 95.54% F1-Score. Compared to
UNet++ (ResNet-50), V-SAM shows significant gains of ↑2.84%
in Accuracy, ↑3.54% in Recall, and ↑4.69% in F1-Score, indicating
its superior ability to capture fine-grained features and global
structure. Against nnUNet, which uses a self-configuring UNet-
based pipeline, V-SAM improves performance by ↑2.12% in
Accuracy, ↑1.97% in Recall, and ↑2.27% in F1-Score. Although
nnUNet performs strongly due to its robust configuration
heuristics, it still relies on standard convolutional designs, which
limits its ability to model long-range dependencies.

In comparison to DRA-Net (ResNet-34), which introduces
attention mechanisms and dynamic refinement, V-SAM achieves
↑1.45% higher Accuracy, ↑1.60% better Recall, and ↑2.42%
improved F1-Score, showcasing its more effective context modeling
and class-sensitive segmentation. While DET-SAM uses the same
ViT-B backbone as V-SAM, its performance is notably lower across
all metrics, with V-SAM achieving ↑3.82% better Accuracy, ↑4.25%
higher Recall, and ↑5.49% stronger F1-Score. This gap underscores
the impact of V-SAM’s tailored optimization, prompting, and
skip-connection design, which DET-SAM lacks due to limited
adaptation for dense medical tasks. A detailed comparison of
all models is summarized in Table 8, and the corresponding
performance trends are visualized on the right side of Figure 10.

Table 9 further compares V-SAM with state-of-the-art (SOTA)
models on the HubMAP-2 dataset. V-SAM achieves an Accuracy
of 97.65% and an F1-Score of 95.54%, outperforming LinkNet
(EfficientNet-B3 backbone) in F1-Score by 1.21%, DS-FNet (AU-
Net backbone) by 0.36%, and SegNeXt (MSCAN-S backbone) by
0.08%. While LinkNet achieves the highest Accuracy (99.70%), its
reliance on EfficientNet limits its ability to balance precision and
recall, resulting in a lower F1-Score. This limitation stems from the
inherent constraints of convolutional architectures, which struggle
to model long-range dependencies and global context effectively.
Similarly, DS-FNet and SegNeXt, despite their strong performance,
are constrained by their convolutional architectures, which are
less effective at capturing fine-grained details and global structures
compared to transformer-based models like V-SAM. The F1-Score
comparison among both datasets are given in Figure 11.

In contrast, CNN-TransXNet (TransXNet backbone) performs
poorly, with V-SAM achieving 12.52% higher Accuracy and
12.61% better F1-Score. This significant performance gap is likely
due to inefficiencies in CNN-TransXNet’s hybrid convolutional-
transformer design, which fails to fully leverage the strengths of
either architecture. V-SAM, on the other hand, excels due to its
pure transformer-based architecture (ViT-B backbone), which is
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FIGURE 8

From left to right: in first image, display the dataset image. In the second image, depict polygons drawn on the corresponding image. In the third

image, exhibit the binary mask of that image.

FIGURE 9

From left to right: in first image, display the dataset image. In the second image, depict polygons drawn on the corresponding image.

specifically designed to model global dependencies and intricate
structures. Additionally, V-SAM’s advanced fine-tuning techniques
and optimization strategies ensure that it adapts effectively to the
dataset, delivering precise and balanced results. These features
solidify V-SAM’s position as a leading model for medical image
segmentation tasks, as demonstrated by its superior performance
across multiple metrics. The comparison with SOTA models is
provided in Table 9.

The segmentation results provide further insight into the
performance of each model when applied to kidney histology
images (Figure 12). UNet++ captures the primary structures but

struggles with accurately segmenting the finer regions. Over-
segmentation is observed in areas such as the top-left and top-
right corners, where boundary details are not preserved, and
gaps in segmentation appear in some areas, as highlighted in
the red boxes. DRA-Net improves upon these issues by showing
better overall segmentation continuity, though boundary artifacts
persist, and small structures remain inadequately segmented. Det-
SAM performs moderately well, showing better refinement of
major structures, but there is a tendency to under-segment,
particularly in regions containing finer details or smaller clusters.
In contrast, the V-SAM model excels by closely matching
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the ground truth, accurately capturing both large and small
features with minimal errors. It achieves clean and precise
boundaries, successfully preserving structural integrity even in
complex regions. This superior performance is likely due to the
model’s ability to utilize spatial, channel, and temporal attention
mechanisms that enhance feature extraction and refinement of
segmentation masks. Additionally, V-SAM demonstrates better
generalization, effectively handling variability in texture and
shape across different regions of the images. Therefore, V-SAM
maintains the optimal balance between segmentation accuracy and
detail preservation, making it the best-performing model for this
task.

6 Discussion

The experimental results demonstrate that the proposed V-
SAM model achieves superior performance compared to several
state-of-the-art (SOTA) segmentation models, including UNet++,
nnUNet, DRA-Net, and DET-SAM, on both the HubMAP-1 and
HubMAP-2 datasets. These improvements are largely attributed
to V-SAM’s transformer-based architecture, specifically the ViT-
B backbone, which effectively captures both global contextual
relationships and fine-grained structural details. Robust data

TABLE 6 Comparison of V-SAM with di�erent models for HubMAP-1.

Model Backbone Accuracy
(%)

Recall
(%)

F1-score
(%)

UNet++ (43) ResNet-50 85.62 83.52 82.91

nnUNet (44) UNet 86.19 84.27 83.99

DRA-Net (45) ResNet-34 87.26 85.63 84.69

DET-SAM
(12)

ViT-B 84.79 83.75 81.14

V-SAM ViT-B 89.31 87.29 86.17

The bold values showing best results.

augmentation and careful fine-tuning of the attention mechanism
further enhance the model’s ability to handle complex textures
and morphological variations common in medical images. V-SAM
achieved an accuracy of 89.31%, a Recall of 87.29%, and an F1-score
of 86.17% on HubMAP-1, and an accuracy of 97.65%, Recall of
95.62%, and F1-score of 95.54% on themore challengingHubMAP-
2 dataset. These results indicate consistent improvements across
both coarse and fine structures, as further validated by visual
comparisons showing V-SAM’s ability to delineate both large
anatomical regions and smaller entities like glomeruli critical for
accurate diagnosis and treatment planning.

TABLE 7 Comparison of V-SAM with SOTA for HubMAP-1.

Model Publication/
Year

Backbone Accuracy
(%)

F1-Score
(%)

FastAI
U-Net (46)

EESS-23 ResNet-50 — 58.00

UniMatch_sf
(42)

MIDL-24 MiT-B1 — 81.40

Omni-Seg
(47)

SPIE.MI-23 ReS-UNet — 82.30

V-SAM — ViT-B 89.31 86.17

The bold values showing best results.

TABLE 8 Comparison of V-SAM with di�erent models for HubMAP-2.

Model Backbone Accuracy
(%)

Recall
(%)

F1-Score
(%)

UNet++ (43) ResNet-50 94.81 92.08 90.85

nnUNet (44) UNet 95.63 93.65 93.27

DRA-Net (45) ResNet-34 96.20 94.02 93.12

DET-SAM (12) ViT-B 93.83 91.37 90.05

V-SAM ViT-B 97.65 95.62 95.54

The bold values showing best results.

FIGURE 10

The trend of performance improvement across di�erent models on both datasets. From left to right, the figure shows the incremental growth in

Accuracy, Recall, and F1-Score for HubMAP-1 and HubMAP-2, respectively.
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Although V-SAM leverages point-based prompts to guide
segmentation, the inclusion of sparse point prompts is deliberate.
This approach addresses limitations observed in purely automated
models, particularly for tasks involving complex, low-contrast
structures such as kidney glomeruli, where fully automated
methods often struggle to achieve the necessary precision. These
prompts enable precise localization and targeted correction,
offering enhanced control and reliability in edge cases where
automated models tend to fail. The integration of gradient-
based refinement further allows sub-pixel accuracy with minimal
computational cost, making the approach viable for semi-
supervised clinical workflows. This trade-off balances automation
with interpretability and expert oversight, which is often essential
in real-world medical applications.

Despite its strong performance, V-SAM does come with certain
limitations. The generalizability to other imaging modalities and
anatomical regions remains an open area for exploration. Future
work will focus on reducing dependence on manual prompts while
retaining performance gains, potentially through active learning or

TABLE 9 Comparison of InFeNet with SOTA for HubMAP-2.

Model Publication
/ Year

Backbone Accuracy
(%)

F1-
Score
(%)

EnsembleDLNet
(33)

AJSE-22 ResNet-50 97.50 91.50

DS-FNet (35) CMIG-22 AU-Net — 95.05

UNet (48) Soft
Computing-23

EfficientNet-
B4

99.68 90.60

LinkNet (38) Digital
Imaging-23

EfficientNet-
B3

99.70 94.20

SegNeXt (40) Neurocomputing-
24

MSCAN-S — 95.33

CNN-TransXNet
(3)

IJCIS-24 TransXNet 85.13 82.80

V-SAM — ViT-B 97.65 95.54

The bold values showing best results.

self-supervised refinement mechanisms. Overall, V-SAM presents
a promising advancement in medical image segmentation, offering
a compelling balance between automation and precision, and
setting the stage for more robust and adaptable diagnostic tools in
computational pathology.

7 Conclusion

In this study, we introduced V-SAM, a novel and efficient
architecture tailored for medical image segmentation, with a
specific focus on glomerulus segmentation in kidney images. V-
SAM integrates a promptable paradigm, a V-shaped structure,
and skip connections to effectively capture fine-grained details
and preserve critical spatial information. The addition of
adapter layers facilitates efficient fine-tuning of the pre-trained
SAM, while the point-based prompt mechanism enhances
the model’s ability to localize low-contrast and fragmented
structures with greater accuracy. Moreover, the upsampling
adapter improves segmentation results by recovering high-
resolution details. Experimental evaluations on the HubMAP-1 and
HubMAP-2 datasets highlight V-SAM’s superior performance. On
HubMAP-1, V-SAM outperforms DET-SAM with improvements
of approximately 5.3%, 4.2%, and 6.2% in accuracy, Recall,
and F1-score, respectively. On the more challenging HubMAP-
2 dataset, V-SAM surpasses DET-SAM by about 4.0%, 4.6%, and
6.1% in accuracy, Recall, and F1-score, respectively. These results
demonstrate V-SAM’s ability to capture global context and long-
range dependencies, offering a clear advantage over traditional
convolutional backbones.

In conclusion, V-SAM demonstrates its potential as a
robust and efficient solution for medical image segmentation,
particularly for complex tasks such as segmentation of the
glomerulus in kidney images. With its adaptability, computational
efficiency, and superior performance, V-SAM is well suited for
clinical applications. Future work will focus on expanding V-
SAM to other medical imaging tasks and further refining its
architecture to optimize both performance and real-time usability
in clinical settings.

FIGURE 11

The variations in F1-Score per epoch by di�erent model on both datasets from (left to right) for HubMAP-1 and HubMAP-2 respectively.
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FIGURE 12

Visual comparison of the proposed V-SAM model with SOTA models on the HubMAP-1 and HubMAP-2. From left to right, the first four images

represent HubMAP-1, while the following four images depict HubMAP-2.
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