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Background: Acute pancreatitis (AP) in the intensive care unit (ICU) is linked to 
elevated in-hospital mortality rates. Timely identification of high-risk patients 
remains challenging. This study aimed to develop an interpretable machine 
learning model for predicting in-hospital mortality in ICU patients with AP and 
to identify key contributing factors.

Methods: A retrospective analysis was performed on 306 ICU patients 
diagnosed with AP. After data preprocessing and feature selection via the Least 
Absolute Shrinkage and Selection Operator (LASSO), seven machine learning 
models were developed: decision tree, random forest, XGBoost, support vector 
machine (SVM), multilayer perceptron, k-nearest neighbors (KNN), and logistic 
regression. Model performance was evaluated using the area under the receiver 
operating characteristic curve (AUC), Brier score, calibration plots, and decision 
curve analysis (DCA). The SHapley Additive exPlanations (SHAP) framework was 
utilized to interpret model predictions and assess feature importance rankings.

Results: Multivariate logistic regression analysis identified the following 
independent risk factors for in-hospital mortality in ICU patients with AP: 
acute physiology and chronic health evaluation (APACHE II) score, activated 
partial thromboplastin time (APTT), albumin (Alb), blood urea nitrogen (BUN), 
creatinine (Cr), use of vasoactive agents, and ICU length of stay. The AUC values 
for the seven machine learning models in the training set were DT (0.947), RF 
(0.900), XGBoost (0.887), SVM (0.901), MLP (0.837), KNN (0.983), and LR (0.876). 
In the validation set, the corresponding AUC values were DT (0.698), RF (0.850), 
XGBoost (0.878), SVM (0.892), MLP (0.822), KNN (0.755), and LR (0.858). Although 
DT and KNN demonstrated high sensitivity and specificity in the training set, 
their performance was suboptimal in the validation set. SHAP analysis ranked 
APACHE II score as the most influential predictor of mortality.

Conclusion: An interpretable SVM model incorporating routinely available 
clinical variables effectively predicts in-hospital mortality in ICU patients with AP. 
SHAP-enhanced interpretation highlights key predictors and enhances model 
transparency, supporting clinical decision-making.
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1 Introduction

Acute pancreatitis (AP) ranks among the most prevalent 
gastrointestinal conditions that necessitate hospitalization, with 
incidence rates showing considerable variation across various 
regions—ranging from about 4.9 to 73.4 per 100,000 patients—and 
indicating an increasing trend in recent years (1). While most cases of 
AP are mild with a favorable prognosis, about 20% of patients develop 
severe acute pancreatitis (SAP), which is characterized by sepsis or 
multi-organ failure, necessitating admission to the intensive care unit 
(ICU) (2). In such cases, mortality rates increase markedly, ranging 
from 17.6 to 52% (3).

Currently, several scoring tools are employed to predict the 
prognosis of AP, including the Ranson score (4), the Bedside Index for 
Severity in Acute Pancreatitis (BISAP) (5), and the Computed 
Tomography Severity Index (CTSI) (6). Each tool has its own 
advantages and limitations (7). In recent years, advancements in 
artificial intelligence have facilitated the integration of various 
machine learning algorithms into the medical field. These algorithms 
are currently frequently employed in auxiliary diagnosis, prognosis 
assessment, and survival analysis, making them vital instruments in 
clinical research (8).

Prominent among these are statistical algorithms such as logistic 
regression (LR) and machine learning models, including support 
vector machines (SVM), artificial neural networks (ANN), random 
forests (RF), and decision trees (DT) (8, 9). Although most current 
predictive models exhibit high accuracy, they often prioritize model 
discrimination over interpretability, leading to reluctance among 
clinicians to trust and utilize these models (10).

Consequently, this study seeks to create machine learning models 
utilizing different algorithms to predict in-hospital mortality among 
AP patients in the ICU, determine the most effective model, and 
improve its interpretability through SHapley Additive exPlanations 
(SHAP). Ultimately, this study seeked to determine key prognostic 
factors influencing the outcomes of AP patients in the ICU.

2 Materials and methods

2.1 Study design

This retrospective single-cohort study was conducted on adult 
patients diagnosed with acute pancreatitis (AP) who were admitted to 
the first department of the ICU from September 2013 to September 
2023. Data were collected, analyzed, and used to develop predictive 
models to identify risk factors associated with mortality in 
ICU-admitted AP patients.

2.2 Study population

Inclusion Criteria: (1) Patients aged 18 years and older; (2) 
Diagnosis of AP confirmed by the following criteria: (a) Abdominal 
pain indicative of acute pancreatitis, (b) Serum amylase or lipase levels 
at least three times the normal values; (c) Diagnostic imaging (CT, 
MRI, or ultrasound) showing characteristic features of acute 
pancreatitis. Exclusion Criteria: (1) Patients with malignant tumors; 
(2) Pregnant patients; (3) Variables with over 30% missing data.

2.3 Data collection

General patient information was collected, including age, gender, 
body mass index (BMI), and disease etiology. Various scores (SOFA 
score, Marshall score, APACHE II score) and laboratory test results 
were also recorded. All test results were the first obtained within 24 h 
of ICU admission. The laboratory tests included: Serum amylase 
(Amy); White blood cell (WBC), percentage of neutrophils (NEUT), 
C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6); 
Brain natriuretic peptide (BNP); Platelet (PLT), prothrombin time 
(PT), activated partial thromboplastin time (APTT), fibrinogen (Fib) 
and D-dimer (D-D); Albumin (Alb), total bilirubin (TB), direct 
bilirubin (DB), total cholesterol (TC), triglyceride (TG), alanine 
aminotransferase (Alt), blood urea nitrogen (BUN), creatinine (Cr), 
blood glucose (Glu), blood calcium (Ca2+) and blood potassium 
(K+); Interventions (e.g., invasive mechanical ventilation, use of 
vasoactive agents, CRRT, use of antibiotics or hormones, abdominal 
puncture drainage, and laparotomy), comorbidities (e.g., 
cardiovascular disease, hypertension, chronic obstructive pulmonary 
disease, diabetes mellitus, renal insufficiency), complications (e.g., 
pancreatic necrosis, sepsis, or septic shock), and outcome measures 
(e.g., in-hospital mortality, length of hospital stay, length of ICU stay) 
were also recorded.

2.4 Model construction

The dataset was first randomly split into a training set (70%) and 
a validation set (30%). Variable selection was performed exclusively 
on the training set using Least Absolute Shrinkage and Selection 
Operator (LASSO) logistic regression, with in-hospital mortality 
(1 = death, 0 = survival) as the binary outcome variable. The optimal 
regularization parameter was determined via 10-fold cross-validation 
using the lambda.1SE criterion. Candidate predictors identified by the 
LASSO model (i.e., those with non-zero coefficients) were 
subsequently entered into a multivariable logistic regression model to 
further verify their independent association with the outcome. 
Variables with statistical significance (p < 0.05) were retained as final 
predictors. These selected features were then used as input variables 
for downstream model construction. To evaluate and compare the 
predictive performance, we applied seven commonly used machine 
learning algorithms, including DT, RF, Extreme Gradient Boosting 
(XGBoost), SVM, Multi-Layer Perceptron (MLP), K-Nearest 
Neighbors (KNN), and Logistic Regression (LR). For each model, the 
relative importance of predictors was assessed based on their internal 
feature weights or contribution metrics.

2.5 Model evaluation

Five-fold cross-validation was used for model comparison and 
hyperparameter selection. Receiver Operating Characteristic (ROC) 
curves were generated for all datasets, with the corresponding area 
under the curve (AUC) values calculated to quantify diagnostic 
performance. A comprehensive evaluation of predictive capability 
was performed through accuracy, F1 score, and Brier score metrics. 
Calibration curves were plotted to assess model accuracy in 
probability estimation, while clinical decision curve analysis (DCA) 
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was implemented to evaluate the net clinical benefit across various 
threshold probabilities. SHapley Additive exPlanation (SHAP) 
values were calculated to determine the contribution of each feature 
to the prediction model, illustrating the impact of individual 
features. This multimodal assessment framework enabled systematic 
identification of the optimal predictive model through integrated 
analysis of discrimination, calibration, and clinical 
utility parameters.

2.6 Statistical method

Statistical analyses were performed using R version 4.2.3 and 
Python version 3.11.4. Categorical data were presented as counts (n) 
or percentages (%) and compared between groups using the chi-square 
test. Normally distributed measurement data were expressed as means 
± standard deviation (x ± s) and compared between groups using the 
independent sample t-test. Non-normally distributed data were 
presented as medians (M) with first and third quartiles (Q1, Q3) and 
compared using the Wilcoxon rank sum test. A p-value of less than 
0.05 was considered statistically significant.

2.7 Ethics

This study received approval from the Ethics Committee of the 
Second Affiliated Hospital of Anhui Medical University (No. 
YX2023-136).

3 Results

3.1 Patient characteristics

A total of 306 AP patients were enrolled in the study, including 
267 patients in the survival group and 39  in the death group. 
Compared to the survival group, the death group had a higher 
proportion of male patients and an older average age. Additionally, 
more patients in the death group received treatments such as 
vasoactive agents (VA), mechanical ventilation (MV), glucocorticoids, 
and continuous renal replacement therapy (CRRT). The death group 
also had a higher incidence of surgical interventions, abdominal 
puncture drainage, and complications. APACHE II, Marshall, and 
SOFA scores were significantly higher in the death group. Serum levels 
of amylase, procalcitonin (PCT), interleukin-6 (IL-6), B-type 
natriuretic peptide (BNP), prothrombin time (PT), activated partial 
thromboplastin time (APTT), D-dimer (D-D), direct bilirubin (DB), 
blood urea nitrogen (BUN), creatinine (Cr), triglycerides (TG), and 
total cholesterol (TC) were also elevated in the death group (p < 0.05). 
In contrast, platelet (PLT), fibrinogen (Fib), and albumin (Alb) levels 
were lower, and ICU stay duration was longer in the death group (all 
p < 0.05). No significant differences were observed in the other 
indicators between the two groups (Table  1). The dataset was 
randomly divided into training and validation sets in a 7:3 ratio. The 
training set comprised 216 cases used for model training, while the 
remaining 90 cases were utilized for model validation. In-hospital 
mortality rates were 12.5% in the training set and 13.3% in the 
validation set. Clinical data comparisons between the survival and 

death groups, as well as between the training and validation sets, are 
presented in Table 1.

3.2 Model construction and evaluation

3.2.1 LASSO regression screening for predictors
All variables were included in the LASSO logistic regression 

model for feature selection. The regularization parameter was 
determined using the lambda.1SE criterion, which selects the largest 
lambda within one standard error of the minimum cross-validated 
error, promoting a more parsimonious model. The selected predictors 
were: APACHE II score, APTT, Alb, BUN, Cr, use of vasoactive agents, 
and ICU stay duration (Figures 1A,B).

3.2.2 Multivariate logistic regression analysis
The predictors identified by LASSO regression were incorporated 

into multivariate logistic regression analysis. The results indicated that 
these predictors were independent risk factors for mortality in AP 
patients admitted to the ICU (Table 2).

3.2.3 Construction and evaluation of the model
The receiver operating characteristic (ROC) curves for the seven 

prediction models (DT, RF, XGBoost, SVM, MLP, KNN, and LR) were 
plotted for both the training and validation sets to assess their ability 
to predict mortality risk in AP patients (Figures 2A,B). In the training 
set, the area under the curve (AUC) values were as follows: DT (0.947), 
RF (0.9), XGBoost (0.887), SVM (0.901), MLP (0.837), KNN (0.983), 
and LR (0.876). In the validation set, the AUC values were: DT (0.698), 
RF (0.85), XGBoost (0.878), SVM (0.892), MLP (0.822), KNN (0.755), 
and LR (0.858) (Figures  2A,B; Table  3). Although DT and KNN 
demonstrated high sensitivity and specificity in the training set, their 
performance was suboptimal in the validation set, with AUC values 
of 0.698 and 0.755, respectively. Although SVM showed slightly lower 
sensitivity, specificity, and AUC values than DT and KNN in the 
training set (AUC values of 0.901, 0.947, and 0.983), it had the highest 
AUC in the validation set, with an AUC of 0.892. The AUC values and 
prediction performance for each model are compared in Table  3. 
Based on AUC, accuracy, specificity, and sensitivity, SVM emerged as 
the most robust model.

The calibration curves for each prediction model indicated that 
the DT and SVM models provided stable predictions in the training 
set, though their performance was slightly less accurate in the 
validation set. In contrast, the LR model performed better in the 
validation set (Figures  3A,B). The decision curve analysis (DCA) 
revealed that the KNN model provided the greatest clinical benefit in 
the training set, while the SVM model offered more clinical benefit in 
the validation set (Figures 4A,B).

3.2.4 Visualization by SHAP
In addition to model selection, we employed the SHAP algorithm 

to explain the prediction model. Figures  5A,B display the feature 
importance rankings for the SVM model. The four most significant 
predictors were: APACHE II score, albumin (Alb), urea nitrogen 
(BUN), and the use of vasoactive agents. Higher APACHE II scores, 
elevated BUN levels, and lower albumin levels were associated with 
higher mortality in AP patients, while the use of vasoactive agents also 
increased mortality risk (Figures 5A,B). To elucidate the interpretability 

https://doi.org/10.3389/fmed.2025.1592051
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2025.1592051

Frontiers in Medicine 04 frontiersin.org

TABLE 1 Baseline characteristics of patients included.

Variables Survivors 
(n = 263)

Nonsurvivors 
(n = 43)

All patients 
(n = 306)

p Training set 
(n = 214)

Validation set 
(n = 92)

All patients 
(n = 306)

p

Age (years)a 49 (38, 66) 57 (46, 71) 50 (38.2, 66.8) 0.030 50 (39, 67) 50 (38, 64.8) 50 (38.2, 66.8) 0.528

Genderb 0.011 0.449

  Male 141 (52.8) 29 (74.4) 170 (55.6) 123 (56.9) 47 (52.2) 170 (55.6)

  Female 126 (47.2) 10 (25.6) 136 (44.4) 96 (44.4) 41 (45.1) 137 (44.6)

BMI (Kg/m2)a 26.4 (24.2, 28) 27.6 (24.6, 29.4) 26.5 (24.3, 28.2) 0.130 26.4 (24.2, 28.1) 26.6 (24.6, 28.2) 26.5 (24.3, 28.2) 0.589

APACHE II scorea 12 (8.5, 16) 19 (15, 23.5) 13 (9, 18) < 0.001 12 (9, 18) 13 (9, 17) 13 (9, 18) 0.581

SOFA scorea 4 (2, 7) 6 (5, 8) 5 (3, 7) < 0.001 4 (3, 7) 5 (3, 7) 5 (3, 7) 0.471

Modified Marshall scorea 2 (1, 3.5) 4 (3, 5) 2 (1, 4) < 0.001 2 (1, 4) 2 (1, 4) 2 (1, 4) 0.777

Comorbiditiesb

DM 0.169 0.207

  No 207 (77.5) 34 (87.2) 241 (78.8) 166 (76.9) 75 (83.3) 241 (78.8)

  Yes 60 (22.5) 5 (12.8) 65 (21.2) 50 (23.1) 15 (16.7) 65 (21.2)

Hypertension 0.255 0.377

  No 213 (79.8) 28 (71.8) 241 (78.8) 173 (80.1) 68 (75.6) 241 (78.8)

  Yes 54 (20.2) 11 (28.2) 65 (21.2) 43 (19.9) 22 (24.4) 65 (21.2)

Cardiovascular disease 1.000 0.875

  No 251 (94) 37 (94.9) 288 (94.1) 203 (94) 85 (94.4) 288 (94.1)

  Yes 16 (6) 2 (5.1) 18 (5.9) 13 (6) 5 (5.6) 18 (5.9)

COPD 1.000 0.164

  No 253 (94.8) 37 (94.9) 290 (94.8) 202 (93.5) 88 (97.8) 290 (94.8)

  Yes 14 (5.2) 2 (5.1) 16 (5.2) 14 (6.5) 2 (2.2) 16 (5.2)

Chronic renal insufficiency 0.912 0.012

  No 221 (82.8) 32 (82.1) 253 (82.7) 171 (79.2) 82 (91.1) 253 (82.7)

  Yes 46 (17.2) 7 (17.9) 53 (17.3) 45 (20.8) 8 (8.9) 53 (17.3)

Laboratory testa

AMY (U/L)
518 (113, 1, 370) 1, 006 (347.5, 1800.5) 571.5 (143.5, 1, 439) 0.017

604.5 (116.8, 

1583.5)
436.5 (177, 1272.8)

571.5 (143.5, 1, 

439)

518 (113, 

1,370)

WBC (×109/L) 12.8 (8.9, 17) 14.4 (10.8, 20.2) 12.9 (9, 17.3) 0.089 12.8 (8.9, 17) 13.2 (9.5, 17.9) 12.9 (9, 17.3) 0.332

N (%) 85.9 (80.6, 90.3) 86.7 (81.8, 89.8) 86 (80.7, 90.2) 0.455 86.1 (80.7, 90.6) 85.8 (81.3, 89.5) 86 (80.7, 90.2) 0.454

CRP (mg/L) 178.8 (73.1, 265.4) 172.6 (99, 262.2) 176.6 (73.6, 266.4) 0.803 181.9 (96.7, 264.4) 165.9 (63.3, 271.2) 176.6 (73.6, 266.4) 0.527

PCT (ng/ml) 1.5 (0.4, 5.9) 2.5 (1.2, 22) 1.6 (0.5, 6.2) 0.018 1.6 (0.5, 7.2) 1.7 (0.5, 5.4) 1.6 (0.5, 6.2) 0.600

IL-6 (pg/ml) 139.8 (53.7, 461) 234.4 (119.8, 507.4) 161.6 (56, 463.4) 0.02 160.2 (59.2, 451.8) 163.1 (54.3, 631.8) 161.6 (56, 463.4) 0.716

BNP (ng/l) 149 (77.5, 335.5) 297 (121, 752.5) 156 (80.8, 429) 0.017 155.5 (78, 365.8) 162 (86.8, 438.2) 156 (80.8, 429) 0.627

PLT (×109/L) 171 (113.5, 228.5) 129 (88.5, 198) 167.5 (112, 226.8) 0.033 164 (104.5, 225.2) 175 (127, 233.8) 167.5 (112, 226.8) 0.153

PT (S) 12.8 (11.7, 14.5) 13.9 (12.2, 15.7) 12.9 (11.7, 14.7) 0.044 12.9 (11.8, 14.7) 12.8 (11.7, 14.5) 12.9 (11.7, 14.7) 0.926

APTT (S) 30.5 (25.7, 36.5) 35.7 (28.9, 45.4) 31.2 (26.1, 37.6) 0.002 31.2 (26.1, 38) 31 (26.1, 36.7) 31.2 (26.1, 37.6) 0.889

FIB (g/L) 4.9 (3.3, 6.8) 3.3 (2.1, 4.9) 4.7 (3.2, 6.8) 0.002 4.5 (3.2, 6.8) 5 (3.2, 7.1) 4.7 (3.2, 6.8) 0.410

D-D (ug/ml) 3.9 (2, 6.3) 6.6 (3.7, 9.6) 4.1 (2.1, 6.8) < 0.001 4.3 (2.4, 6.8) 4 (1.7, 6.4) 4.1 (2.1, 6.8) 0.298

Alb (g/L) 28.5 (25.2, 35) 22.6 (18.4, 27) 28.1 (24.5, 34.8) < 0.001 28.4 (24.8, 35.5) 27.1 (23.6, 32.8) 28.1 (24.5, 34.8) 0.150

TB (umol/L) 21.5 (13, 33.9) 24.7 (19.6, 52.4) 22 (13.3, 36.3) 0.083 22.1 (13.1, 34.8) 22 (13.6, 44.1) 22 (13.3, 36.3) 0.975

DB (umol/L) 7 (3.5, 16.1) 13.6 (5.9, 40.4) 7.8 (3.8, 18.4) 0.006 7.8 (4.2, 17.2) 7.6 (3.2, 19.1) 7.8 (3.8, 18.4) 0.545

TG (mmol/L) 2 (1.1, 6.4) 1.3 (1, 2.2) 1.9 (1.1, 5.5) 0.036 1.8 (1, 5.5) 1.9 (1.2, 5.5) 1.9 (1.1, 5.5) 0.510

TC (mmol/L) 4.1 (2.8, 6.4) 3.2 (2.2, 4.1) 3.9 (2.7, 5.9) 0.001 3.9 (2.6, 5.9) 4 (2.7, 5.8) 3.9 (2.7, 5.9) 0.636

ALT (U/L) 48 (24.5, 108) 49 (26.5, 138.5) 48 (25, 109.8) 0.356 42.5 (24, 93.5) 65.5 (28, 146) 48 (25, 109.8) 0.031

BUN (mmol/L) 7.4 (4.5, 13.5) 10.7 (7.8, 22.3) 7.8 (4.7, 14.2) < 0.001 8.3 (5.2, 17.8) 7.2 (4.6, 10.5) 7.8 (4.7, 14.2) 0.028

Cr (umol/L) 88 (60.5, 137.5) 178 (105.5, 317) 95 (62, 160) < 0.001 92 (61, 160) 96 (65.5, 162.5) 95 (62, 160) 0.714

(Continued)
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of our machine learning model, we utilized SHAP (SHapley Additive 
exPlanations) to analyze the contribution of individual variables to the 
predicted outcome. Figure 5C illustrates a SHAP waterfall plot for a 
representative patient with acute pancreatitis, demonstrating how each 
clinical feature shifted the model prediction relative to the baseline.

Among the most influential predictors increasing the model’s 
output were elevated blood urea nitrogen (BUN) (+0.37), higher 
APACHE II score (+0.27), and decreased serum albumin (Alb) levels 
(+0.25). These features collectively contributed to an increased risk of 
adverse outcome. In contrast, variables such as receiving continuous 
renal replacement therapy (CRRT) (−0.23) and undergoing peritoneal 
drainage (−0.21) were associated with a reduction in predicted risk.

The cumulative SHAP values shifted the model’s log-odds output 
from the base value to a final prediction score of f(x) = −1.81, 
corresponding to a lower estimated probability of poor prognosis. This 
individualized explanation highlights the model’s capacity to integrate 
complex clinical variables and produce interpretable, patient-specific 
risk predictions.

4 Discussion

In this study, LASSO regression was used to identify key 
variables, resulting in the selection of seven predictors: APACHE 

TABLE 1 (Continued)

Variables Survivors 
(n = 263)

Nonsurvivors 
(n = 43)

All patients 
(n = 306)

p Training set 
(n = 214)

Validation set 
(n = 92)

All patients 
(n = 306)

p

GLU (mmol/L) 11.5 (7.5, 15.6) 9 (6, 18.2) 11.5 (7.3, 15.6) 0.283 12.2 (8.1, 15.7) 8.7 (7.2, 13.7) 11.5 (7.3, 15.6) 0.006

K+ (mmol/L) 4.2 (3.7, 4.6) 4.3 (4, 4.8) 4.2 (3.7, 4.6) 0.156 4.2 (3.7, 4.6) 4.2 (3.8, 4.7) 4.2 (3.7, 4.6) 0.879

Ca2+ (mmol/L) 1.9 (1.7, 2) 1.9 (1.7, 1.9) 1.9 (1.7, 2) 0.598 1.9 (1.7, 1.9) 1.9 (1.8, 2) 1.9 (1.7, 2) 0.037

Interventionsb

VA < 0.001 0.220

  No 193 (72.3) 13 (33.3) 206 (67.3) 150 (69.4) 56 (62.2) 206 (67.3)

  Yes 74 (27.7) 26 (66.7) 100 (32.7) 66 (30.6) 34 (37.8) 100 (32.7)

Antibiotics 1.000 0.582

  No 32 (12) 4 (10.3) 36 (11.8) 24 (11.1) 12 (13.3) 36 (11.8)

  Yes 235 (88) 35 (89.7) 270 (88.2) 192 (88.9) 78 (86.7) 270 (88.2)

Corticosteroid 0.005 0.145

  No 206 (77.2) 22 (56.4) 228 (74.5) 166 (76.9) 62 (68.9) 228 (74.5)

  Yes 61 (22.8) 17 (43.6) 78 (25.5) 50 (23.1) 28 (31.1) 78 (25.5)

IMV < 0.001 0.274

  No 219 (82) 21 (53.8) 240 (78.4) 173 (80.1) 67 (74.4) 240 (78.4)

  Yes 48 (18) 18 (46.2) 66 (21.6) 43 (19.9) 23 (25.6) 66 (21.6)

CRRT < 0.001 0.339

  No 224 (83.9) 17 (43.6) 241 (78.8) 167 (77.3) 74 (82.2) 241 (78.8)

  Yes 43 (16.1) 22 (56.4) 65 (21.2) 49 (22.7) 16 (17.8) 65 (21.2)

Surgical treatment < 0.001 0.552

  No 237 (88.8) 26 (66.7) 263 (85.9) 184 (85.2) 79 (87.8) 263 (85.9)

  Yes 30 (11.2) 13 (33.3) 43 (14.1) 32 (14.8) 11 (12.2) 43 (14.1)

Peritoneal drainage 0.005 0.059

  No 146 (54.7) 12 (30.8) 158 (51.6) 104 (48.1) 54 (60) 158 (51.6)

  Yes 121 (45.3) 27 (69.2) 148 (48.4) 112 (51.9) 36 (40) 148 (48.4)

Complication 0.003 0.495

  No 156 (58.4) 13 (33.3) 169 (55.2) 122 (56.5) 47 (52.2) 169 (55.2)

  Yes 111 (41.6) 26 (66.7) 137 (44.8) 94 (43.5) 43 (47.8) 137 (44.8)

LOSb

Hospital 22 (14, 34) 19 (6.5, 39) 21.5 (14, 35) 0.268 21.5 (14, 35.2) 21.5 (14, 34.8) 21.5 (14, 35) 0.600

ICU 6 (4, 10) 17 (5, 29) 6 (4, 12.8) < 0.001 6 (4, 12) 6 (3.2, 14.8) 6 (4, 12.8) 0.863

Outcomea 0.842

Survivors 189 (87.5) 78 (86.7) 267 (87.3)

Nonsurvivors 27 (12.5) 12 (13.3) 39 (12.7)

BMI, Body Mass Index; APACHE II, Acute physiological and Chronic health Evaluation II score; SOFA, sequential organ failure assessment score; COPD, chronic obstructive pulmonary 
disease; VA, vasoactive agent; IMV, invasive mechanical ventilation; CRRT, continuous renal replacement therapy; LOS, length of stay; aM(Q1, Q3), bn (%).
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II score, APTT, albumin, BUN, creatinine, use of vasoactive agents, 
and ICU length of stay. Seven machine learning models were 
developed and validated to predict in-hospital mortality among 
ICU patients with acute pancreatitis (AP). The SVM model 
demonstrated superior predictive efficiency compared to the other 
six models. To further assess the predictive efficiency of the SVM 
model, a SHAP feature importance graph was generated, 
illustrating the model’s workings (11). The Shapley value, derived 
from game theory, quantifies the contribution of each feature to the 
model’s predictions, highlighting the influence of various features 
on the model’s output. This approach reveals the non-linear 
relationships between features and predicted outcomes, thereby 
ensuring both model performance and clinical interpretability (12).

The SVM algorithm is known for its robustness, capable of solving 
non-linear problems and improving predictive performance. Unlike 
statistical models, which only capture linear relationships between 
features and outcomes, machine learning techniques can model 
complex, non-linear relationships, enhancing prediction efficiency. 

However, this improvement in predictive performance often 
compromises model interpretability, as machine learning models are 
often considered “black boxes”—we can observe the inputs and 
outputs, but the processes between them remain opaque (11). To 
address this, SHAP was employed to explain the model. Shapley values 
offer a solution from game theory, measuring the contribution of each 
feature to the model’s predictions, elucidating the role of different 
features in determining output, and revealing the non-linear 
relationship between features and outcomes, ensuring the model’s 
performance and clinical interpretability (12).

In recent years, the SVM algorithm has been applied in some 
studies on AP. Researchers have employed various machine learning 
algorithms, including decision trees, random forests, logistic 
regression, SVM, CatBoost, and XGBoost (13). In our study, seven 
machine learning models were used to predict the prognosis of ICU 
patients with AP, and SVM demonstrated the best performance. The 
SHAP feature importance graph was utilized to explain the model, 
enhancing the reliability of the results.

FIGURE 1

Feature selection using the LASSO regression model. A is the LASSO curve; B is the process of screening the most suitable λ through the 5-fold cross-
validation method in the LASSO model.

TABLE 2 Multivariate logistic regression analysis of AP mortality.

Variables B S. E Wald dF p OR 95% CI

Lower Upper

APACHE II 0.089 0.044 4.079 1 0.043 1.093 1.003 1.192

APTT 0.020 0.014 2.051 1 0.152 1.020 0.993 1.048

Alb −0.085 0.036 5.637 1 0.018 0.919 0.856 0.985

BUN 0.058 0.029 4.014 1 0.045 1.059 1.001 1.121

Cr 0.000 0.001 0.111 1 0.739 1.000 0.998 1.003

VA 1.304 0.562 5.39 1 0.020 3.682 1.225 11.069

LOS of ICU 0.028 0.015 3.22 1 0.073 1.028 0.997 1.060

APACHE II, Acute Physiology and Chronic Health Evaluation; APTT, Activated Partial Thromboplastin Time; Alb, Albumin; BUN, Blood Urea Nitrogen; Cr, Creatinine; VA, Vasoactive 
Agents; LOS, Length of Stay; ICU, Intensive Care Unit.
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This study identified several independent risk factors for mortality 
in ICU patients with AP: APACHE II score, APTT, albumin, urea 
nitrogen, serum creatinine, use of vasoactive agents, and ICU length 
of stay. The SHAP feature importance map revealed that the APACHE 
II score was the most significant predictor. The APACHE II score is a 
non-specific scoring system widely used in ICUs to assess disease 
severity and prognosis. Previous studies have demonstrated that 
APACHE II is an independent risk factor for predicting pancreatic 
necrosis, organ failure, and mortality in AP patients (7, 14), which 
aligns with the findings of this study.

In the case of severe acute pancreatitis (SAP), the activation of 
inflammatory factors leads to vascular endothelial damage, which 
triggers the release of tissue factor. This factor activates the coagulation 
system, initiating the coagulation cascade and disrupting the balance 
between coagulation and anticoagulation, resulting in coagulopathy 
and eventually microcirculatory disturbances, both in the pancreas 
and throughout the body (15). This may explain why APTT, used as 
an indicator of coagulation function in this study, serves as an 
independent risk factor for mortality in ICU patients with SAP.

Albumin, a multifunctional protein synthesized by the liver, plays 
essential roles in maintaining plasma colloid osmotic pressure, 
immune regulation, inflammation inhibition, and antioxidation (16–
18). Hypoalbuminemia in early SAP has been associated with poor 
prognosis, and timely albumin infusion can reduce mortality in SAP 
patients with hypoalbuminemia (19). The mechanisms underlying this 
include reduced albumin synthesis due to inflammatory factor release, 
albumin loss from capillary leakage caused by endothelial cell damage, 
and decreased protein intake due to fasting during SAP (18, 20). Our 
study found that albumin was an independent risk factor for mortality 
in ICU patients with SAP, with albumin levels being significantly 
lower in the mortality group compared to the survival group.

SAP often progresses to multi-organ dysfunction, including acute 
kidney injury (AKI), particularly in the kidneys, which are vulnerable 
to damage during SAP. AKI occurs in up to 70% of SAP patients (21), 
with elevated urea nitrogen and creatinine levels serving as important 
prognostic indicators (22–24). Blood creatinine levels, unaffected by 
changes in blood volume, are more indicative of organ damage (23). 
The pathophysiology of AKI in SAP remains unclear but may involve 

FIGURE 2

ROC curves of the 7 prediction models in the training set (A) and the validation set (B).

TABLE 3 Predictive performance of different models.

ML 
model

Training set Validation set

AUC Accuracy Sensitivity Specificity F1 Brier AUC Accuracy Sensitivity Specificity F1 Brier

DT 0.947 0.944 0.889 0.952 0.8 0.035 0.698 0.8 0.5 0.846 0.4 0.135

RF 0.9 0.792 0.852 0.783 0.505 0.079 0.85 0.744 0.833 0.731 0.465 0.093

XGBoost 0.887 0.847 0.815 0.852 0.571 0.08 0.878 0.756 0.75 0.756 0.45 0.086

SVM 0.901 0.806 0.852 0.799 0.523 0.072 0.892 0.733 0.917 0.705 0.478 0.086

MLP 0.837 0.731 0.889 0.709 0.453 0.143 0.822 0.656 0.75 0.641 0.367 0.147

KNN 0.983 0.898 1 0.884 0.711 0.04 0.755 0.711 0.667 0.718 0.381 0.035

LR 0.876 0.75 0.926 0.725 0.481 0.081 0.858 0.722 0.833 0.705 0.444 0.084

ML: machine learning; DT, Decision Tree; RF, Random Forest; XGBoost, Extreme Gradient Boosting; SVM, Support Vector Machines; MLP, Multi-Layer Perceptron; KNN, K-Nearest 
Neighbors; LR, Logistic Regression.
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FIGURE 3

shows the calibration curves of seven prediction models in the training set (A) and the validation set (B).
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hypovolemia, uncontrolled inflammatory responses, microcirculatory 
disturbances, and the toxic effects of substances released by necrotic 
pancreatic tissue (25).

Additionally, this study found that the use of vasoactive agents 
and ICU length of stay were independent risk factors for mortality in 
AP patients. Vasoactive agents are commonly used in patients with 
shock, particularly septic shock, which often complicates AP. The 
combination of AP and septic shock is a marker of disease progression 
and increased mortality risk (26). Patients with AP typically 
experience two peaks in mortality: the first within 2 weeks due to 
inflammatory response and organ damage, and the second between 2 

and 4 weeks, when sepsis and septic shock predominate. This later 
phase is marked by local complications, such as pancreatic necrosis 
and infection, and systemic complications, such as multiple organ 
failure, which can lead to further deterioration and death (27). The use 
of vasopressors and the prolonged ICU stay, often due to multi-drug-
resistant bacterial infections and other complications, significantly 
contribute to increased mortality and hospital costs.

The limitations of this study include its single-center retrospective 
design, which may introduce selection bias, and the absence of certain 
clinical variables, which could impact the findings. Additionally, the 
LASSO logistic regression model used for feature selection does not 

FIGURE 4

shows the decision curves of the seven prediction models in the training set (A) and the validation set (B).

FIGURE 5 (Continued)
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account for potential interactions among predictors, and its selection 
results may be unstable when collinearity exists. Furthermore, LASSO 
assumes linear relationships between predictors and outcomes, which 
may oversimplify the complexity of real-world clinical data. Future 
studies with larger multicenter datasets should consider including 
interaction terms and exploring alternative or complementary feature 
selection approaches to enhance model performance and interpretability.

5 Conclusion

In summary, this study created a machine learning model that 
is both interpretable and clinically relevant for predicting 

in-hospital mortality among ICU patients suffering from acute 
pancreatitis. Among the seven models tested, SVM demonstrated 
the best overall performance, balancing accuracy, calibration, and 
clinical utility. SHAP-based interpretation revealed that higher 
APACHE II scores, lower albumin levels, prolonged ICU stays, use 
of vasoactive agents, renal dysfunction markers (BUN, creatinine), 
and coagulation abnormalities (APTT) were the most influential 
predictors of mortality. This interpretable model may assist 
clinicians in early identification of high-risk patients, enabling 
timely and targeted interventions to improve outcomes in critical 
care settings.
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FIGURE 5

SHAP Feature Importance Summary diagram. (A) SHAP waterfall plot 
for a representative case with a high predicted probability. (B) SHAP 
waterfall plot for a representative case with a low predicted 
probability. Key features such as APACHE II score, albumin, BUN, and 
vasoactive agent usage contributed most significantly to individual 
predictions. (C) SHAP waterfall plot illustrating the local 
interpretability of the model prediction for an individual patient with 
acute pancreatitis.
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