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Background: Determining the KRAS gene mutation status in colorectal cancer 
(CRC) before surgery is highly important for an individualized clinical treatment. 
This study aimed to explore the clinical value of radiomics models based on CT 
images in predicting the KRAS mutation status in patients with CRC.

Methods: A total of 201 CRC patients who underwent surgery and pathology 
examinations from March 2022 to January 2025 were included. They were 
randomly allocated to a training group (160 patients) or a testing group (41 
patients) at a ratio of 8:2. All patients underwent plain CT and contrast-enhanced 
examinations before surgery. The 3D segmentation of the tumour was manually 
delineated by two radiologists who were unaware of the pathological results 
and KRAS gene detection outcomes. The PyRadiomics package in Python was 
used to extract 2,264 radiomic features from each ROI. After dimensionality 
reduction, machine learning methods such as extremely randomized trees 
(ERT), random forest (RF), XGBoost, Bagging, and CatBoost were used for model 
construction. The performance of the models was compared using the area 
under the receiver operating characteristic curve (AUC), accuracy, sensitivity, 
and specificity. The Delong test was employed to assess the differences between 
the various models.

Results: After feature selection, the top  8 features with the highest mutual 
information scores were extracted to construct a prediction model. The Delong 
test revealed that the XGBoost model, which is based on CT images from the 
vein phase, performed the best, with AUC values of 0.90 and 0.81 in the training 
and test sets, respectively. The calibration curve indicated a high consistency 
between the actual and predicted probabilities of the samples. The decision 
curve analysis results revealed that the XGBoost model exhibited the highest net 
clinical benefit among all the models.

Conclusion: In this study, a highly accurate radiomics model was developed 
for KRAS gene mutation status prediction in patients with CRC before surgery. 
This technique avoids the potential risks of tumour rupture and dissemination 
during biopsy and can serve as a powerful tool to assist doctors in developing 
personalized and precise targeted treatments for colorectal cancer, which 
highly important in clinical work.
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Introduction

Colorectal cancer (CRC) is the third most common cancer 
globally, accounting for approximately 9.6% of new cancer cases and 
9.3% of deaths annually, making it the second most common cause 
of cancer-related deaths (1). In recent years, the incidence and 
mortality rates of CRC have been increasing annually, imposing 
substantial health and economic burdens on patients and their 
families (2, 3). Therefore, exploring the pathogenesis of CRC and 
developing new therapeutic targets are clinically significant. Recently, 
the rapid development of molecular biology and genomics 
technologies has revealed the molecular characteristics of CRC, 
suggesting the importance of implementing an individualized 
treatment and precision medicine. For example, the Kirsten rat 
sarcoma (KRAS) gene is one of the most common mutated 
oncogenes in CRC, accounting for approximately 30%–50% of 
mutations (4, 5). KRAS mutations can cause a sustained activation 
of the RAS–RAF–MAPK signalling pathway, promoting the 
proliferation of tumour cells and leading to an ineffective treatment 
with anti-EGFR monoclonal antibodies (6). Anti-EGFR-targeted 
drugs have long been considered effective only for patients with 
wild-type KRAS, whereas KRAS-mutant drugs are considered 
ineffective (7, 8). Therefore, predicting the KRAS gene mutation 
status in CRC is highly important for individualized 
clinical treatment.

Currently, the preoperative prediction of KRAS mutations in 
CRC primarily relies on obtaining pathological samples via 
invasive needle biopsy (9, 10). However, this method is largely 
limited by the location and quantity of samples, making it 
difficult to comprehensively reflect the overall state of the 
tumour. In addition, needle biopsy may lead to tumour rupture, 
increasing the risk of tumour spread and metastasis. Liquid-
based testing for KRAS status currently faces limitations such as 
an insufficient specificity and high testing costs (11). There are 
also studies on the use of MRI or PET to predict KRAS mutations 
in CRC; however, issues such as abdominal motion artefacts, high 
costs and ionizing radiation have greatly limited their clinical 
applications (12, 13). Computed tomography (CT) is the 
preferred imaging method for the clinical diagnosis of CRC 
owing to its significant advantages, such as rapid, wide-range 
scanning and multi-directional imaging. It can clearly display the 
thickening of the intestinal wall and assess the relationship 
between the tumour and surrounding blood vessels and organs, 
which is indispensable for the preoperative evaluation of CRC 
(14). Radiomics, first proposed by Lambin et al., can analyse the 
relationships among images, genes, and clinical information of 
disease classification, treatment efficacy, and prognosis 
prediction by deep mining high-throughput information of 
imaging data (15). It has demonstrated to be significant in disease 
screening, biopsy guidance, treatment-plan development, and 
prognosis evaluation (16–18), which can greatly help with the 
personalized and precise treatment of diseases. Therefore, this 
study aimed to explore the clinical value of radiomics based on 

CT images in predicting the KRAS mutation status in patients 
with CRS.

Materials and methods

Patients

This was a retrospective study that was approved by the ethics 
committee of our institution, and the requirement for written 
informed consent was waived.

A total of 201 CRC patients who underwent surgery and 
pathology examination at the Affiliated Central Hospital of Chongqing 
University from March 2022 to January 2025 were included. They 
were randomly allocated into training (160 patients) and testing (41 
patients) groups at a ratio of 8:2 for model construction and validation. 
The inclusion criteria were as follows: (1) patients with CRC diagnosed 
with postoperative pathology and who underwent KRAS gene testing; 
(2) patients who underwent abdominal CT enhancement examination 
within 14 days before surgery; and (3) patients who did not receive 
radiotherapy, chemotherapy, or chemoradiotherapy before pathology 
examination. The exclusion criteria were as follows: (1) poor CT 
imaging quality; (2) incomplete clinical data; and (3) other concurrent 
malignancies. Clinical data such as age, gender, family history, 
hypertension status, diabetes status, carcinoembryonic antigen (CEA) 
levels, pathological results, and KRAS mutation results were collected 
from the electronic medical record system. The flow chart of the 
participant recruitment process is shown in Figure 1.

CT imaging

All CT images were obtained using the New Revolution CT system 
by General Electric Co., Ltd., and the uCT760 system by United Imaging 
Co., Ltd. The patients were placed in a supine position with both arms 
raised, and the body centred on the bed surface. After inhalation, breath-
holding scanning was performed, ranging from the diaphragmatic dome 
to the inferior margin of the pubic symphysis. Automatic tube current 
modulation technology was employed, with a rotation time of 0.5 s and 
a pitch of 0.992:1. The images were reconstructed using the adaptive 
statistical iterative algorithm (ASiR-V, weighted at 50%) and standard 
reconstruction convolution kernels, with a reconstruction thickness of 
1.25 mm. Firstly, non-enhanced phase (NP) scans were performed, 
followed by three-phase contrast-enhanced scans after the injection of 
a contrast medium. The delay times were set as 25–30 s for the arterial 
phase (AP), 50–70 s for the venous phase (VP), and 120 s for the 
equilibrium phase (EP). The contrast medium was injected through the 
right median cubital vein with an 80-mL bolus of iodinated contrast 
medium (Iohexol, GE Pharmaceuticals Co., Ltd., 300 mgI/mL) at a rate 
of 3.0 mL/s, followed by a 30-mL bolus of saline at the same rate. The 
delay time was measured using the Smart Prep method, and the 
monitoring level was set at the hepatic hilum level. The trigger was 
placed at the descending aorta, with a trigger threshold of 180 Hu.
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Tumour segmentation

3D segmentation of the tumour was manually delineated by two 
radiologists with over 20 years of experience utilizing the Intelligent 
Medical Research Platform (Version 20240130, United Imaging Co., 
Ltd., Shanghai, China). The pathologists were unaware of the 
pathological results and KRAS gene detection outcomes. Previous 
studies on enhanced CT images of gastrointestinal tumours revealed 
that the internal structural details and boundaries of the tumour were 
best displayed in the VP images (19, 20). Therefore, in this study, 
we first outlined the region of interest (ROI) in the VP phase (window 
level: 40 window width: 300) for the entire tumour (including the 
abnormally thickened and enhanced intestinal wall) while avoiding 
the intestinal contents and gas. Subsequently, we copied the ROI from 
the VP to the NP phase.

Radiomics feature extraction and feature 
selection

First, image preprocessing was performed, including grayscale 
discretization (binwidth = 25), image normalization (window width and 
level normalization), and image resampling (interpolation method 
selected as ‘BSpline’, resampling interval set to [1,1,1]) (21). Then, the 
PyRadiomics package in Python (version 2.1.2, https://pyradiomics.
readthedocs.io/) (22) was used to extract radiomic features from the NP 
and VP images. Each ROI contained 2,264 radiomics features, including 
a first-order histogram, 3D morphology, grey level co-existence matrix 
(GLCM), grey level range-matrix (GLRM), grey level size zone matrix 
(GLSZM), neighbouring grey tone difference matrix (NGTDM), and grey 

level dependence matrix (GLDM) features. The standard scaler method 
was employed to standardize the data. This step transformed the original 
data into a standard normal distribution with a mean of 0 and a standard 
deviation of 1, thereby eliminating the differences in dimensions and 
scales among the different features and ensuring a reasonable weight 
distribution for each feature in the subsequent analysis. For the feature 
selection step, this study utilized the recursive feature elimination (RFE) 
method, which is based on a random forest kernel. This method leverages 
the evaluation capability of the random forest model for feature 
importance, gradually selecting a subset of features that have a key impact 
on the target variable by recursively removing the least important features, 
thereby effectively reducing data dimensionality and improving the model 
training efficiency and generalization ability. Additionally, the mutual 
information method, which can measure the degree of mutual 
dependence between two variables, was used to filter the features. By 
calculating the mutual information score between each feature and the 
target variable (KRAS mutation status), features with scores higher than 
0.05 were selected. Among these selected features, those with higher 
mutual information scores were further chosen to capture key information 
related to the KRAS mutation status and to construct a model to achieve 
an accurate determination of the KRAS mutation status.

Model construction and evaluation

Machine learning methods, namely extremely randomized 
trees (ERT), random forest (RF), XGBoost (XB), bagging, and 
CatBoost, were used for model construction. The optimal 
parameters for each algorithm were selected using 10-fold cross-
validation to establish the VP, NP, and VP-NP models. The 

FIGURE 1

The flow chart of the study design.
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performance of the models was compared using the area under the 
receiver operating characteristic curve (AUC), accuracy, sensitivity, 
and specificity. The Delong test was employed to assess the 
differences between the various models. The relationship between 
the predicted and actual probabilities was evaluated using a 
calibration curve, and the net benefit of the model for patients was 
predicted using a decision curve. The architecture of the core 
process of this study is clearly presented in Figure 2.

Statistical analysis

The data analysis was conducted using the SPSS 25.0 statistical 
software. Quantitative data with a normal distribution are expressed as the 
mean ± standard deviation. Independent sample t-tests were used when 
the variables followed a normal distribution, and Mann–Whitney U tests 
were applied when they were non-normal. Chi-square tests were employed 
to analyse the qualitative variables to determine whether the differences 
were statistically significant. All the statistical tests were two-tailed, and a 
p-value of < 0.05 was considered statistically significant.

Results

This study included a total of 201 patients, 103 males and 98 
females, with an average age of 67.90 ± 11.26 years ranging from 24 to 
94 years. According to the KRAS gene test results, the patients were 
divided into a KRAS mutation group (n = 92, 45.77%) and a KRAS 
wild-type group (n = 109, 54.23%). In the KRAS mutation group, 40 
males (43.48%) and 52 females (56.52%) were included, whereas in 
the KRAS wild-type group, 63 males (57.80%) and 46 females 
(42.20%) were included. There was a statistically significant gender 
difference between the two groups (p = 0.043). Compared with that in 
patients in the KRAS wild-type group, the median CEA level was 
higher in those in the KRAS mutation group (5.61 [2.91, 15.95] vs. 
3.24 [1.91, 6.45], p = 0.001). There were no statistically significant 
differences in age, family history, history of hypertension, history of 
diabetes, tumour location, or the tumour pathological stage between 
the two groups (p > 0.05) (Table 1).

A total of 2,264 radiomic features were extracted from each ROI 
in the VP and NP images. The features were filtered using the recursive 
feature elimination (RFE) method, which is based on a random forest 
kernel, resulting in 225 and 226 features in the VP and NP images, 
respectively. The features with mutual information scores higher than 
0.05 were then selected using the mutual information method, 
resulting in 26 and 28 features in the two phases, respectively. The 
top  8 features with the highest mutual information scores were 
extracted to construct a KRAS mutation prediction model (Table 2). 
The performances of RF, BG, ET, XB, and CB are shown in Table 3. 
The Delong test revealed that the XB model based on the VP phase 
images performed the best, with AUC values of 0.90 and 0.81 in the 
training and test sets, respectively (Figure  3). The sensitivity, 
specificity, and accuracy in the training and test sets were 0.848, 0.896, 
and 0.874, and 0.870, 0.852, and 0.860, respectively. The calibration 
curve indicated a high consistency between the actual and predicted 
probabilities of the samples (Figures  4A,B). The analysis of the 
decision curve results revealed that the XB model exhibited the 
highest net clinical benefit among all the models (Figures 4C, 4D).

Discussion

KRAS mutations are common in colorectal cancer (30%–50%) and 
are considered important molecular markers for predicting the efficacy 
of the anti-EGFR monoclonal antibodies, cetuximab, and panitumumab 
(23, 24). For CRC patients who have metastasis or are unable to undergo 
a complete resection, an accurate and noninvasive assessment of the 
KRAS gene mutation status is helpful in guiding a targeted drug therapy 
and optimizing clinical decision-making (25). Cui et al. (12) extracted 
960 radiological features from the T2-weighted imaging (T2WI) of 390 
patients and identified 7 core features that significantly correlated with 
the cancer KRAS status after dimensionality reduction. The support 
vector machine (SVM) classification model constructed using these 
features achieved an area under the curve (AUC) of 0.714 in the external 
validation set. This study confirms the non-invasive preoperative 
evaluation of the KRAS gene expression in rectal cancer patients via 
radiological indicators, assisting in the development of individualized 
treatment strategies at the imaging level. Taguchi N (13) extracted 14 

FIGURE 2

The flow chart of colorectal cancer segmentation, feature extraction and models Construction.
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TABLE 1 Patient characteristics in the training set and testing set.

Characteristics Total group Wild-type group Mutated group p-value

(n = 201) (n = 109) (n = 92)

Age, years (Mean ± SD) 67.90 ± 11.26 68.35 ± 11.09 67.36 ± 11.49 0.417

Gender, n (%) 0.043*

  Male 103 (51.24) 63 (57.80) 40 (43.48)

  Female 98 (48.76) 46 (42.20) 52 (56.52)

Family history, n (%) 0.911

  No 184 (91.54) 100 (91.74) 84 (91.30)

  Yes 17 (8.46) 9 (8.26) 8 (8.70)

CEA (Median [Q1,Q3]) 3.24 [1.91,6.45] 5.61 [2.91,15.95] 0.001*

Hypertension, n (%) 0.055

  No 112 (55.72) 54 (49.54) 58 (63.04)

  Yes 89 (44.28) 55 (50.46) 34 (36.96)

Diabetes, n (%) 0.698

  No 149 (74.13) 82 (75.23) 67 (72.83)

  Yes 52 (25.87) 27 (24.78) 25 (27.17)

TNM stage, n (%) 0.311

  I 11 (5.47) 5 (4.59) 6 (6.52)

  II 78 (38.80) 44 (40.37) 34 (36.96)

  III 84 (41.79) 41 (37.66) 43 (46.74)

  IV 28 (13.93) 19 (17.43) 9 (9.78)

Location, n (%) 0.226

  Right colon 48 (23.88) 22 (20.18) 26 (28.26)

  Left colon 75 (37.31) 46 (42.20) 29 (31.52)

  Rectum 78 (38.81) 41 (37.62) 37 (40.22)

p value was calculated from two-sample t test for continuous variables and from Chi-squared test for discrete variables. *p values less than 0.05 were considered as statistically significant.

TABLE 2 Features retained after dimensionality reduction by recursive feature elimination.

ROI Features

Non-enhanced phase

mean_firstorder_RobustMeanAbsoluteDeviation;

wavelet_ngtdm_wavelet-LHL-Busyness;

log_glszm_log-sigma-2-0-mm-3D-LowGrayLevelZoneEmphasis;

wavelet_firstorder_wavelet-LHL-Kurtosis;

wavelet_glszm_wavelet-LLH-ZoneEntropy;

mean_glcm_Correlation;

wavelet_firstorder_wavelet-LLH-Kurtosis;

normalize_gldm_DependenceVariance

Venous phase

specklenoise_firstorder_Minimum;

binomialblurimage_glrlm_RunLengthNonUniformityNormalized;

log_glcm_log-sigma-2-0-mm-3D-ClusterProminence;

curvatureflow_firstorder_10Percentile;

curvatureflow_firstorder_Kurtosis;

binomialblurimage_glszm_HighGrayLevelZoneEmphasis;

boxsigmaimage_firstorder_Kurtosis;

binomialblurimage_firstorder_RobustMeanAbsoluteDeviation;
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CT texture parameters from the portal vein phase CT images of primary 
tumours in rectal cancer patients. Moreover, the maximum standard 
uptake value (SUVmax) was obtained from 18F-FDG PET images and 
used as a quantitative parameter for metabolic activity. The univariate 
logistic regression method was applied to evaluate the predictive 
performance of each CT texture parameter and the SUVmax. On this 
basis, a comprehensive prediction model was constructed using 
multivariate SVM, and the AUC for the centralized prediction of KRAS 
mutations reached 0.82. However, owing to respiratory motion artefacts, 
the application of MRI in the abdomen has significant limitations. PET 
is expensive and involves ionizing radiation. The study of non-invasive 
prediction methods based solely on CT has an important clinical 
significance. In this study, we analysed the preoperative CT imaging 
data of numerous patients and used radiomics technology to extract a 
series of quantitative parameters, including morphology and texture 
features, to construct various prediction models. In terms of key 
indicators for predicting the KRAS mutation status, such as the area 
under the curve (AUC), accuracy, sensitivity and specificity, the XB 
model, which is based on the VP images, demonstrated an excellent 
performance and significantly outperformed the other models. The XB 
model has several advantages. It can prevent overfitting and enhance the 
generalization ability via regularization and pruning. It supports parallel 
and distributed computing and can efficiently process large-scale data. 

It can automatically adapt to sparse and missing data, enabling custom 
loss functionality. It is interpretable and has flexible parameter 
adjustments, which helps optimize the model performance. The 
traditional detection of the KRAS mutation status often requires 
invasive tissue biopsy, which has a certain risk of complications (26, 27). 
The noninvasive prediction ability of our methods is highly important 
in clinical applications, as it greatly improves the convenience and safety. 
Doctors can develop accurate personalized treatment plans for targeted 
therapy drugs based on the KRAS mutation status of patients to improve 
the treatment efficacy and patient prognosis.

In this study, we also investigated the predictive ability of radiomics 
models based on non-enhanced CT images for detecting KRAS 
mutations. Contrast agents can enhance the contrast between tissues, 
reveal the blood supply of tumours, and make lesion boundaries and 
internal structures clearer (28). Without contrast agents, the lesion 
display is poor, and lesions with a similar density to the surrounding 
tissues are difficult to identify, which may cause difficulties for models 
in learning lesion features and prevent them from accurately capturing 
key information related to KRAS mutations. Our results revealed that 
among the various models, the ET model based on NP-phase images 
had the best clinical effect, with an AUC value of 0.74. These results 
indicate that using plain scan CT images and radiomics is also highly 
important, as these methods can effectively help predict KRAS 

FIGURE 3

Receiver operating characteristic (ROC) curves of XGBoost, Bagging, CatBoost, Random Forest, Extra Trees and Random Guess models in the training 
and testing dataset base on venous phase CT.

TABLE 3 Results of random forest (RF), bagging (BG), extra trees (ET), xgboost (XB) and catboost (CB) models on training set and testing set.

Models Phase Training Set|Testing Set

AUC Sensitivity Specificity

RF
VP 0.74 (0.65–0.81)|0.67 (0.48–0.82) 0.93|0.95 0.19|0.24

NP 0.65 (0.57–0.73)|0.65 (0.46–0.80) 0.81|0.85 0.00|0.00

BG
VP 0.80 (0.73–0.86)|0.75 (0.54–0.88) 0.75|0.75 0.67|0.76

NP 0.63 (0.54–0.72)|0.59 (0.40–0.75) 1.00|1.00 0.00|0.00

ET
VP 0.71 (0.63–0.79)|0.70 (0.51–0.84) 0.81|0.75 0.44|0.67

NP 0.74 (0.65–0.81)|0.71 (0.52–0.86) 0.65|0.70 0.67|0.81

XB
VP 0.90 (0.85–0.94)|0.81 (0.64–0.92) 0.93|0.95 0.58|0.62

NP 0.69 (0.61–0.77)|0.56 (0.37–0.74) 0.94|1.00 0.19|0.29

CB
VP 0.79 (0.72–0.86)|0.69 (0.49–0.84) 0.79|0.70 0.61|0.67

NP 0.63 (0.55–0.71)|0.53 (0.35–0.69) 1.00|1.00 0.00|0.00
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mutations in clinical practice. For patients who are unsuitable for 
contrast agents, plain scanning can be used as an alternative.

There is a close relationship between the traditional imaging 
descriptions (such as irregular shapes and the uneven enhancement 
of tumours) and radiomic features (29, 30). For example, the 
lobulation sign of a tumour corresponds to the shape features in 
radiomics. The uneven enhancement in enhanced scanning is closely 
related to the parameters of the grey level co-occurrence matrix in 
texture features. Compared with traditional imaging-based visual 
judgement, radiomics can capture subtle differences that are difficult 
for the naked eye to recognize via a quantitative analysis. In this study, 
eight radiomic features were retained for model construction after the 
feature screening process to ensure a close correlation between the 
feature parameters and the KRAS mutation status. The five first-order 
features describe the intensity distribution of images at the individual 
pixel level, which reflect the cell density and blood supply 
characteristics of tumours (31). The other three texture features of the 
GLCM, GLRM, and GLSZM mainly reflect the spatial relationships 
and texture information between pixels in the images (32). They 
provide a microscopic description of the internal structural 
heterogeneity of tumours (33). These radiomic features provide 
complete tumour information that cannot be obtained via quantitative 
visualization and are highly important for identifying the KRAS 
mutation status.

This study had several limitations. First, it was a retrospective 
study, and there may be biases in sample selection. Our model needs 
to be further validated via prospective studies in the future. Second, 

our data was from a single institution; moreover, it was obtained from 
two different CT scanners, and the scanning protocols were not 
identical. This may lead to differences in radiomics and affect the 
generalization ability of the model. Finally, manually delineating ROIs 
is time-consuming, and in the future, automated or semi-automated 
tool need to be  developed to achieve an effective and automated 
tumour segmentation.

Conclusion

In summary, this study demonstrated that radiomics methods 
based on CT images of the VP can accurately predict the KRAS gene 
mutation status in patients with colon cancer. This technique avoids 
the potential risks of tumour rupture and dissemination during biopsy 
and can serve as a powerful tool to help doctors develop personalized 
and precise targeted treatments for colorectal cancer, which is highly 
important in clinical work.

Data availability statement

The data analyzed in this study is subject to the following licenses/
restrictions: The datasets used and/or analyzed during the current 
study are available from the corresponding author on reasonable 
request. Requests to access these datasets should be  directed to 
Chuanming Li, licm@cqu.edu.cn.

FIGURE 4

Calibration curves of goodness-of-fit for the training set and the test set. The 45° line in the figure serves as an ideal reference, representing the 
situation where the predicted probabilities of the model are completely consistent with the actual probabilities. The closer the calibration curve of the 
model is to the 45° line, the higher its prediction accuracy (A, B). Decision curves of different models for the training set and the test set. The y-axis of 
the decision curve reflects the net benefit, and the x-axis represents the threshold probability. Through comparison, it is found that the XGBoost model 
demonstrates a higher overall net benefit than other models when predicting KRAS gene mutations in colorectal cancer patients (C, D).
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