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Analysis of immune 
characteristics and inflammatory 
mechanisms in COPD patients: a 
multi-layered study combining 
bulk and single-cell 
transcriptome analysis and 
machine learning
Changjin Wei †, Yongfeng Zhu †, Caiming Chen , Feipeng Li  and 
Li Zheng *

Department of Respiratory Medicine, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, 
Nanning, Guangxi, China

Objective: This study aims to investigate the potential roles and mechanisms of 
inflammatory genes in COPD.

Methods: Transcriptome data from the airway epithelial tissues of COPD 
patients and normal individuals were downloaded from the GEO database. 
Differential gene expression analysis was performed using R software and 
its limma package, followed by GO, KEGG, and GSEA enrichment analyses. 
Inflammatory-related differentially expressed genes were screened based 
on literature data and analyzed for pathway enrichment using the Metascape 
database. Inflammatory-related COPD feature genes were selected using Lasso 
regression and random forest algorithms, and a COPD risk prediction model was 
constructed. Differences between the immune microenvironment of COPD and 
normal samples were analyzed using the ESTIMATE algorithm, the CIBERSORT 
method, and single-cell sequencing data. COPD patients were clustered using 
the ConsensusClusterPlus algorithm, and the pathway activity differences of 
different inflammatory subtypes were analyzed using GSVA. Potential traditional 
Chinese medicine monomer components capable of targeting key biomarker 
proteins were screened using the HERB database, and their binding potential 
was evaluated through molecular docking and molecular dynamics simulations.

Results: A total of 495 significantly differentially expressed genes were identified, 
showing distinct expression patterns between COPD patients and healthy 
individuals. Functional and pathway enrichment analyses revealed significant 
enrichment of processes such as keratinocyte differentiation, arachidonic acid 
metabolism, IL-17 signaling pathway, and TNF signaling pathway in COPD. 
Fourteen inflammatory-related COPD genes were identified, which were 
significantly enriched in immune system processes and inflammatory responses. 
Using Lasso regression and random forest algorithms, seven feature genes 
were selected to construct a COPD risk prediction model, which demonstrated 
good accuracy. Immune cell infiltration analysis revealed a significant increase 
in monocytes, M0 macrophages, and eosinophils in COPD patients. Clustering 
analysis identified two inflammatory subtypes, with genes such as CLEC5A and 
CXCL8 significantly upregulated in the C2 subtype. Cinnamaldehyde, a potential 
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traditional Chinese medicine monomer component, was identified to potentially 
exert anti-inflammatory effects by targeting the CXCL8 protein.

Conclusion: This study reveals significantly enriched biological processes and 
pathways in COPD patients, identifies multiple inflammatory-related COPD 
feature genes, and finds that cinnamaldehyde may have potential therapeutic 
effects on inflammatory subtypes of COPD.

KEYWORDS

COPD, inflammatory genes, immune microenvironment, risk prediction model, 
molecular docking

1 Introduction

Chronic obstructive pulmonary disease (COPD) is a chronic 
inflammatory lung disease characterized by irreversible airflow 
limitation, usually caused by long-term exposure to harmful particles 
or gases (1, 2). COPD is currently the third leading cause of death 
globally (1, 3). Particularly among the elderly, the incidence and 
mortality rates of COPD have significantly increased, placing a 
substantial economic burden on patients and healthcare systems 
(4, 5). The pathogenesis of COPD is complex and diverse, including 
persistent inflammatory responses, airway remodeling, and alveolar 
destruction (4, 6). Despite some progress in understanding the 
pathophysiology of COPD, current treatments focus mainly on 
symptom management and prevention of acute exacerbations, lacking 
effective interventions to reverse or significantly slow disease 
progression (4, 7). Common treatments include bronchodilators, 
inhaled corticosteroids, and phosphodiesterase-4 inhibitors, but these 
drugs relieve symptoms only temporarily and cannot stop disease 
progression (7). Therefore, there is an urgent need to develop new 
treatment strategies to improve the prognosis and quality of life of 
COPD patients.

In recent years, the role of inflammation in the development and 
progression of COPD has received widespread attention. Studies have 
shown significant infiltration of inflammatory cells, including 
neutrophils, macrophages, and T lymphocytes, in the airways and 
lung tissues of COPD patients (8, 9). These inflammatory cells release 
various cytokines, chemokines, and proteases, leading to airway and 
alveolar structure destruction, subsequently causing airway 
remodeling and lung function decline (10–12). Neutrophils and 
macrophages play particularly prominent roles in COPD by secreting 
reactive oxygen species and proteases, directly causing tissue damage 
and inflammation (13–17). Additionally, certain inflammatory 
mediators, such as IL-17, TNF-α, and CXCL8, are significantly 
increased in COPD patients, participating in inflammatory responses 
and tissue destruction through various signaling pathways (18–22). 
These inflammatory processes not only exacerbate disease progression 
but are also closely related to comorbidities and disease complexity in 
elderly patients.

Several studies have employed bioinformatics frameworks to 
investigate the molecular characteristics of COPD. For example, Yu 
et  al. conducted an integrated analysis of multiple COPD gene 
expression datasets and identified key genes using weighted gene 
co-expression network analysis (WGCNA) and Lasso regression, 
followed by immune infiltration profiling (23). Li et al. systematically 
screened potential diagnostic markers for COPD by integrating 
differential expression analysis, WGCNA, and three machine learning 

algorithms (24). Luo et al. combined WGCNA with machine learning 
to identify aging-related key genes associated with COPD, constructed 
a neural network-based diagnostic model, and validated their findings 
using single-cell data (25). In addition, Liao et al. integrated bulk RNA 
sequencing and single-cell RNA sequencing data to explore the roles 
of RNA methylation and autophagy pathways in COPD (26). Peng 
et  al. used WGCNA and machine learning algorithms to identify 
mitochondrial function-related COPD biomarkers and analyzed their 
correlation with immune infiltration (27). Although these studies have 
enriched our understanding of COPD pathogenesis to some extent, 
most focus on the whole transcriptome or specific pathways and lack 
systematic investigations targeting inflammation-related genes, as well 
as integration of single-cell data and clinical subtypes. This study 
focuses on inflammation-related genes in COPD. Transcriptome data 
were used to identify differentially expressed inflammation-related 
genes between COPD patients and healthy controls, and their 
potential roles in disease were explored through functional and 
pathway enrichment analyses. Furthermore, key feature genes were 
screened using multiple machine learning algorithms to construct a 
multigene risk prediction model. Immune infiltration analysis and 
single-cell transcriptomic data were integrated to characterize the 
involvement of these genes in disease progression and inflammatory 
subtype differentiation. Additionally, pathway activity differences 
among inflammatory subtypes were investigated, and potential 
traditional Chinese medicine (TCM) monomers targeting 
inflammation-related genes were screened. Through this multi-
dimensional and multi-layered approach, the study aims to deepen the 
understanding of inflammatory mechanisms in COPD, broaden 
strategies for individualized intervention, and provide theoretical 
support for precision clinical management.

2 Methods

2.1 Acquisition and differential gene 
analysis of COPD transcriptome data

This study downloaded transcriptome data of airway epithelial 
tissues from COPD patients and normal individuals from the Gene 
Expression Omnibus (GEO) database and performed differential 
gene expression analysis using R software and its limma package to 
reveal differences in gene expression between COPD patients and 
healthy individuals. The transcriptome data included control and 
experimental groups, each with no fewer than three samples, and 
restricted to data from humans. Gene expression data were 
normalized and differentially analyzed using the limma package. 
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Significantly differentially expressed genes were selected based on an 
absolute logFC > 0.585 and an adjusted p-value < 0.05. The 
transcriptome dataset used in this analysis was GSE21359, which 
comprises gene expression profiles from small airway epithelial 
tissues collected via fiberoptic bronchoscopy. A total of 135 samples 
were included: 53 from healthy nonsmokers, 59 from healthy 
smokers, and 23 from smokers with COPD. All samples were 
processed on the Affymetrix Human Genome U133 Plus 2.0 Array 
platform (GPL570).

2.2 Functional and pathway enrichment 
analysis of differential genes

To reveal the functional and pathway enrichment of 
differential genes between COPD patients and normal individuals, 
this study conducted Gene Ontology (GO), Kyoto Encyclopedia 
of Genes and Genomes (KEGG), and Gene Set Enrichment 
Analysis (GSEA). GO analysis categorizes genes into biological 
processes, cellular components, and molecular functions to 
provide insights into the roles these genes may play in cellular 
processes. KEGG enrichment analysis identifies pathways that 
these genes are involved in, revealing their potential impact on 
disease mechanisms. GSEA allows for the identification of 
enriched biological pathways or gene sets based on gene expression 
data, providing a higher-level understanding of 
biological functions.

All data processing and analyses were completed using R software. 
After converting differential gene symbols to gene IDs, GO enrichment 
analyses were performed using the enrichGO functions in the 
clusterProfiler package. The KEGG enrichment analysis results were 
obtained from the DAVID database. For further exploration of 
functional enrichment, GSEA was performed using the GSEA 
function in the clusterProfiler package and the gene set file h.all.
v2022.1.Hs.symbols.gmt. The screening criteria for enrichment 
analysis results were p.adjust < 0.05.

2.3 Screening and pathway analysis of 
inflammation-related differential genes

Inflammation is a key factor in COPD pathogenesis, and genes 
involved in inflammatory responses were selected from existing 
literature. These inflammatory genes were then intersected with the 
differentially expressed genes to identify inflammation-related genes 
specific to COPD. Correlation analysis was performed to investigate 
the relationships between these genes, aiming to uncover potential 
interactions and identify genes that may work synergistically in COPD 
inflammation. Pearson correlation coefficients were calculated to 
quantify the linear relationship between gene expression profiles using 
the cor() function in R software. The igraph package in R software was 
used to visualize these interactions as a network, where the edges 
represent gene–gene correlations, with blue edges indicating positive 
correlations and red edges representing negative correlations. Edge 
width was proportional to the strength of the correlation. Pathway 
enrichment analysis of inflammation-related genes was conducted 
using the Metascape database, which aggregates functional annotation 
and enrichment results from multiple sources.

2.4 Machine learning screening of COPD 
inflammatory feature genes

To identify key inflammation-related genes that could serve as 
features for COPD, machine learning approaches were employed. Lasso 
regression was used to identify a subset of important genes by shrinking 
less important variables to zero. This was achieved using the glmnet 
package in R software. Cross-validation was applied to determine the 
optimal regularization parameter, ensuring that the model does not 
overfit the data. Additionally, a random forest model was used to 
calculate feature importance scores for each gene using the randomForest 
package in R. Genes with importance scores greater than 2 were selected 
as significant features. A Venn diagram was used to visually represent the 
overlap of feature genes identified by both methods.

2.5 Construction and validation of COPD 
risk prediction model

To further validate the clinical application value of inflammation-
related COPD feature genes, a nomogram model was constructed 
using logistic regression analysis. The rms and rmda packages in R 
software were employed for model development. Nomograms are 
graphical representations of statistical models that calculate the 
probability of a clinical event. Gene expression data were first 
processed, and the expression levels of the selected feature genes were 
extracted. A logistic regression model was built using the lrm() 
function from the rms package, with disease risk as the dependent 
variable and the selected feature genes as independent variables. The 
nomogram was then generated using the nomogram() function, with 
predicted probabilities plotted against disease risk. To evaluate the 
accuracy of the model, calibration curves were constructed using the 
calibrate() function, which applies bootstrap method (B = 1,000) to 
assess prediction reliability. Decision curve analysis was performed to 
assess the clinical benefit of the model at various threshold 
probabilities. The decision_curve() function from the rmda package 
was used to analyze the clinical net benefit of the model by plotting 
threshold probabilities against expected benefits, allowing for the 
evaluation of model performance under different clinical scenarios.

2.6 Expression analysis of 
inflammation-related feature genes across 
GOLD stages in COPD

To systematically investigate the expression patterns of 
inflammation-related feature genes at different stages of COPD, this 
study retrieved gene expression datasets containing GOLD staging 
information from the GEO database, including normal control 
samples and COPD patients at GOLD stages 1 through 4. The dataset 
used for this analysis was GSE47460. The raw expression matrix was 
first normalized. Subsequently, the standardized gene expression data 
and corresponding GOLD stage information were extracted. The 
Wilcoxon rank-sum test was used to statistically evaluate expression 
differences between each GOLD stage (GOLD 1, 2, 3, and 4) and the 
normal control group. Additionally, pairwise comparisons between 
GOLD stages were performed to identify expression trends associated 
with disease progression. Data visualization was conducted using the 
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ggplot2 and ggpubr packages in R, with box plots combined with dot 
plots to illustrate the distribution and statistical significance of gene 
expression across different COPD stages.

2.7 Immune microenvironment and 
single-cell sequencing analysis

The immune microenvironment of COPD patients was analyzed 
using the ESTIMATE algorithm and the CIBERSORT method. 
ESTIMATE calculates the immune and stromal scores of a sample, 
which provide insight into the relative abundance of immune and 
non-immune cells in the tissue. The CIBERSORT method estimates 
the proportion of 22 immune cell types in each sample, providing a 
detailed analysis of immune infiltration in COPD. Single-cell RNA 
sequencing data from COPD patients’ lung tissues were processed 
using the Seurat package in R to explore the gene expression profiles 
at the single-cell level. The single-cell RNA sequencing data analyzed 
in this study were obtained from the GEO dataset GSE167295, which 
includes 29,961 cells isolated from peripheral lung parenchymal 
tissues. The dataset comprises samples from three patients with 
severe COPD. All samples were derived from human whole lung 
tissues and were sequenced using the Illumina NextSeq 500 platform 
(28). Principal component analysis was used for dimensionality 
reduction, and t-SNE clustering was applied to visualize the distinct 
cell populations in the lung tissue. A dot plot was used to visualize 
the expression of inflammation-related genes in different cell types, 
providing insights into the specific roles of these genes in 
COPD pathogenesis.

2.8 Clustering and analysis of COPD 
inflammatory subtypes

To better understand the heterogeneity of inflammation in COPD, 
consensus clustering was performed to identify distinct inflammatory 
subtypes within the COPD patient population. This method utilizes the 
ConsensusClusterPlus R package to perform consensus clustering on 
inflammation-related COPD feature genes expression data. The data is 
first filtered to retain only COPD group samples. K-means clustering 
with Euclidean distance is applied, and the clustering process is 
repeated 50 times to ensure stability. The maximum number of clusters 
is set to 9. The calcICL function is used to compute consensus scores. 
After determining the optimal number of clusters, the clustering results 
are extracted and combined with the gene expression data for final 
output. Subsequently, five independent GEO datasets (GSE11906, 
GSE37768, GSE151052, GSE162635, and GSE8581) and GSE21359 
were used for external validation of the upregulated inflammation-
related COPD feature genes in the inflammatory subtypes by 
calculating the standardized mean difference.

This study employed Gene Set Variation Analysis (GSVA) to 
investigate the differences in pathway activation between various 
inflammatory subtypes of COPD patients. The analysis was based on 
three gene sets: c2.cp.kegg.symbols.gmt, c5.go.symbols.gmt, and hall.
v2022.1.Hs.symbols.gmt. The R packages reshape2, ggpubr, limma, 
GSEABase, and GSVA were used for data preprocessing, GSVA 
analysis, differential analysis, and visualization. The expression data 
were first standardized, and only the COPD group samples were 

retained for further analysis. GSVA was performed using the gsva() 
function, which calculated the GSVA scores for each sample. These 
scores were then normalized. Based on the clustering results, the 
GSVA scores for COPD samples in different inflammatory subtypes 
were extracted. A t-test was performed to identify significantly 
different pathways between the subtypes, and pathways were classified 
as upregulated or downregulated based on p-values and t-statistics. 
Finally, the top 10 and bottom 10 most significantly different pathways 
were selected and visualized using bar plots, offering further insights 
into the pathway activation characteristics across the different 
inflammatory subtypes of COPD. To explore the differences in the 
immune microenvironment between COPD patients with different 
inflammatory subtypes, this study integrated immune cell infiltration 
data from COPD samples with clustering results. Statistical 
comparisons of immune cell infiltration across the different 
inflammatory subtypes were conducted using t-tests. Box plots were 
then employed to illustrate the distribution of immune cell infiltration 
among the various subtypes.

2.9 Screening of traditional Chinese 
medicine monomer compounds, 
molecular docking, and molecular 
dynamics simulation analysis

To identify TCM monomer compounds with potential therapeutic 
value, this study utilized the HERB database to screen for candidates 
targeting inflammation-related genes associated with 
COPD. Molecular docking simulations were subsequently performed 
to predict the binding affinity between the selected TCM compounds 
and key COPD-related biomarker proteins. The structural data for 
TCM compounds and target proteins were obtained from the 
PubChem database and the RCSB Protein Data Bank, respectively. 
Molecular docking was conducted using AutoDock and PyMOL 
software, which are widely used tools for simulating interactions 
between small molecules and proteins. The results of the docking 
simulations facilitated the identification of candidate compounds with 
favorable binding affinity, providing a potential pharmacological basis 
for targeting inflammation-related genes in COPD therapy.

To further verify the binding stability and interaction mechanisms 
between active TCM compounds and key COPD target proteins, 
molecular dynamics simulations were performed on the constructed 
compound–protein complexes using GROMACS 2023.2. The 
simulation systems were parameterized using the CHARMM36 force 
field with the TIP3P water model, and Na+ and Cl− ions were added 
to neutralize the system charge. Energy minimization was performed 
in two stages using the steepest descent and conjugate gradient 
methods. This was followed by 100 ps of NVT and NPT equilibration, 
employing the V-rescale thermostat (at 300 K) and the Parrinello–
Rahman barostat (at 1 bar), respectively. Based on the equilibrated 
structures, a 100 ns production simulation was carried out with a time 
step of 2 fs. Long-range electrostatic interactions were treated using 
the Particle Mesh Ewald method, and both van der Waals and 
Coulomb interactions were truncated at 1.0 nm. After the simulation, 
structural parameters including root-mean-square deviation (RMSD), 
root-mean-square fluctuation (RMSF), radius of gyration (Rg), 
solvent-accessible surface area (SASA), and the number of hydrogen 
bonds were calculated to assess the stability of the complexes.
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3 Results

3.1 Significantly differentially expressed 
genes between COPD patients and normal 
individuals

The research workflow is shown in Figure 1. After searching the 
GEO database with specific criteria, the GSE21359 dataset was selected 
for further analysis. This dataset includes a total of 135 samples from 
airway epithelial cells: 53 healthy nonsmokers, 59 healthy smokers, 
and 23 smokers with clinically diagnosed COPD. Subject metadata 
revealed a wide range of smoking exposures (e.g., 0.5 to 119 pack-
years), and the COPD group included GOLD stages I  to III. The 
average age across groups ranged from 21 to 73 years, with both male 
and female participants represented. Detailed demographic and 
clinical parameters are provided in Table  1. Standardization and 
differential analysis of the above expression data using the limma 
package identified a total of 495 significantly differentially expressed 
genes (Supplementary Table 1). These genes may play crucial roles in 
the molecular mechanisms underlying COPD and could potentially 
serve as biomarkers for the disease. Figure 2A shows the expression 
patterns of some differentially expressed genes. Figure 2B displays the 
significance and fold changes of gene expression. In the volcano plot, 
red dots represent significantly upregulated genes, while blue dots 
represent significantly downregulated genes. This analysis clearly 

highlights the contrast in gene expression between COPD patients and 
healthy controls, providing insights into the pathogenesis of COPD.

3.2 Significantly enriched biological 
processes and pathways of differential 
genes in COPD

Through GO, KEGG, and GSEA enrichment analyses of the 
differentially expressed genes in COPD, this study identified multiple 
biological processes and signaling pathways closely associated with 
COPD pathogenesis. GO enrichment analysis revealed that the 
differentially expressed genes were significantly enriched in processes 
such as keratinocyte differentiation, arachidonic acid metabolism, 
hormone metabolism, epidermal cell differentiation, response to 
xenobiotic stimulus, fatty acid metabolism, and wound healing 
(Figures  2C,D; Supplementary Table  2), suggesting widespread 
abnormalities in epithelial structural maintenance, inflammatory 
mediator synthesis, and metabolic homeostasis in COPD patients. 
KEGG pathway analysis further indicated significant enrichment of 
COPD-related genes in pathways including arachidonic acid 
metabolism, IL-17 signaling, TNF signaling, cell adhesion molecules, 
retinol metabolism, cytochrome P450 metabolism, and mucin-type 
O-glycan biosynthesis (Figure  2E; Supplementary Table  3). These 
findings reflect the multi-layered regulation of airway inflammation, 

FIGURE 1

The workflow of the entire study.
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TABLE 1 Demographic information, smoking history, and GOLD classification of subjects included in the GSE21359 airway epithelial transcriptome 
dataset.

Sample ID Source Sex Smoking status Age

GSM101095 Airway epithelial cells Male Non-smoker 41

GSM101096 Airway epithelial cells Male Non-smoker 35

GSM101097 Airway epithelial cells Male Non-smoker 61

GSM101098 Airway epithelial cells Female Non-smoker 37

GSM101100 Airway epithelial cells Male Non-smoker 47

GSM101101 Airway epithelial cells Male Non-smoker 38

GSM101102 Airway epithelial cells Female Non-smoker 49

GSM101103 Airway epithelial cells Male Non-smoker 45

GSM101104 Airway epithelial cells Male Non-smoker 36

GSM101105 Airway epithelial cells Male Non-smoker 38

GSM101106 Airway epithelial cells Male Non-smoker 35

GSM101107 Airway epithelial cells Male Smoker, 21 pack-years 46

GSM101111 Airway epithelial cells Female Smoker, 23 pack-years 37

GSM101113 Airway epithelial cells Male Smoker, 28 pack-years 45

GSM101114 Airway epithelial cells Male Smoker, 20 pack-years 48

GSM101115 Airway epithelial cells Male Smoker, 38 pack-years 50

GSM101116 Airway epithelial cells Female Smoker, 23 pack-years 46

GSM114089 Airway epithelial cells Male Smoker, 80 pack-years 56

GSM114090 Airway epithelial cells Male Smoker, 60 pack-years 59

GSM190149 Airway epithelial cells Male Non-smoker 49

GSM190150 Airway epithelial cells Male Non-smoker 34

GSM190151 Airway epithelial cells Male Non-smoker 44

GSM190152 Airway epithelial cells Male Non-smoker 45

GSM190153 Airway epithelial cells Female Non-smoker 45

GSM190154 Airway epithelial cells Female Non-smoker 29

GSM190155 Airway epithelial cells Male Non-smoker 42

GSM190156 Airway epithelial cells Male Non-smoker 56

GSM252828 Airway epithelial cells Male COPD, GOLD-I, 50 pack-years 47

GSM252829 Airway epithelial cells Male COPD, GOLD-II, 33 pack-years 47

GSM252830 Airway epithelial cells Male COPD, GOLD-II, 35 pack-years 50

GSM252831 Airway epithelial cells Male COPD, GOLD-II, 20 pack-years 55

GSM252833 Airway epithelial cells Male COPD, GOLD-I, 48 pack-years 59

GSM252835 Airway epithelial cells Male COPD, GOLD-II, 75 pack-years 51

GSM252836 Airway epithelial cells Male COPD, GOLD-II, 27 pack-years 46

GSM252837 Airway epithelial cells Male COPD, GOLD-II, 60 pack-years 56

GSM252838 Airway epithelial cells Male COPD, GOLD-III, 110 pack-years 60

GSM252839 Airway epithelial cells Male COPD, GOLD-I, 22 pack-years 46

GSM252841 Airway epithelial cells Male COPD, GOLD-I, 23 pack-years 52

GSM252871 Airway epithelial cells Male Smoker, 24 pack-years 40

GSM252876 Airway epithelial cells Male Smoker, 24 pack-years 45

GSM252879 Airway epithelial cells Male Smoker, 20 pack-years 41

GSM252880 Airway epithelial cells Male Smoker, 29 pack-years 47

GSM252881 Airway epithelial cells Male Smoker, 45 pack-years 41

GSM252882 Airway epithelial cells Male Smoker, 32 pack-years 48

(Continued)
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TABLE 1 (Continued)

Sample ID Source Sex Smoking status Age

GSM252884 Airway epithelial cells Female Smoker, 36 pack-years 43

GSM252885 Airway epithelial cells Male Smoker, 15 pack-years 41

GSM254149 Airway epithelial cells Female Non-smoker 41

GSM254150 Airway epithelial cells Male Non-smoker 35

GSM254151 Airway epithelial cells Male Non-smoker 37

GSM254152 Airway epithelial cells Male Non-smoker 31

GSM254157 Airway epithelial cells Male Smoker, 23 pack-years 45

GSM254158 Airway epithelial cells Female Smoker, 22 pack-years 50

GSM254159 Airway epithelial cells Female Smoker, 33 pack-years 46

GSM254160 Airway epithelial cells Male Smoker, 16 pack-years 49

GSM254161 Airway epithelial cells Female Smoker, 47 pack-years 40

GSM254163 Airway epithelial cells Female COPD, GOLD-II, 27.5 pack-years 51

GSM254169 Airway epithelial cells Female COPD, GOLD-II, 34 pack-years 48

GSM254172 Airway epithelial cells Female COPD, GOLD-II, 15 pack-years 53

GSM254173 Airway epithelial cells Male COPD, GOLD-II, 29 pack-years 42

GSM254174 Airway epithelial cells Male COPD, GOLD-I, 32.5 pack-years 36

GSM254175 Airway epithelial cells Male COPD, GOLD-I, 14 pack-years 44

GSM254176 Airway epithelial cells Male COPD, GOLD-I, 24 pack-years 62

GSM298219 Airway epithelial cells Male Non-smoker 44

GSM298220 Airway epithelial cells Male Non-smoker 60

GSM298221 Airway epithelial cells Male Non-smoker 49

GSM298222 Airway epithelial cells Female Non-smoker 36

GSM298223 Airway epithelial cells Male Non-smoker 38

GSM298224 Airway epithelial cells Male Non-smoker 73

GSM298225 Airway epithelial cells Male Non-smoker 49

GSM298226 Airway epithelial cells Female Non-smoker 22

GSM298227 Airway epithelial cells Male Non-smoker 29

GSM298228 Airway epithelial cells Female Non-smoker 39

GSM298229 Airway epithelial cells Female Non-smoker 48

GSM298230 Airway epithelial cells Male Smoker, 30 pack-years 39

GSM298231 Airway epithelial cells Female Smoker, 45 pack-years 54

GSM298232 Airway epithelial cells Male Smoker, 30 pack-years 43

GSM298233 Airway epithelial cells Male Smoker, 3 pack-years 36

GSM298234 Airway epithelial cells Female Smoker, 22.5 pack-years 41

GSM298235 Airway epithelial cells Female Smoker, 19 pack-years 46

GSM298236 Airway epithelial cells Male Smoker, 11 pack-years 47

GSM298237 Airway epithelial cells Male Smoker, 12 pack-years 41

GSM298238 Airway epithelial cells Female Smoker, 20 pack-years 42

GSM298239 Airway epithelial cells Male Smoker, 26 pack-years 46

GSM298240 Airway epithelial cells Male Smoker, 13 pack-years 41

GSM298241 Airway epithelial cells Female Smoker, 7.6 pack-years 32

GSM298242 Airway epithelial cells Female Smoker, 3.8 pack-years 27

GSM298243 Airway epithelial cells Male Smoker, 5 pack-years 35

GSM298244 Airway epithelial cells Male Smoker, 44.3 pack-years 40

GSM298245 Airway epithelial cells Male Smoker, 43 pack-years 48

(Continued)
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TABLE 1 (Continued)

Sample ID Source Sex Smoking status Age

GSM298246 Airway epithelial cells Male Smoker, 33 pack-years 47

GSM298247 Airway epithelial cells Male Smoker, 38 pack-years 41

GSM300859 Airway epithelial cells Female Non-smoker 62

GSM302396 Airway epithelial cells Male Non-smoker 47

GSM302397 Airway epithelial cells Male Non-smoker 39

GSM302399 Airway epithelial cells Female Smoker, 38 pack-years 27

GSM350871 Airway epithelial cells Male Non-smoker 24

GSM350873 Airway epithelial cells Male Non-smoker 31

GSM350874 Airway epithelial cells Female Smoker, 17.5 pack-years 43

GSM350955 Airway epithelial cells Male Non-smoker 26

GSM350956 Airway epithelial cells Female Non-smoker 33

GSM350957 Airway epithelial cells Male Smoker, 46 pack-years 45

GSM350958 Airway epithelial cells Female Smoker, 26.5 pack-years 48

GSM364037 Airway epithelial cells Female COPD, GOLD-II, 38.5 pack-years 57

GSM364038 Airway epithelial cells Male COPD, GOLD-I, 119 pack-years 66

GSM364041 Airway epithelial cells Male COPD, GOLD-I, 26 pack-years 45

GSM364045 Airway epithelial cells Male COPD, GOLD-II, 24 pack-years 45

GSM364046 Airway epithelial cells Female Smoker, 0.5 pack-years 48

GSM364048 Airway epithelial cells Female Smoker, 56.5 pack-years 47

GSM410161 Airway epithelial cells Female Non-smoker 21

GSM410162 Airway epithelial cells Male Non-smoker 45

GSM410163 Airway epithelial cells Male Non-smoker 55

GSM410164 Airway epithelial cells Male Smoker, 45 pack-years 47

GSM410165 Airway epithelial cells Male Smoker, 11 pack-years 39

GSM434049 Airway epithelial cells Male Non-smoker 68

GSM434050 Airway epithelial cells Female Non-smoker 26

GSM434051 Airway epithelial cells Female Non-smoker 45

GSM434052 Airway epithelial cells Male Non-smoker 40

GSM434053 Airway epithelial cells Male Smoker, 29 pack-years 40

GSM434054 Airway epithelial cells Male Smoker, 47 pack-years 46

GSM434055 Airway epithelial cells Male Smoker, 19.5 pack-years 47

GSM434056 Airway epithelial cells Male Smoker, 27 pack-years 29

GSM434057 Airway epithelial cells Male Smoker, 10 pack-years 30

GSM434058 Airway epithelial cells Male Smoker, 24 pack-years 47

GSM434059 Airway epithelial cells Female Smoker, 71 pack-years 43

GSM434060 Airway epithelial cells Male Smoker, 46 pack-years 48

GSM434061 Airway epithelial cells Female Smoker, 10.5 pack-years 24

GSM434062 Airway epithelial cells Female Smoker, 1 pack-years 27

GSM434063 Airway epithelial cells Male Smoker, 26 pack-years 54

GSM434064 Airway epithelial cells Female COPD, GOLD-III, 53 pack-years 73

GSM458579 Airway epithelial cells Male Non-smoker 27

GSM458580 Airway epithelial cells Male Non-smoker 34

GSM458581 Airway epithelial cells Male Non-smoker 27

GSM458582 Airway epithelial cells Female Non-smoker 47

GSM469991 Airway epithelial cells Male Non-smoker 37

GSM470000 Airway epithelial cells Male Smoker, 51 pack-years 48
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immune modulation, epithelial barrier function, and mucus secretion 
in COPD. GSEA results further demonstrated significant activation of 
inflammatory response, TNF-α signaling via NF-κB, and allograft 
rejection pathways in the COPD group, along with notable 
upregulation of KRAS signaling, mTORC1 signaling, epithelial–
mesenchymal transition (EMT), and early and late estrogen response 
pathways (Figure  2F; Supplementary Table  4). Overall, the 
pathogenesis of COPD involves not only immune inflammation but 
also dysregulation of metabolic processes, structural remodeling, and 
endocrine signaling. Among these, inflammation serves as the central 
pathological mechanism driving the persistent progression of COPD.

3.3 Pathway enrichment of 
inflammation-related COPD genes

To investigate the role of inflammation in COPD, this study 
intersected inflammation-related genes with the significantly 
differentially expressed genes in COPD, resulting in the identification of 
14 common genes (Figure 3A; Supplementary Table 5). These genes 
represent key regulators of the inflammatory microenvironment in 
COPD and are potentially therapeutic targets. Correlation analysis 
revealed that most of these inflammation-related genes interact with 
each other (Figure 3B), suggesting that they may function synergistically 

FIGURE 2

Differential gene expression and enrichment pathway analysis in COPD patients and normal individuals. (A) Expression patterns of differentially 
expressed genes in COPD patients and normal individuals. (B) Significance and fold changes of gene expression. (C) GO enrichment analysis results 
covering biological processes, cellular components, and molecular functions. (D) GO enrichment analysis shows significant enrichment of differentially 
expressed genes in processes such as keratinocyte differentiation, arachidonic acid metabolism, hormone metabolism, epidermal cell differentiation, 
response to xenobiotic stimulus, and wound healing. (E) KEGG pathway enrichment analysis reveals significant enrichment of genes in pathways such 
as arachidonic acid metabolism, IL-17 signaling pathway, TNF signaling pathway, cell adhesion molecules, retinol metabolism, and cytochrome P450 
metabolism. (F) GSEA analysis suggests significant enrichment of pathways such as allograft rejection, inflammatory response, and TNF-α signaling via 
NF-κB in the small airway epithelial tissues of COPD patients.
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in the inflammatory response of COPD. Pathway enrichment analysis of 
these genes was performed using the Metascape database, and the results 
demonstrated significant enrichment in immune system processes and 
responses to stimuli, influencing pathways related to inflammation, 
chemotaxis, wound healing, and G-protein-coupled receptor signaling 
(Figures  3C,D). The relationships between functional clusters are 
illustrated in Figure 3E, highlighting potential biological connections 
among these clusters. These findings further emphasize the critical role 
of inflammation in the pathogenesis and progression of COPD.

3.4 Screening and diagnostic efficiency of 
COPD inflammatory feature genes

This study employed Lasso regression and random forest 
algorithms to identify inflammation-related feature genes in 
COPD. Lasso regression analysis was first conducted to determine the 
optimal regularization parameter and to screen for significant feature 
genes. The variations in gene coefficients across different regularization 
parameters in the Lasso model are illustrated in Figure 4A, while the 
cross-validation results are presented in Figure 4B. The feature genes 
identified through Lasso regression included CLEC5A, MEP1A, 
ADM, TIMP1, CXCL8, EREG, CX3CL1, PROK2, OSM, GPR183, and 
CCRL2. Subsequently, the random forest algorithm was applied to 
further refine the feature gene selection by calculating their 
importance scores. The prediction errors for various decision tree 

numbers in the random forest model are shown in Figure 4C, and the 
importance scores for each gene are displayed in Figure  4D. The 
random forest analysis identified TIMP1, MEP1A, ADM, CLEC5A, 
CXCL8, CX3CL1, CCL2, PROK2, and IL1B as key feature genes.

Based on the results from both methods, we found that TIMP1, 
MEP1A, ADM, CLEC5A, CXCL8, CX3CL1, and PROK2 exhibited 
high importance (Figure 4E). Notably, CX3CL1 was downregulated in 
COPD patients, while the remaining six genes were upregulated 
(Figure  4F). The ROC curve analysis revealed that TIMP1 
(AUC = 0.8519, p-value < 0.0001), CLEC5A (AUC = 0.8287, 
p-value < 0.0001), and ADM (AUC = 0.8071, p-value = 0.0003) had 
AUC values exceeding 0.8 and highly significant p-values, indicating 
their high diagnostic efficiency in distinguishing COPD patients from 
non-COPD individuals (Figures 4G–M).

3.5 Construction of COPD risk prediction 
model based on inflammatory feature genes

To further evaluate the clinical utility of inflammation-related 
feature genes in COPD, a nomogram model was developed to predict 
the risk of disease occurrence. This nomogram incorporated seven 
inflammation-related COPD feature genes: MEP1A, ADM, CLEC5A, 
CXCL8, CX3CL1, PROK2, and TIMP1. The score for each gene in the 
nomogram was used to calculate the total score, which corresponds 
to the predicted risk of COPD (Figure 4N). The results highlight the 

FIGURE 3

Screening and pathway enrichment analysis of inflammation-related COPD genes. (A) Intersection of significantly differentially expressed genes in 
COPD and known inflammatory genes, identifying 14 inflammation-related genes. (B) Interaction relationships among inflammation-related genes. 
(C,D) Functional enrichment analysis of inflammation-related genes using the Metascape database, showing significant enrichment in immune system 
processes, response to stimulus, inflammatory response, chemotaxis, and wound healing pathways. (E) Functional cluster analysis using the Metascape 
database reveals potential biological links between functional clusters.

https://doi.org/10.3389/fmed.2025.1592802
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wei et al. 10.3389/fmed.2025.1592802

Frontiers in Medicine 11 frontiersin.org

significant role of these seven genes in predicting the risk of 
COPD development.

Calibration curve analysis revealed that, after bias correction, the 
predicted risk of COPD occurrence was relatively accurate 
(Figure 4O). Additionally, decision curve analysis demonstrated that, 
within the threshold range of 0.1 to 0.7, the use of the nomogram 
model to predict COPD risk provides meaningful clinical benefits 
(Figure 4P). These findings underscore the clinical applicability of the 
selected inflammation-related feature genes in predicting the risk 
of COPD.

3.6 Expression changes of 
inflammation-related feature genes during 
COPD progression

To further investigate the expression patterns of seven 
inflammation-related feature genes across different stages of COPD 
and their potential value in disease classification, we  analyzed the 
GSE47460 dataset, which includes 91 normal controls and 140 COPD 
patients classified into GOLD stages 1–4. Supplementary Table  6 
provides an overview of the clinical characteristics of the subjects 
included in this dataset. The Wilcoxon rank-sum test was employed to 
assess differences between each COPD stage and the normal group, as 
well as among the GOLD stages. The results revealed that TIMP1 
expression was significantly elevated in all COPD stages compared to 
the control group (GOLD_1: p  = 0.0416; GOLD_2: p  = 0.0179; 
GOLD_3: p  = 0.00171; GOLD_4: p  = 8.02 × 10−7; Figure  4Q). 
Moreover, TIMP1 expression in GOLD_4 was markedly higher than 
in GOLD_2 (p  = 0.00139; Figure  4Q), indicating a progressive 
upregulation with disease advancement. CLEC5A expression was 
significantly increased in GOLD_2 (p  = 0.00148), GOLD_3 
(p  = 0.00344), and GOLD_4 (p  = 0.000262) relative to controls, 
although no significant differences were observed among the GOLD 
stages themselves (Figure 4R). This suggests a general upward trend 
without stage-specific variation. PROK2 expression was significantly 
elevated in GOLD_3 (p  = 0.0147) and GOLD_4 (p  = 2.15 × 10−5) 
compared to the control group (Figure 4S). Furthermore, its expression 
in GOLD_4 was markedly higher than in GOLD_1 (p = 0.0257) and 
GOLD_2 (p = 0.00285), indicating a sustained upregulation of PROK2 
during advanced stages of COPD (Figure  4S). Similarly, CXCL8 
expression was significantly higher in GOLD_3 (p  = 0.0235) and 
GOLD_4 (p = 0.0284) than in controls, suggesting its increased activity 
in moderate to severe COPD (Figure 4T). In contrast, ADM, MEP1A, 
and CX3CL1 did not exhibit significant expression changes across 
COPD stages, implying that these genes may primarily participate in 
the initiation or early immune regulation of COPD rather than in 
disease progression (Figures 4U–W). In summary, TIMP1, CLEC5A, 
PROK2, and CXCL8 demonstrated expression patterns closely 
associated with COPD severity, supporting their potential utility as 
biomarkers for disease staging and progression monitoring.

3.7 Immune microenvironment 
characteristics of COPD patients

This study thoroughly examined the differences in the immune 
microenvironment of airway epithelial tissues between COPD patients 

and healthy individuals using the ESTIMATE algorithm, the 
CIBERSORT method. The results from the ESTIMATE algorithm 
showed that stromal scores were significantly higher in the COPD 
group compared to the normal group (Figure 5A, p-value = 0.0075; 
Supplementary Table 7), while no significant difference was observed 
in immune scores between the two groups (Figure 5B, p-value = 0.1). 
However, the total ESTIMATE scores were significantly higher in the 
COPD group (Figure  5C, p-value = 0.039), indicating that both 
stromal cell content and the overall immune microenvironment were 
notably altered in COPD patients. In addition, CIBERSORT analysis 
of the relative proportions of 22 immune cell types in each sample 
revealed notable differences between the COPD and normal groups 
(Figure  5D; Supplementary Table  8). The COPD group exhibited 
increased proportions of monocytes, M0 macrophages, eosinophils, 
and resting dendritic cells, while the normal group had a higher 
proportion of regulatory T cells (Tregs), CD8 + T cells, and naive B 
cells (Figure 5D). Correlation analysis further demonstrated that the 
infiltration levels of neutrophils and activated mast cells were 
significantly positively correlated with the expression levels of ADM, 
CXCL8, and PROK2. In addition, eosinophil infiltration was positively 
correlated with ADM and PROK2 expression, while activated 
dendritic cell infiltration showed a significant positive correlation with 
CXCL8 expression. Conversely, the infiltration of Tregs was negatively 
correlated with ADM expression (Figure 5E). These findings suggest 
that ADM, CXCL8, and PROK2 may play crucial roles in modulating 
immune cell infiltration and are central to the inflammatory pathology 
of COPD. Further single-cell sequencing data analysis revealed the 
expression characteristics of inflammatory feature genes in COPD at 
the single-cell level. Single-cell sequencing analysis of whole lung 
tissue samples (GSM5100998) from COPD patients in the GSE167295 
dataset identified multiple cell subsets and annotated cell types 
(Figure 5F). The results show that monocytes express mainly TIMP1, 
ADM, and CXCL8. TIMP1 is also expressed in endothelial cells, 
macrophages, and mast cells (Figure 5G).

3.8 Pathway and immune characteristics of 
different inflammatory subtypes of COPD 
patients

This study employed the ConsensusClusterPlus algorithm to 
classify COPD patients into distinct inflammatory subtypes. To 
further characterize these subtypes, GSVA and immune infiltration 
analysis were performed, focusing on differences in pathway activity 
and immune features among the subtypes. The clustering analysis 
identified the optimal number of clusters as 2 (Figure 6A). Consistency 
scores were calculated at different k values to assess the stability of the 
clusters (Figure 6B). The analysis revealed two distinct inflammatory 
subtypes in COPD patients, labeled as C1 and C2, which were clearly 
separable in principal component analysis (Figure  6C). Notably, 
significant differences in the expression of inflammation-related 
feature genes were observed between these two subtypes (Figure 6D). 
The C2 subtype exhibited significantly higher expression of genes such 
as CLEC5A, CXCL8, PROK2, and ADM (Figure 6E), with CXCL8 
showing the highest expression in the C2 subtype. To further validate 
the expression of CXCL8, this study obtained five external datasets 
from the GEO database, including GSE11906, GSE37768, GSE151052, 
GSE162635, and GSE8581. Based on the expression data of 401 
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FIGURE 4

Screening, diagnostic efficiency, and construction of risk prediction model for COPD inflammatory feature genes. (A) Lasso regression model showing 
gene coefficient changes. (B) Cross-validation results of Lasso regression. (C) Prediction error analysis from the random forest model. (D) Gene 

(Continued)
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importance scores from the random forest algorithm. (E) Venn diagram showing the overlap of genes identified by Lasso and random forest. 
(F) Volcano plot of the expression changes of inflammation-related feature genes in COPD. (G–M) ROC curve analysis of inflammation-related feature 
genes in COPD. (N) Nomogram for predicting COPD risk based on inflammatory feature genes. (O) Calibration curve of the COPD risk prediction 
model. (P) Decision curve analysis assessing the model’s clinical benefit. (Q–W) Boxplots comparing the expression of inflammation-related feature 
genes between the normal group and GOLD stages 1–4, as well as among the different GOLD stages (* p < 0.05, ** p < 0.01, *** p < 0.001).

FIGURE 4 (Continued)

FIGURE 5

Immune microenvironment characteristics of COPD patients. (A) Comparison of ESTIMATE stromal scores. (B) Comparison of ESTIMATE immune 
scores. (C) Comparison of total ESTIMATE scores, indicating a significant increase in the COPD group. (D) Analysis of the relative proportions of 22 
immune cell types in each sample using the CIBERSORT algorithm, comparing immune cell infiltration between the COPD group and the normal 
control group. (E) Correlation between the expression levels of COPD inflammatory feature genes and the infiltration proportions of various immune 
cells. (F) t-SNE plot of single-cell sequencing data, showing the distribution of different cell types. (G) Expression characteristics of COPD inflammatory 
feature genes at the single-cell level (* p < 0.05, ** p < 0.01, *** p < 0.001).
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FIGURE 6

Classification of inflammatory subtypes, pathway activity, and immune characteristics in COPD patients, with CXCL8 expression validation. 
(A) Consistency matrix shows that when the k value is set to 2, the clustering effect of COPD patients is the best. (B) Consistency scores at different k 
values. (C) Principal component analysis shows clear separation between the two inflammatory subtypes of COPD patients. (D,E) Expression of 
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healthy control samples and 265 COPD samples from the external 
datasets, the standardized mean difference of CXCL8 indicated that 
CXCL8 was significantly upregulated in COPD samples (Figure 6I). 
The publication bias test indicated no publication bias in the six 
datasets, with a z-value of 0.56 and a corresponding p-value of 0.573 
from Begg’s test (Figure 6J).

GSVA analysis further revealed differences in pathway activity 
between the inflammatory subtypes. Using the c5.go.symbols.gmt 
gene set, it was found that pathways promoting interleukin-13 
production were significantly upregulated in the C2 subtype, whereas 
pathways that inhibit interleukin-18 production were suppressed in 
this group (Figure 6F; Supplementary Table 9). Additionally, analysis 
with the c2.cp.kegg.symbols.gmt gene set revealed that 
glycosaminoglycan degradation pathways were upregulated in the C2 
subtype, while Toll-like receptor signaling pathways were significantly 
downregulated (Figure 6G; Supplementary Table 10). Results from the 
hall.v2022.1.Hs.symbols.gmt gene set indicated that early estrogen 
response pathways were upregulated in the C2 subtype, whereas 
pathways related to spermatogenesis, MYC targets V1, oxidative 
phosphorylation, and E2F targets were notably downregulated 
(Figure 6H; Supplementary Table 11). Immune infiltration analysis 
demonstrated a significant increase in neutrophil proportions in the 
C2 subtype (Figure  6K). Box plots confirmed that neutrophils, 
eosinophils, and activated mast cells were significantly elevated in the 
C2 subtype, and there was also a trend of increased infiltration of 
activated dendritic cells and M1 macrophages in this group 
(Figure 6L). These findings suggest that the C2 inflammatory subtype 
is characterized by distinct immune and pathway activity changes, 
which may have implications for understanding the immune 
landscape and pathology of COPD.

3.9 Potential of cinnamaldehyde targeting 
CXCL8 and assessment of the dynamics 
stability of the protein complex

To further explore the mechanisms underlying the role of TCM 
active ingredients in the regulation of COPD-associated inflammation, 
this study screened the HERB database and identified cinnamaldehyde 
as a potential target for the key inflammatory factor CXCL8. 
Cinnamaldehyde, primarily derived from the Cinnamomum genus, 
has the molecular structure shown in Figure 7C. Immunofluorescence 
imaging from the Human Protein Atlas database revealed that CXCL8 
is predominantly localized in the Golgi apparatus within cells, with 
consistent distribution observed in both U-251MG and GAMG cell 
lines (Figures 7A,B). Molecular docking simulations indicated that 
cinnamaldehyde stably binds to the active pocket of CXCL8, forming 
a hydrogen bond with Arg45 and hydrophobic interactions with 
Leu41, Asp43, Phe15, and other residues (Figure 7D). The binding 

energy of −5.2 kcal/mol suggests strong binding affinity (Table 2). To 
further validate the stability of this complex under physiological 
conditions, we conducted a 100 ns molecular dynamics simulation of 
the cinnamaldehyde-CXCL8 complex using GROMACS. The system 
was parameterized with the CHARMM36 force field and the TIP3P 
water model, followed by energy minimization and NVT/NPT 
equilibration. RMSD analysis revealed that after initial fluctuations, 
the complex stabilized (Figures  7E,F), indicating that the overall 
structure remained stable. SASA analysis showed stable fluctuations 
in the solvent-accessible surface area (Figure  7G), suggesting no 
significant conformational collapse. Hydrogen bond analysis revealed 
that cinnamaldehyde formed stable hydrogen bond interactions with 
CXCL8 throughout the binding process (Figure 7H). RMSF results 
indicated minimal fluctuations in the key binding residues of the 
complex (Figure 7I), and Rg analysis supported the good structural 
stability of the complex (Figure 7J). In conclusion, cinnamaldehyde 
can stably bind and target CXCL8, with minimal conformational 
fluctuations during binding, indicating its potential 
value in the development of drugs targeting COPD-related 
inflammatory responses.

4 Discussion

COPD is characterized by airflow limitation and chronic 
inflammation, with the inflammatory response playing a crucial role 
in the onset and progression of the disease (29). Extensive studies have 
demonstrated that COPD patients exhibit persistent inflammation in 
the airways and lung tissues, primarily characterized by infiltration of 
neutrophils, macrophages, and T lymphocytes (30). Inflammatory 
factors such as TNF-α, IL-6, IL-8, and chemokines play a significant 
role in the pathogenesis of COPD by promoting airway remodeling 
and structural damage (20, 31). Although the inflammation in COPD 
can be alleviated by regulating these inflammatory factors, current 
therapeutic strategies remain limited (32). Therefore, exploring the 
genes associated with inflammation in COPD, particularly key genes 
involved in inflammation, can provide new insights for early diagnosis 
and targeted therapy.

In this study, a differential gene expression analysis of small 
airway epithelial tissues from COPD patients and healthy controls 
were conducted. And we identified 495 differentially expressed genes, 
many of which are related to inflammation. GO and KEGG 
enrichment analyses revealed that these differentially expressed genes 
play important roles in inflammation-related pathways such as the 
response to exogenous stimuli, arachidonic acid metabolism, and the 
IL-17 signaling pathway. Further GSEA indicated that inflammation 
and TNF-α signaling pathways were significantly activated in the 
epithelial tissues of COPD patients. By cross-referencing 
inflammation-related genes from the literature with the differentially 

inflammatory feature genes between different inflammatory subtypes of COPD patients. (F) GSVA analysis based on the c5.go.symbols.gmt gene set. 
(G) GSVA analysis based on the c2.cp.kegg.symbols.gmt gene set. (H) GSVA analysis based on the hall.v2022.1.Hs.symbols.gmt gene set. (I) Validation 
of CXCL8 expression using six datasets from the GEO database. (J) Publication bias test for the six datasets showed no significant bias. (K,L) Results of 
immune infiltration analysis between two inflammatory subtypes of COPD patients. Neutrophils, eosinophils, and activated mast cells are significantly 
increased in the C2 subtype, while this subtype also shows a trend of increased activated dendritic cells and M1 macrophages (* p < 0.05, ** p < 0.01, 
*** p < 0.001).

FIGURE 6 (Continued)
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FIGURE 7

Molecular dynamics simulation and binding analysis of cinnamaldehyde with CXCL8. (A,B) Immunofluorescence images from the human protein atlas 
database showing that CXCL8 is predominantly localized in the Golgi apparatus of U-251MG and GAMG cell lines. (C) Molecular structure of 
cinnamaldehyde. (D) Molecular docking simulation showing the binding of cinnamaldehyde to the active pocket of CXCL8, with hydrogen bonding to 
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expressed genes, we identified 14 key inflammatory genes that confirm 
the ongoing immune response and tissue damage in COPD. Feature 
selection using Lasso regression and random forest models identified 
genes such as TIMP1, CLEC5A, and CXCL8, which exhibited high 
diagnostic value, showing strong sensitivity and specificity in ROC 
curve analysis. These findings provide potential genetic biomarkers 
for the early diagnosis and targeted treatment of COPD.

The pathogenesis of COPD is characterized by airway remodeling 
and persistent inflammation in the small airways, which are closely 
associated with several biological processes and signaling pathways 
identified in this study (30, 33–35). Specifically, the processes of 
keratinocyte differentiation, epidermal cell differentiation, and 
response to xenobiotic stimulus were found to be  significantly 
enriched in COPD small airway epithelial tissues. The dysregulation 
of keratinocyte and epidermal cell differentiation processes may 
be associated with airway epithelial cell remodeling and abnormal 
proliferation in COPD patients, which may compromise the airways’ 
ability to respond to environmental stimuli, exacerbating disease 
progression (36). Additionally, the enrichment of pathways like 
arachidonic acid metabolism and hormone metabolism suggests their 
involvement in COPD pathophysiology. Arachidonic acid metabolites, 
particularly leukotrienes and prostaglandins, are known to play 
pivotal roles in the inflammatory response in COPD (37, 38). By 
activating their receptors, these metabolites initiate inflammatory 
cascades, leading to the recruitment of immune cells and further 
airway damage (39). This finding corroborates previous studies that 
have highlighted the importance of arachidonic acid metabolism in 
COPD exacerbations (40). The analysis also revealed significant 
enrichment of the IL-17 and TNF-α signaling pathways, both of which 
are central to the inflammatory response in COPD. The IL-17 
signaling pathway and TNF signaling pathway play key roles in 
inflammatory responses. The former promotes neutrophil recruitment 

and activation, thus playing an important role in chronic inflammation 
in COPD (41). Studies have shown that IL-17 can induce epithelial 
cells and fibroblasts to produce various chemokines and cytokines, 
enhancing inflammatory responses and tissue destruction (42). 
TNF-α is an important inflammatory mediator in COPD, with 
elevated levels closely associated with disease severity and lung 
function decline (43). Cell adhesion molecules in COPD may 
participate in inflammatory responses and tissue remodeling by 
regulating leukocyte adhesion and migration (44–46). Furthermore, 
the role of retinoic acid metabolism and cytochrome P450 enzymes in 
COPD was underscored. Retinoic acid, a metabolite of retinol, plays 
an important role in maintaining epithelial cell integrity and immune 
function, and its metabolic disorder may exacerbate the condition of 
COPD patients (47). Cytochrome P450 enzymes play key roles in drug 
metabolism and oxidative stress response, and their activity alterations 
may affect the response to drugs and oxidative stress levels of COPD 
patients (48–50). Furthermore, CYP450 gene polymorphisms are 
associated with COPD susceptibility. CYP2J2 is an important member 
of the cytochrome P450 family, playing a key role in the metabolism 
of arachidonic acid (51). Studies have confirmed that CYP2J2 gene 
polymorphisms are significantly associated with COPD susceptibility 
in the Chinese Han population (52). The GSEA analysis further 
revealed significant activation of pathways such as inflammatory 
response and TNF-α signaling via NF-κB, which supports the notion 
of chronic inflammation driving COPD progression. NF-κB activation 
can induce the expression of various cytokines, chemokines, and 
adhesion molecules, promoting the recruitment and activation of 
inflammatory cells, thus forming a chronic inflammatory response 
(53). Existing studies have shown that NF-κB signaling participates in 
airway inflammatory responses in patients with exacerbated COPD 
by regulating the expression of various inflammatory mediators (54). 
The significant activation of these pathways further reveals the 
presence of intense inflammatory responses and abnormal cell 
signaling in COPD patients, supporting the key role of inflammation 
in the development and progression of COPD.

In addition to inflammation-related pathways, this study also 
identified several important pathways closely associated with 
metabolic regulation, cellular function maintenance, and endocrine 
modulation, further revealing the complex, multi-factorial, and multi-
system interactions underlying the pathogenesis of COPD. Houssaini 
et al. demonstrated that the mTOR signaling pathway is significantly 
activated in the lung tissue of COPD patients (55). Activation of the 
mTOR pathway induces senescence in pulmonary arterial smooth 
muscle cells and endothelial cells, inhibits the expression of 
autophagy-related proteins such as LC3, ATG3, and ATG5, and 
promotes the release of inflammatory cytokines IL-6, IL-8, and CCL2, 
driving typical pathological changes of COPD, including emphysema, 
pulmonary arterial hypertension, and chronic inflammation (55). 
Pathways related to structural remodeling were also widely identified 
in the enrichment analysis of this study. GSEA further revealed 

Arg45 and hydrophobic interactions with Leu41, Asp43, Phe15, and other residues. (E,F) Root mean square deviation change trend of the 
cinnamaldehyde-CXCL8 complex and the protein backbone during the 100 ns molecular dynamics simulation. (G) Solvent accessible surface area 
change trend over time for the cinnamaldehyde-CXCL8 complex. (H) Number and time distribution of hydrogen bonds formed between 
cinnamaldehyde and CXCL8 during the binding process. (I) Root mean square fluctuation analysis at the residue level for the cinnamaldehyde-CXCL8 
complex. (J) Radius of gyration changes in each axis direction and overall for the cinnamaldehyde-CXCL8 complex.

FIGURE 7 (Continued)

TABLE 2 Summary of molecular docking results of cinnamaldehyde and 
CXCL8 protein.

Mode Affinity (kcal/mol) RMSD l.b. RMSD u.b.

1 −5.4 0.000 0.000

2 −5.2 3.803 5.490

3 −5.1 2.543 3.179

4 −5.1 3.248 4.677

5 −4.6 4.304 5.570

6 −4.4 12.261 13.877

7 −4.4 2.917 3.495

8 −4.3 3.090 3.843

9 −4.2 8.893 9.552

10 −3.8 17.530 18.922
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significant activation of the EMT pathway in the COPD group. EMT 
is the process by which epithelial cells lose polarity and acquire 
mesenchymal characteristics, and it is closely associated with 
pulmonary fibrosis, airway narrowing, and gas exchange abnormalities 
(56, 57). Previous studies have shown that repeated epithelial damage 
and chronic inflammation in COPD can induce EMT activation, 
leading to basement membrane destruction and stromal deposition 
(58). Abnormal activation of the KRAS signaling pathway may drive 
the abnormal proliferation of airway epithelial cells and airway 
remodeling, further compromising the structural stability of small 
airways (59). O-glycosylation plays an important role in regulating the 
synthesis and secretion of airway mucus proteins, affecting mucus 
viscosity and clearance efficiency (60). In this study, the enrichment 
of the mucin-type O-glycosylation pathway suggests that 
abnormalities in the glycosylation of mucus molecules may increase 
secretion viscosity and obstruct clearance, thus exacerbating the risk 
of infection and airway obstruction (61, 62). Furthermore, 
dysregulation of fatty acid metabolism was significantly enriched in 
COPD in this study, possibly related to lipid peroxidation and its 
associated pro-apoptotic processes. Previous research has indicated 
that lipid peroxidation generates reactive aldehydes and oxidized 
sterols, leading to cell membrane damage, mitochondrial dysfunction, 
and inflammatory responses, thereby contributing to airway damage 
in COPD (63–65). In terms of immune-endocrine regulation, estrogen 
affects both innate and adaptive immune responses, and it’s signaling 
imbalance may lead to abnormal immune cell activity, triggering 
enhanced inflammation or immune dysfunction (66). This study 
found that both early and late estrogen response pathways were 
upregulated in COPD patients. Abnormal activation of estrogen and 
its receptor signaling may exacerbate neutrophil-mediated 
inflammatory responses, thereby aggravating the pathological 
progression of COPD (67, 68). In conclusion, beyond inflammation, 
mechanisms such as metabolic dysregulation, mucus dysfunction, 
abnormal cell autophagy and apoptosis, and endocrine imbalance are 
deeply involved in the pathological process of COPD, providing new 
theoretical insights for understanding its complex pathogenesis and 
formulating more precise intervention strategies.

Subsequently, this study screened 14 inflammation-related COPD 
genes, which may play important roles in the inflammatory response 
of COPD. Lasso regression and random forest algorithms further 
screened the following seven feature genes for COPD inflammatory 
response: TIMP1, MEP1A, ADM, CLEC5A, CXCL8, CX3CL1, and 
PROK2. CX3CL1 was downregulated in COPD patients, while the 
other six genes were upregulated. The COPD risk prediction model 
constructed with these seven inflammation-related COPD feature 
genes showed good accuracy and clinical application value. 
Upregulation of the expression of inflammatory feature genes plays an 
important role in the inflammatory response and airway remodeling 
of COPD. Studies have shown that, as a metalloproteinase, MEP1A 
participates in tissue remodeling and cell migration by degrading 
various matrix proteins and cell surface molecules (69–71). 
Additionally, MEP1A can regulate the secretion of inflammatory 
mediators, affecting inflammatory responses. Inhibition of MEP1A 
expression can downregulate the secretion of the pro-inflammatory 
mediator IL-6 (72). CLEC5A is related to the activation of immune 
cells and inflammatory responses (73). As a pattern recognition 
receptor, CLEC5A can recognize pathogen-associated molecular 
patterns and activate immune responses (74, 75). Studies have shown 

that CLEC5A is highly expressed in various inflammatory diseases, and 
its inhibition can alleviate inflammatory responses and tissue damage 
(75, 76). In COPD, high expression of CLEC5A may promote chronic 
inflammation by enhancing macrophage activation and inflammatory 
mediator release (74, 77). PROK2 is involved in COPD by regulating 
inflammatory responses and cell apoptosis (78, 79). By binding to its 
G-protein-coupled receptors PKR1 and PKR2, PROK2 promotes 
chemotaxis and the release of pro-inflammatory cytokines, thus 
exacerbating the inflammatory response and tissue damage in COPD 
(80–82). CXCL8 is a potent neutrophil chemokine (83, 84). In COPD, 
high expression of CXCL8 is closely related to increased neutrophils in 
the airways (22). By binding to its receptors CXCR1 and CXCR2, 
CXCL8 induces neutrophil migration, degranulation, and oxidative 
burst, thus enhancing the inflammatory response (85, 86). This may 
be an important mechanism for airway inflammation and damage in 
COPD patients. Studies have shown that inhibition of the CXCL8 
signaling pathway can alleviate airway inflammation and functional 
impairment in COPD patients (87). Therefore, inhibition of the CXCL8 
signaling pathway may become a new strategy for COPD treatment.

Immune cell infiltration analysis showed significant changes in 
the distribution of various immune cells in the small airway epithelial 
tissues of COPD patients. Monocytes, M0 macrophages, eosinophils, 
and resting dendritic cells were significantly increased in COPD 
patients, while Tregs, CD8 + T cells, and naive B cells were lower than 
those in the normal group. Single-cell sequencing data further 
revealed that CXCL8 is mainly expressed in endothelial cells, 
macrophages, and monocytes. Neutrophils promote the inflammatory 
response and tissue damage in COPD by releasing various 
inflammatory mediators and proteases (13). The role of eosinophils in 
the development of COPD may be related to their role in allergic 
inflammation and airway remodeling (88, 89). Activation of mast cells 
promotes airway inflammation and hyperreactivity in COPD by 
releasing histamine and other inflammatory mediators (90). Tregs 
play key roles in maintaining immune tolerance and inhibiting 
excessive inflammatory responses. Their reduction may lead to 
immune response dysregulation in COPD patients, further 
exacerbating the inflammatory response (91–93).

Subsequently, based on the above inflammatory feature genes, this 
study classified COPD patients into two inflammatory subtypes. 
Inflammatory-related genes such as CLEC5A, CXCL8, and PROK2 were 
significantly upregulated in the C2 subtype. GSVA analysis demonstrated 
pathway activity differences between the two inflammatory subtypes of 
COPD patients. Pathways regulating interleukin-13 and interleukin-18 
production were significantly activated in the C2 subtype. IL-13 is a key 
Th2 cytokine that promotes airway remodeling and mucus secretion, 
playing an important role in chronic inflammation in COPD (94, 95). 
Plasma IL-13 levels are significantly elevated in COPD patients (96). 
Additionally, IL-13 is associated with an increased risk of developing 
COPD. Studies have confirmed that IL-13 gene polymorphisms (such 
as rs20541 and rs1800925) are associated with an increased risk of 
COPD in the southern Chinese Han population (96). As a 
pro-inflammatory and pro-apoptotic cytokine, IL-18 is expressed 
primarily in alveolar macrophages and bronchial and alveolar epithelial 
cells, promoting airway obstruction and inflammatory responses by 
activating and migrating inflammatory cells (97, 98). Studies have 
confirmed that serum IL-18 levels are significantly elevated in COPD 
patients, especially during acute exacerbations (98, 99). Furthermore, 
IL-18 levels are negatively correlated with lung function decline (99). 
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However, the functional differences between the C1 and C2 subtypes 
remain to be fully explored. The C1 subtype, which exhibited lower 
expression of pro-inflammatory cytokines like IL-13 and IL-18, may 
represent a less inflammatory phenotype, potentially linked to a milder 
progression of COPD. In contrast, the C2 subtype, characterized by a 
more pronounced inflammatory profile, likely reflects a more severe and 
progressive form of COPD. These functional distinctions between the 
two subtypes may influence not only the progression of the disease but 
also the response to therapy. The upregulation of pathways associated 
with IL-13 and IL-18 in the C2 subtype suggests a Th2-skewed immune 
response, which could have implications for targeted therapies, such as 
IL-13 antagonists, in patients with this subtype (100). Moreover, the 
immune infiltration analysis revealed significant changes in immune cell 
distributions, with the C2 subtype showing a marked increase in 
neutrophil and eosinophil infiltration, both of which are known to 
contribute to airway remodeling and tissue damage. These findings 
highlight that the functional differences between C1 and C2 may not 
only reflect variations in inflammatory gene expression but also in 
immune cell interactions and responses, potentially guiding the 
development of subtype-specific therapeutic strategies. Thus, further 
functional studies are needed to explore the underlying mechanisms 
that differentiate the inflammatory profiles of C1 and C2 subtypes, 
including detailed analyses of immune cell activation and cytokine 
production. Understanding these differences will be  crucial in 
determining whether specific inflammatory subtypes respond better to 
certain therapies and may also reveal novel biomarkers for disease 
severity and progression.

Finally, this study screened and validated the potential 
therapeutic effects of cinnamaldehyde, a TCM monomer component, 
particularly its targeting effects on the CXCL8 protein. 
Cinnamaldehyde, a natural compound derived from cinnamon bark, 
has been extensively studied for its anti-inflammatory, antioxidant, 
and immunomodulatory properties. It has shown significant 
therapeutic potential in treating various inflammatory diseases by 
reducing the levels of reactive oxygen species, nitric oxide, TNF-α, 
IL-6, and IL-10 (101–104). In addition to its antioxidant effects, 
cinnamaldehyde is known to suppress the activation of the NF-κB 
pathway, thereby reducing the expression of pro-inflammatory 
cytokines and chemokines (105). It also modulates the MAPK 
signaling pathway, involved in cellular responses to stress, and 
inhibits the production of pro-inflammatory mediators such as 
cyclooxygenase-2 (106, 107). Furthermore, cinnamaldehyde has been 
shown to inhibit inducible nitric oxide synthase expression, further 
mitigating nitric oxide-mediated inflammation (107, 108). Through 
molecular docking simulations, this study found that cinnamaldehyde 
could bind to the active site of the CXCL8 protein, suggesting that it 
may exert its anti-inflammatory effects by regulating the function of 
CXCL8. CXCL8 is a chemokine involved in neutrophil recruitment 
and activation during the inflammatory response. And by targeting 
it, cinnamaldehyde may help reduce the recruitment of inflammatory 
cells, thereby ameliorating chronic inflammation in COPD. Taken 
together, these findings provide new insights into the potential of 
cinnamaldehyde as a therapeutic agent for inflammatory diseases like 
COPD. Its ability to modulate key inflammatory pathways and target 
critical proteins such as CXCL8 positions cinnamaldehyde as a 
promising candidate for personalized treatment strategies aimed at 
mitigating COPD symptoms and progression.

In conclusion, this study revealed significantly enriched biological 
processes and pathways in COPD patients using various analytical 

methods and screened multiple inflammation-related COPD feature 
genes. Immune infiltration analysis and single-cell sequencing data 
further explored the important roles of these genes in different types of 
immune cells. Additionally, this study identified two inflammatory 
subtypes of COPD based on inflammation-related COPD feature genes, 
and it analyzed differences in pathway activity in different inflammatory 
subtypes of COPD patients using GSVA. Finally, the potential therapeutic 
effects of cinnamaldehyde were screened and validated by molecular-
protein docking. However, one limitation of this study is the lack of 
detailed clinical data regarding the different disease stages of COPD, 
particularly the acute exacerbation phase and stable phase. As COPD 
patients exhibit distinct cellular profiles and gene expression patterns 
between these stages. Further analysis of clinical data, especially focusing 
on disease staging, is necessary for a more comprehensive understanding. 
This study provides important theoretical support for research into the 
molecular mechanism and personalized treatment of COPD, but further 
experimental validation and clinical studies are needed to determine the 
specific roles and therapeutic potential of these genes and pathways in 
COPD. Future research should focus on functional validation of these 
feature genes, as well as the development of potential therapeutic targets, 
to provide more effective treatment strategies for COPD patients.
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