
fmed-12-1593007 July 2, 2025 Time: 19:13 # 1

TYPE Original Research
PUBLISHED 07 July 2025
DOI 10.3389/fmed.2025.1593007

OPEN ACCESS

EDITED BY

Edoardo Pasolli,
University of Naples Federico II, Italy

REVIEWED BY

François Trottein,
Institut Pasteur de Lille, France
Theresia Santi,
President University, Indonesia

*CORRESPONDENCE

Yinji Xu
xuyinji@gzucm.edu.cn

Xiaoyin Chen
tchenxiaoyin@jnu.edu.cn

† These authors have contributed equally to
this work

RECEIVED 13 March 2025
ACCEPTED 30 May 2025
PUBLISHED 07 July 2025

CITATION

Xu H, Li H, Xu J, Chen Y, Deng L, Chen X and
Xu Y (2025) Biological characteristics
of SARS-CoV-2 resistant populations by
integrated gut microbiota sequencing,
metabolomics, and proteomics: a cohort
comparison study.
Front. Med. 12:1593007.
doi: 10.3389/fmed.2025.1593007

COPYRIGHT

© 2025 Xu, Li, Xu, Chen, Deng, Chen and Xu.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Biological characteristics of
SARS-CoV-2 resistant
populations by integrated gut
microbiota sequencing,
metabolomics, and proteomics: a
cohort comparison study
Huachong Xu1†, Haoxuan Li2†, Junhao Xu3, Yaoxin Chen4,
Li Deng1, Xiaoyin Chen1* and Yinji Xu3,5*
1School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China,
2Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China, 3The Second
Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China, 4Department
of Pulmonary and Critical Care Medicine, Zhuhai Hospital of Integrated Traditional Chinese
and Western Medicine, Zhuhai, Guangdong, China, 5Guangdong Provincial Hospital of Chinese
Medicine, Guangzhou, Guangdong, China

Objective: Most research reports on COVID-19 infections have focused on the

correlation between the severity of the disease symptoms and immune deficits,

while the mechanisms affecting the susceptibility to SARS-CoV-2 remain largely

unknown. The study aimed to comprehensively analyze the differences in

immunity, gut microbiota, metabolism, and proteomics between the SARS-CoV-

2 resistant population and the susceptible population.

Methods and results: In this cohort comparison study, participants were

rigorously selected based on inclusion and exclusion criteria in a continuous

enrollment manner using combined questionnaires and clinical data, ultimately

including 25 SARS-CoV-2 resistant volunteers versus 16 SARS-CoV-2 infected

patients. The clinical information of the participants was recorded in detail,

and fecal and blood samples were collected in a standardized manner

for subsequent multi-omics analysis, including gut microbiota sequencing,

metabolomics, and proteomics. This study has preliminarily elucidated the

characteristics of the gut microbiota, serum metabolites, and serum proteins

in the SARS-CoV-2 resistant population. It exhibits a unique metabolic

signature characterized by elevated levels of serum phosphatidylinositol and the

abundance of Prevotella, which may serve as a potential predictive biomarker

for resistance to SARS-CoV-2.

Conclusion: Given the crucial role of phosphatidylinositol in cell membrane

architecture and viral infectivity, this study provides a promising entry point for

further research into the pathogenesis and prevention strategies of COVID-19.

KEYWORDS
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1 Introduction

SARS-CoV-2 is capable of causing novel coronavirus infections
(COVID-19), a highly contagious and fatal infectious disease
(1–3), which has had profound impacts on health and economies
worldwide (4, 5). Most research reports on COVID-19 infections
have focused on the correlation between the severity of the disease
symptoms and immune deficits (6), while the mechanisms affecting
the susceptibility to SARS-CoV-2 remain largely unknown. It is
particularly noteworthy that, despite the widespread pandemic,
there remains a subset of the population that has consistently not
been infected, including those who work in high-risk environments
but have consistently tested negative for nucleic acids or antigens
(7, 8). These individuals are commonly considered to have a natural
resistance to SARS-CoV-2 and are referred to as the SARS-CoV-2
resistant population (7, 8).

Why have these unvaccinated individuals who are repeatedly
exposed to high-risk contact with SARS-CoV-2 not shown
evidence of COVID-19 during the pandemic? Among possible
explanations, host factors have been proven to drive susceptibility
to SARS-CoV-2 and the severity of the COVID-19 disease (9).
Human susceptibility to SARS-CoV-2 is influenced by various
factors, including gender, age, exposure environment, genetic
background, number of vaccinations, gut microbiota, and
immune response (10–12), and there is significant variation in
the individual immune system’s ability to detect and respond
to SARS-CoV-2. Therefore, a comprehensive understanding of
the heterogeneity in immunity, metabolism, gut microbiota, etc.,
between COVID-19 patients and the SARS-CoV-2 resistant
population is crucial for the prevention, treatment, and
prognosis of the disease. Multi-omics can provide a three-
dimensional analysis of each aspect of the biological process,
understanding biological phenomena and mechanisms from a
systems-level perspective (6). For instance, proteomic studies
mapping SARS-CoV-2-human protein interactions identified
druggable host targets (13), while metabolomics profiling
revealed a six-lipid panel with near-perfect diagnostic accuracy
(14). Integrated transcriptomic, proteomic, and metabolomic
analyses further uncovered immune dysregulation patterns:
severe COVID-19 correlates with neutrophil hyperactivity
and IFN-I signaling, whereas mild cases show robust T-cell
responses (15).

To screen for individual differences in resistance or
susceptibility to SARS-CoV-2, this study included a clinical,
prospective observational study of the SARS-CoV-2 resistant
population and the infected population. On the basis of testing
basic clinical biochemical and immunological indicators,
this study employed various omics technologies, including
gut microbiota sequencing, metabolomics, and proteomics,
to analyze serum, feces, and other samples from both the
SARS-CoV-2 resistant and infected populations. We aim
to comprehensively analyze the differences in immunity,
gut microbiota, metabolism, and proteomics between the
SARS-CoV-2 resistant population and susceptible population,
thereby identifying the factors most closely related to
susceptibility or resistance to SARS-CoV-2, to provide a
more complete idea for revealing the pattern of COVID-19
infection occurrence.

2 Materials and methods

2.1 Trial design

In this dual-cohort comparison study, the SARS-CoV-2
resistant population (group B) included in this study mainly
comes from individuals with a higher risk of clinical exposure to
SARS-CoV-2 since 1 December 2022, and have tested negative
for the SARS-CoV-2 RNA or antigen tests. They mainly include
medical staff, interns, or university laboratory personnel from
the Guangdong Provincial Hospital. The SARS-CoV-2 infected
patients (group A) included in the study are mainly from the
outpatient or inpatient departments of the Guangdong Provincial
Hospital, matching the age and gender of the SARS-CoV-2
resistant population and having similar SARS-CoV-2 exposure
characteristics. They are faced with equal exposure risks and
adhered uniformly to protective measures such as isolation gowns,
N-95 respirators and safety goggles ensuring comparable levels
of protection and exposure across individuals. Basic personal
information of the two groups of individuals were collected and
blood, feces, saliva, etc. Samples were collected and stored for
subsequent blood routine tests, SARS-CoV-2 antibody testing,
as well as 16S gut/saliva microbiota, metabolomics, proteomics
sequencing analysis. The study was approved by the Ethics
Committee of Guangdong Provincial Hospital of Traditional
Chinese Medicine (ZE2023-009-01) and approved by Chinese
Clinical Trial Registry (ChiCTR2400094191, Primary Registry of
WHO International Clinical Trials Registry Platform).

2.2 Diagnostic criteria and classification
basis

Referring to the “Diagnosis and Treatment Plan for SARS-CoV-
2 Coronavirus Pneumonia (10th edition)” issued by the Chinese
National Health Commission: relevant clinical manifestations of
SARS-CoV-2 infection and positive results on pathogenic or
serological testing. Primary clinical manifestations include dry
throat, sore throat, cough, and fever, which is mostly low or
moderate, sometimes high, lasting no more than 3 days.

Some patients may also experience muscle aches, loss or
reduction of smell and taste, nasal congestion, runny nose, diarrhea,
conjunctivitis, etc. Pathogenic and serological testing results: (1)
positive COVID-19 RNA test for SARS-CoV-2; (2) positive antigen
test for SARS-CoV-2; (3) positive virus isolation and culture for
SARS-CoV-2; and (4) recovery phase SARS-CoV-2 specific IgG
antibody levels increase by four times or more compared to
the acute phase.

2.3 Inclusion and exclusion criteria

2.3.1 Inclusion criteria for the SARS-CoV-2
resistant population group

À Age ≥ 18 years, no gender preference; Á individuals
with a higher risk of clinical exposure to SARS-CoV-2 since 1
December 2022, and have tested negative for the SARS-CoV-2
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RNA or antigen tests based on epidemiological history, clinical
manifestations, laboratory tests, etc.; Â no related respiratory
infection symptoms such as fever, cough, sore throat in the past
3 weeks; and Ã participants must sign a written informed consent
form to participate in the study.

2.3.2 Inclusion criteria for the SARS-CoV-2
infected patients group

À Age ≥ 18 years, no gender preference; Á according to the
“Diagnosis and Treatment Plan for SARS-CoV-2 (10th edition)”
issued by the Chinese National Health Commission, diagnosed
as patients with SARS-CoV-2 infection based on epidemiological
history, clinical manifestations, and laboratory tests; Â onset
within 1 week, clinically classified as mild or moderate; and
Ã participants must sign a written informed consent form to
participate in the study.

2.3.3 Exclusion criteria
À Individuals with chronic respiratory diseases such as chronic

obstructive pulmonary disease, pulmonary interstitial fibrosis,
bronchial asthma, obstructive sleep apnea-hypopnea syndrome,
or a history of lung surgery; Á individuals with cardiovascular,
liver, kidney, hematological, and neurological diseases, malignant
tumors, or immune dysfunction (including immunosuppressive
drug use or HIV infection causing immune deficiency); Â

individuals with common cold or influenza, acute pharyngitis,
tonsillitis, rhinitis, sinusitis, other types of upper respiratory tract
infections, pneumonia, bronchitis, or other lower respiratory tract
infections triggered by influenza or common cold; Ã individuals
with severe gastrointestinal diseases, experiencing severe diarrhea
(more than 3 watery stools and lasting more than 3 days) and
constipation (less than 2 bowel movements per week with difficulty
in passing stool) in the past 3 weeks; Ä overweight individuals
[body mass index (BMI) > 28.0 kg/m2], pregnant or lactating
women; Å non-compliant individuals who cannot cooperate with
clinical observation and sample collection; and Æ other factors
leading to clinical dropout.

2.4 Experimental grouping

Recruitment of the SARS-CoV-2 resistant population and
SARS-CoV-2 infected patients was conducted through publicity
in the outpatient and inpatient departments of the Guangdong
Provincial Hospital and some communities in Guangzhou. Using
a combination of questionnaires and clinical data, participants
were strictly selected based on inclusion and exclusion criteria in
a continuous enrollment manner, with 25 SARS-CoV-2 resistant
volunteers and 16 SARS-CoV-2 infected patients included in the
study respectively.

2.5 Basic information and sample
collection

2.5.1 General information collection
Collect the gender, age, height, weight of the enrolled

individuals, calculate the BMI; record the course of

illness (for SARS-CoV-2 infected patients)/history of
SARS-CoV-2 exposure (for the SARS-CoV-2 resistant
population), medical history, SARS-CoV-2 vaccination history,
smoking/drinking habits, allergies, respiratory symptoms, and
medication information.

2.5.2 Clinical laboratory testing indicators
Peripheral venous blood samples were collected from

fasting participants for testing serum total IgE levels,
two types of SARS-CoV-2 antibodies, five immunological
items, hypersensitive C-reactive protein, complete blood
count (CBC), T lymphocyte subset (percentage) detection,
and carcinoembryonic antigen. Specimens were destructed
immediately after testing.

2.5.3 Collection of fecal microbiota samples
Before collecting fecal samples, participants were advised

to eat high-water content foods such as vegetables and fruits
and drink plenty of water to facilitate bowel movement. They
were provided with fecal sample collection tubes containing
preservation solution, and after successful collection within
3 days, the samples were returned/sent back to the hospital
for numbering and freezing at −80◦C. Sufficient dry ice was
used for shipment and subsequent metagenomic analysis. Note:
Fecal samples were destructed immediately after completion of
metagenomic testing.

2.5.4 Serum sample collection
Fasting peripheral venous blood was drawn from participants

and collected in vacuum blood collection tubes without
anticoagulants (red cap). The blood was allowed to clot and
form layers by standing at room temperature for 1 h. Using
a medical low-speed centrifuge at 3,000 rpm for 10 min at
room temperature, the blood was separated, and the serum
was transferred to clean centrifuge tubes. Finally, a high-speed
centrifuge at 12,000 rpm for 10 min at 4◦C was used to transfer
the serum to centrifuge tubes or cryogenic tubes, approximately
0.5 ml per tube. To ensure integrity, multiple tubes were filled
as much as possible and stored in the refrigerator at a freezing
temperature of −80◦C. Adequate dry ice was used for shipment
to ensure sample stability for subsequent metabolomics and
proteomics analysis.

2.6 Clinical indicator testing organization
and methods

Inflammatory and immune-related indicators of the two
groups of patients were tested. The detection of SARS-CoV-2
IgG antibody (chemiluminescence method) and SARS-
CoV-2 IgM antibody (chemiluminescence method) were
purchased from Bioscience (Chongqing) Biotechnology Co.,
Ltd., with medical device registration number 20203400183
for IgG and 20203400182 for IgM. C-reactive protein was
tested using the immunoturbidimetric method and the
reagent kit was purchased from Roche Diagnostics Products
(Shanghai) Co., Ltd., with medical device registration
number 20212400184.
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2.7 Microbiome sequencing,
metabolomics, and proteomics
detection methods and analysis methods

2.7.1 Detection methods and analysis methods of
fecal microbiome sequencing

This study revealed the microbial composition of different
samples through 16S rDNA sequencing and complex data
analysis. DNA extraction was performed using the CTAB
method, followed by PCR amplification with primer design
specific to each sample. PCR products were validated and
purified through gel electrophoresis, then sequenced using a
high-throughput sequencing platform. Sequencing results were
transferred to the Illumina NovaSeq platform. Paired-end reads
were assigned to samples based on their unique barcodes, and
the barcodes and primer sequences were trimmed. Flash was
used to merge paired-end reads. The original reads were quality-
filtered using fqtrim (v0.94) to obtain high-quality clean tags.
Vsearch software (v2.3.4) was used to filter chimeric sequences.
After deduplication with DADA2, feature tables and sequences
were obtained. Alpha and beta diversity were calculated by
normalizing to the same random sequence. Relative abundance
of features for each sample was normalized using the SILVA
(release 138) classifier. Alpha diversity was calculated using
QIIME2, including Chao1, observed species, Good’s coverage,
Shannon, Simpson indices, etc. These indices for our samples
were calculated and plotted using R packages. Beta diversity
was calculated using QIIME2, and graphical representations were
created using R packages. Sequence alignment was performed
using Blast, and representative sequences were annotated using
the SILVA database. Other charts were created using the R
language (v3.5.2). Differential abundance of bacterial taxa was
analyzed using the multivariate statistical model MaAsLin2.
Bacterial taxa with an abundance > 0.05% in at least one
sample, an adjusted P-value < 0.05 [Benjamini–Hochberg false
discovery rate (FDR) correction], and a FC > 1.5 were considered
statistically significant.

2.7.2 Detection methods and analysis methods of
metabolomics sequencing

The method for extracting metabolites from serum samples
involved adding each sample to a mixture of 500 µl acetonitrile-
methanol-water (2:2:1, v/v/v) with isotopically labeled internal
standard mix. After vortex mixing for 30 s, the samples were
sonicated at 35 Hz for 4 min and then ultrasonicated in an
ice-water bath for 5 min, repeated three times. Samples were
then stored at −40◦C for 1 h, centrifuged at 12,000 × g for
15 min at 4◦C, and the supernatant (400 µl) was transferred to
EP tubes and vacuum-dried, then dissolved in 50% acetonitrile.
Subsequently, 75 µl of the supernatant was used for liquid
chromatography-tandem mass spectrometry (LC-MS/MS)
analysis. An equal amount of all supernatants was taken as
quality control (QC) samples. For serum samples, 50 µl of serum
was added to a mixture of 200 µl methanol-acetonitrile (1:1,
v/v) with isotopically labeled internal standard mix, followed
by the same procedure. Finally, the raw metabolomic data was
processed, including peak detection, extraction, alignment,

and integration, followed by multivariate analysis such as
principal component analysis (PCA) and orthogonal partial
least squares-discriminant analysis (OPLS-DA). Differential
metabolites were identified through variable importance in the
projection (VIP) and statistical analysis, followed by hierarchical
clustering analysis (HCA) and heatmap construction, as well
as pathway enrichment analysis. Given the untargeted nature
of our LC-MS platform, reported metabolite differences reflect
relative abundance based on normalized peak intensities rather
than absolute concentrations. Metabolite quantification was
conducted using XCMS software to extract signal intensities
across samples, followed by QC and preprocessing with metaX
software: low-quality peaks (missing in >50% of QC samples
or >80% of actual samples) were removed, missing values were
imputed via the K-nearest neighbors (KNN) method, and data
normalization was sequentially performed using probabilistic
quotient normalization (PQN) and QC-robust spline batch
correction (QC-RSC). Post-normalization, ions with a coefficient
of variation (CV) >30% in QC samples were excluded due
to high experimental variability. For differential metabolite
analysis, a hybrid approach combining univariate statistics
[fold-change (FC) and Student’s t-test with Benjamini–Hochberg
(BH)-adjusted q-values] and multivariate analysis [partial least
squares discriminant analysis (PLS-DA)-derived VIP scores]
was applied. Differential ions were defined by simultaneous
thresholds: |log2(FC)| ≥ 0.58 (equivalent to FC ≥ 1.5 or ≤1/1.5),
P-value ≤ 0.05, and VIP ≥ 1.

2.7.3 Detection methods and analysis methods of
proteomics

In this experiment, 4D-DIA technology was used for
proteomics analysis. Serum samples underwent protein separation,
followed by analysis using a nanoElute chromatography system
and timsTOF Pro mass spectrometer. During the experiment,
proteins were first separated by SDS-PAGE electrophoresis,
enzymatically digested using the FASP method, and peptide
segments were separated by High pH RP fractionation. Protein
data was obtained through DDA mass spectrometry library
construction and DIA mass spectrometry analysis. Protein
data was functionally annotated and pathway annotated using
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) databases, followed by enrichment analysis.
Bioinformatics analyses such as subcellular localization analysis,
domain annotation and enrichment analysis, clustering analysis,
and interaction network analysis were conducted. Differential
protein analysis was conducted by first selecting the sample pairs
for comparison. The FC for each protein was calculated as the
ratio of the mean quantitative values across all biological replicates
in the compared sample pairs. To assess statistical significance, a
Student’s t-test was performed on the relative quantitative values of
each protein between the two sample groups, generating a P-value
as the significance metric (default threshold: P-value < 0.05).
In this study, upregulated proteins were defined as those with
FC > 1.5 and P-value < 0.05, while downregulated proteins were
defined as those with FC < 0.67 and P-value < 0.05. Volcano
plots were generated by plotting the logarithmic FC [log2(FC)]
against the absolute logarithmic P-value [−log10 (P-value)].
HCA was performed on the relative abundance of differentially
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expressed proteins across samples, visualized via a heatmap to
observe upregulation and downregulation patterns. Each row was
normalized using Z-scores, calculated as (observed value − row
mean) / row standard deviation.

2.8 Statistical methods description

For data collection and entry, a database was established using
Epidata V.3.1 software. All data was entered by two individuals.
After logical checking, validation, cleaning, and blind review,
the database was locked, and analysis was conducted using
SPSS V.22.0, while statistical graphs were created using Graph
Pad Prism 9 or R software. Continuous data was expressed as
“mean ± standard deviation” or median/interquartile range. For
comparisons between two groups, one-way analysis of variance
(ANOVA) was used when the variance was homogeneous, and
the Kruskal–Wallis test was used when the variance was not
homogeneous. Categorical data was represented as composition
ratios or rates, and intergroup comparisons were made using
Fisher’s exact test (2 × C), while rank-sum test (Mann–
Whitney method) was used for ordinal data. Statistical methods
for microbiome, metabolomics, and proteomics can be found
in section “2.7 Microbiome sequencing, metabolomics, and
proteomics detection methods and analysis methods.”

3 Results

3.1 General characteristics of the study
population

Throughout the duration of the trial, which spanned from 12
January 2023, to 11 February 2023, a cohort of 60 individuals
participated in the study. A total of 19 subjects were excluded and
one further exclusion occurred in group A due to not cooperate
with clinical observation and sample collection (Figure 1). Within
this cohort, 16 subjects were identified as patients infected
with SARS-CoV-2 (group A), whereas the remaining 25 were
classified as the SARS-CoV-2 resistant population (group B). All
participants underwent the complete suite of examinations. Patient
demographics and clinical characteristics at the time of screening
are detailed in Table 1. At the study’s inception, no significant
disparities were observed between the two groups with respect to
age, gender, BMI, alcohol consumption history, smoking history,
allergic history, medical history, or the number of vaccinations
received. It was observed that individuals within the SARS-CoV-
2 resistant population group exhibited a preference for a balanced
dietary structure between animal and plant foods.

3.2 Clinical immune indexes and
complete blood count analysis between
the SARS-CoV-2 resistance group and
the infection group

Upon admission, serum specimens were collected from each
participant for subsequent analysis. We conducted an evaluation

of 12 clinical parameters in groups A and B, which included
total IgE concentrations, five immunological markers, high-
sensitivity C-reactive protein (hs-CRP), T lymphocyte subset
percentages, and carcinoembryonic antigen levels falling within
normal physiological ranges. However, we observed significant
differences in the levels of SARS-CoV-2 IgM (P = 0.0126)
and IgG (P = 0.001), suggesting disparate infection statuses
among the groups. The SARS-CoV-2-resistant group showed
lower antibody expression. Additionally, during the CBC
analysis, there were significant variations noted in the counts
of neutrophils (P = 0.043) and monocytes (P = 0.001) (Figure 2).
The above data indicate that there are some differences in
immune profiles between the COVID-19 resistance group and
the infection group, which may be related to the infection
mechanism.

3.3 Differences in gut microbiota
between the SARS-CoV-2 resistance
group and the infection group

To assess the variations in gut microbiome diversity between
the two cohorts, we initially quantified the alpha diversity of
fecal specimens utilizing metrics such as Chao1, Shannon,
and Simpson indices. Our analysis indicated no significant
disparities in alpha diversity between the groups as presented
in Figure 3A. Further, a PLS-DA was employed to dissect
the community structure of the gut microbiota. The cohorts
manifested distinct segregation along the principal coordinate
axis 1 (PC1), which underscores compositional distinctions in
gut microbiota as detailed in Figure 3B. This finding implies
that despite a uniform spectrum of microbial varieties across
the cohorts, their proportional abundances are substantially
divergent. Differential fecal microbiota compositions were evident
between the groups, as denoted in Figure 3C. For instance,
relative to group A, there was an escalation in the prevalence of
Prevotella_9, Eubacterium eligens, Prevotella, Ligilactobacillus,
Christensenellaceae_R-7_group, Alloprevotella, Salmonella,
Enterococcus, and Olsenella in Group B. Inversely, the quantities
of Sutterella, Phascolarctobacterium, Blautia, Lactobacillus,
Lachnospiraceae_UCG-010, Clostridiales, Colidextribacter,
UBA1819, Hungatella, and JG30-KF-AS9 unclassified were
diminished in group B.

In continuation, linear discriminant analysis (LDA) allied
with effect size estimates (LEfSe) was harnessed to ascertain the
significance of the observed microbial community shifts and
relative enhancements across groups A and B. At the genus level,
LEfSe analysis unveiled a pronounced decrement in the genera
Sutterella, Phascolarctobacterium, Lachnospiraceae_UCG_010,
Lactobacillus, Blautia, and UBA1819, concomitant with an
increment in Alloprevotella, Christensenellaceae_R-7_group,
Prevotella, Eubacterium_eligens_group, and Prevotella_9 in
group B as cataloged in Figure 3D. In the aforementioned
microbial communities, we observed associations between
specific taxa (e.g., Prevotella and Enterococcus) and
phosphatidylinositol (PI) metabolism, consistent with prior
reports linking these microorganisms to lipid signaling
pathways (16, 17).
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FIGURE 1

Participant flow diagram.

TABLE 1 Baseline Characteristics of the Study Cohorts.

Characteristic Group B
(n = 25)

Group A
(n = 16)

P-value

Age (years), Mean 33.04 27.63 0.15

Sex Male (n) 10 8 0.53

Female (n) 15 8

BMI (kg/m2), Mean 22.61 22.35 0.84

Alcohol consumption (n) 1 0 /

History of cigarette smoking (n) 0 0 /

Allergy history (n) 5 7 0.10

Past medical history (n) 3 2 0.96

Number of SARS-CoV-2 vaccines, Mean 2.76 2.81 0.25

Dietary patterns Meat-based with vegetarian supplements (n) 4 8 0.05*

Vegetarian-based with meat supplements (n) 2 0

Balanced structure of animal and plant foods (n) 19 8

BMI, body mass index. “*” indicates P < 0.05 for comparison between two groups.

3.4 Differentially abundant metabolites
related to SARS-CoV-2 resistance group

Considering the intricate relationship between the gut
microbiome and host metabolic processes, we embarked on
untargeted metabolomics investigations of serum samples. The
deployment of OPLS-DA unveiled distinct metabolic profiles
between group A and group B, signifying substantial modifications
in the serum metabolite composition (Figure 4A). Through
stringent selection criteria of a VIP greater than 1.5 and a P-value

less than 0.05, we pinpointed 37 unique metabolites. Notably,
group B exhibited an upregulation of 27 metabolites, inclusive
of 15 glycerophospholipid-associated metabolites, whereas a
downregulation of 10 metabolites was observed (Figures 4B, C). In
pursuit of a deeper understanding of the differential metabolites’
metabolic pathways and functions, we engaged in a thorough
analysis utilizing the Human Metabolome Database (HMDB)
and the KEGG online databases. The analysis indicated that the
differential metabolites were primarily concentrated in pathways
related to glycerophospholipid metabolism, choline metabolism
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FIGURE 2

Clinical immune indexes and complete blood count analysis. “*” indicates P < 0.05 for comparison between two groups. “**” indicates P < 0.01 for
comparison between two groups. “***” indicates P < 0.001 for comparison between two groups.

FIGURE 3

Differences in gut microbiota between the SARS-CoV-2 resistance group and the infection group. (A) Violin diagram of alpha diversity; (B) partial
least squares discriminant analysis of gut microbiota; (C) the result chart of differential bacterial genera screening at the genus level between the
COVID-19 infection group and the COVID-19 resistant group; (D) linear discriminant analysis effect size analysis; microbial features were classified
based on both statistical significance and biological effect size.

in cancer, phenylalanine metabolism, and vitamin metabolism
(Figure 4D). A further probe into glycerophospholipid metabolism
revealed six metabolites associated with PI metabolism, all
upregulated in group B. This observed association between PI
metabolism and susceptibility phenotypes suggests a potential
mechanistic link worthy of further experimental validation. To
augment our insights, we performed a comprehensive joint analysis
of fecal microbiota and serum metabolomics.

3.5 Associations between the
metabolome, clinical parameters, and
gut microbiome

Given the profound physiological impact of the gut microbiota
on its host, which often facilitated through a complex host-microbe
metabolic axis, our study further explored the relationships
between the prevalence of specific bacterial genera and certain
metabolites within the gut microbiome. We discovered a

correlation between the presence of potentially pathogenic
Enterococci, Prevotella, etc. and an increase in serum metabolites,
including PI 38:5, PI 36:3, PI 34:1, 1,2-dipalmitoyl-sn-glycero-3-
phospho-(1′-myo-inositol), PI 38:4, and PI 36:1 (Figures 5A, B).
Utilizing Spearman’s rank correlation analysis and selecting data
with a rho value below −0.4 or above 0.4 and a P-value less
than 0.05, we identified that metabolites such as PI 36:3, PI 34:1,
PI 38:4, and PI 38:5 are significantly negatively correlated with
COVID-19 IgG antibody levels (Table 2). These findings robustly
endorse the hypothesis that alterations in the mechanisms of
COVID-19 susceptibility are intricately regulated by a dynamic
host-microbe metabolic axis, exhibiting significant associations
with PIs (Figures 5A, B).

3.6 Joint analysis of proteomics and
metabolomics

To further elucidate the mechanisms underlying the changes
in PI metabolism, we conducted a proteomic analysis of serum
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FIGURE 4

Between-group comparative analysis of serum metabolites. (A) Partial least squares discriminant analysis of metabolites; (B) volcano plot for
differential metabolites; (C) metabolomics cluster analysis plot; (D) Kyoto Encyclopedia of Genes and Genomes enrichment pathway of metabolites.

FIGURE 5

Correlation between the gut microbiota and metabolites. (A) Heatmap of joint analysis of metabolomics and gut microbiota; (B) diagram of
differential metabolites and differential microbiota network regulation. “*” indicates P < 0.05 for comparison between two groups. “**” indicates P <
0.01 for comparison between two groups.

samples followed by PCA, which revealed significant protein
differences between the two groups (Figures 6A, B). Among
the quantifiable 713 proteins, a total of 177 proteins exhibited
significant differential expression between group A and group
B, with 82 proteins upregulated and 95 proteins downregulated
(FC > 1.5 or <0.67 and P-value of <0.05) (Figure 6C). Differential
expression proteins were analyzed through the GO database,
identifying the liver histone H1e protein, which is enriched
in pathways including nucleosome, nucleus, and nucleosome

assembly. Histone H1 and its variant, H1e, are classified as
linker histones, playing a crucial role in binding DNA between
nucleosomes to facilitate the compaction and stabilization of
chromatin into higher-order structures. This process is vital for
the efficient packaging of DNA within the cell nucleus and exerts
significant regulatory influence on gene expression patterns. The
designation “e” in H1e specifies a particular subtype or isoform
of the H1 histone, characterized by unique expression profiles and
functional roles across varying cell types and physiological states.
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TABLE 2 Correlation between metabolites and COVID-19 IgG antibody
levels.

Target Metabolites Rho P-value Relation

COVID-19
IgG antibody
levels

PI 36:3; PI
(18:1/18:2)

−0.52138 0.000473 Negative

PI 34:1; PI
(16:0/18:1)

−0.50845 0.000688 Negative

PI 38:4; PI
(18:0/20:4)

−0.4795 0.001513 Negative

PI 38:5; PI
(18:1/20:4)

−0.43116 0.004887 Negative

We conducted KEGG enrichment analysis to identify the
metabolic pathways associated with differentially expressed
proteins. Among the upregulated proteins, there was a significant
enrichment in pathways such as the PI3K-Akt signaling pathway,
B cell receptor signaling pathway, Fc epsilon RI signaling pathway,
NF-κB signaling pathway, natural killer cell-mediated cytotoxicity,
and the phospholipase D signaling pathway. Additionally,
we identified the 5-3 exonuclease PLD4, which is associated
with PI metabolism.

Enrichment analysis of protein domains among differentially
expressed proteins can predict the functions of proteins with
unknown roles. The enrichment of protein domains is illustrated

in Figure 6D, showing that the differentially expressed proteins
predominantly contain domains such as “Immunoglobulin
V-set,” “Proteinase inhibitor I1 Kazal,” “GPCR, family 2, secretin-
like,” “GPS domain,” and “Histone H1/H5.” The V-set domain
is functionally diverse, regulating chromosomal structure,
participating in DNA replication and repair; it modulates gene
expression and protein methylation and plays a pivotal role
during viral invasion. Similarly, through an integrated analysis
of proteomics and metabolomics, we discovered that Histone
H1e(A3ROT7) is significantly associated with PI metabolism
(Figure 6E).

4 Discussion

This study aimed to explore the intestinal flora, serum
metabolites, and related serum proteomic changes that can explain
the susceptibility difference of COVID-19, and try to explore
the related biological mechanism through the joint analysis of
multiomics. We have preliminarily elucidated the characteristics
of the gut microbiota, serum metabolites, and serum proteins
in the SARS-CoV-2-resistant population. This group exhibits a
unique metabolic signature characterized by elevated levels of
serum PI, which may serve as a potential predictive biomarker for
resistance to SARS-CoV-2.

FIGURE 6

Proteomics and its correlation between metabolites. (A) Principal component analysis of proteomics; (B) proteomics cluster analysis plot; (C)
volcano plot of differential protein; (D) differential protein enrichment pathway plot; (E) heatmap of joint analysis of differential metabolites and
differential proteins. “*” indicates P < 0.05 for comparison between two groups. “**” indicates P < 0.01 for comparison between two groups. Protein
identifiers and their functional descriptions are provided in Supplementary Table 1.
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Individual susceptibility to SARS-CoV-2 varies greatly, with
these differences partly stemming from genetic factors. For
instance, the ACE2 protein plays a crucial role in the infection
process of SARS-CoV-2, with its level of expression directly
affecting an individual’s sensitivity to the virus. However, genetic
factors alone cannot fully explain the susceptibility to COVID-
19. Studies have noted that the rate of infection among children
living in the same household is lower than that of their parents
(18), and there is a significant increase in the incidence rate
among individuals over the age of 75 (19). In numerous families
where almost all members were infected, there was often a
single individual who remained uninfected (20), suggesting that
some individuals who are highly exposed to SARS-CoV-2 may
possess resistance to the infection. Since the disease was first
described in December 2019, there has been substantial progress
in understanding the pathophysiology of life-threatening COVID-
19. However, research focusing on virus resistance has been much
less common than research on susceptibility, leaving the biological
basis of innate resistance to SARS-CoV-2 largely unexplored.

With the advancement of multi-omics technologies, researchers
are gaining an increasingly sophisticated understanding of
the gut microbiome, serum metabolites, and their significant
roles in regulating immune responses and the development
of infectious diseases. The borderline statistical significance of
dietary pattern differences observed in the cohort, potentially
attributable to the limited sample size and reduced statistical
power, necessitates cautious interpretation of dietary confounding
effects. While these findings might suggest a subtle influence of
diet on gut microbiome composition, the microbial signatures
differentiating SARS-CoV-2-resistant and infected individuals
demonstrate biological plausibility independent of dietary factors.
Prior evidence independently associates gut microbiota with
antiviral immunity, reinforcing the hypothesis that host-pathogen
interactions, rather than dietary variability alone, underpin the
observed microbial patterns (21, 22). Nevertheless, the interplay
between diet, microbiome dynamics, and immune responses
remains an important consideration. To resolve this ambiguity,
future large-scale studies with standardized dietary monitoring are
critical to disentangle the contributions of SARS-CoV-2 resistance,
dietary habits and their synergistic effects. In the analysis of the
gut microbiome, we first compared the species differences between
the SARS-CoV-2 resistant population and the infected population.
No statistical difference was found in alpha diversity between the
two groups. Therefore, we further employed PLS-DA and found
a clear distinction between the two groups, indicating a statistical
difference in the gut microbiome structure between the SARS-CoV-
2 resistant and infected groups. Currently, there is no consensus on
the relationship between the alpha diversity and beta diversity of the
gut microbiome and the resistance or susceptibility to COVID-19.
Many studies suggest significant differences in both alpha and beta
diversity between healthy controls and COVID-19 patients (23, 24),
but some studies show no statistical difference in species diversity
between the gut microbiome of COVID-19 patients and that of
healthy individuals (25). Further analysis of the key differential
genera revealed that the abundances of three genus: Prevotella_9,
Prevotella, and Alloprevotella were increased in the SARS-CoV-2
resistant group compared to the infected group, with Prevotella_9
showing a significant change in proportion. Further LEfSe analysis
also indicated that Prevotella was predominantly enriched in

the SARS-CoV-2 resistant group. Prevotella is a Gram-negative,
non-motile rod-shaped bacteria that exist as single cells and can
grow in anaerobic environments. This bacterium is considered
associated with a healthy vegetarian diet and plays a beneficial role
in the human body. This aligns with the baseline preference of
the SARS-CoV-2 resistant population for a balanced diet rather
than an imbalanced one. There are also reports that Prevotella is
associated with the pathogenesis of COVID-19. A study analyzed
the Prevotella proteins secreted by respiratory Prevotella and found
multiple interactions with the NF-κB pathway (26). Overexpressed
Prevotella proteins can promote viral infection, leading to an
increase in the clinical severity of COVID-19, suggesting that
Prevotella might play a role in the outbreak of COVID-19 (26).
Another study showed that patients with COVID-19 pneumonia
had a greater fecal abundance of Prevotella compared to those
with mild infections (27). Further research found that, compared
to mild and asymptomatic cases, moderate COVID-19 patients
had a depletion of the genus Prevotella in their gut microbiome
(28). These findings suggest that the Prevotella genus may play
an important role during COVID-19 infection. Given the current
insufficient understanding of the pathological mechanisms by
which the gut microbiome affects COVID-19 resistance and the
limited evidence linking Prevotella with susceptibility to the virus,
this study suggests that the role of Prevotella in resistance and
susceptibility to COVID-19 requires further investigation.

While the diversity of the gut microbiota has been identified,
relying solely on these differences to fully explain the resistance
and susceptibility to COVID-19 is insufficient. The gut microbiota
influences the human body in various ways, including the
modulation of serum metabolites. Gut microorganisms can break
down dietary fibers and other components, producing a variety
of metabolites such as short-chain fatty acids (SCFAs), amino
acids, and vitamins (29). These metabolites are absorbed through
digestion and circulated throughout the body via the bloodstream,
where they regulate the function of immune cells and trigger anti-
inflammatory or pro-inflammatory responses, helping to maintain
the balance of the immune system (29). To explore whether
the dysbiosis of the gut microbiota in COVID-19 patients leads
to metabolic disorder that subsequently affects resistance and
susceptibility to COVID-19, this study conducted metabolomic
analysis on the serum of two groups of individuals. Through
the analysis of differential metabolites, 37 distinct metabolites
were identified between the group with resistance to SARS-CoV-
2 and the group with infections. Of these, 28 metabolites were
upregulated and 9 were downregulated; among the upregulated
differential metabolites, 7 were PIs.

Phosphatidylinositol is a crucial component of cell membranes,
involved in cellular signaling and regulation of cell functions.
Through the action of specific enzymes, PI can be converted
into various phosphorylated forms, allowing it to rapidly respond
to external signals, modulate the spatial structure of membrane
proteins, stabilize adjacent membrane contact sites for ion
exchange and signal transduction between cells, and adjust the
cytoskeleton to maintain normal cellular activities. Some studies
have found statistical differences in PI levels between COVID-
19 patients and healthy controls, with PI levels capable of
distinguishing between the two groups and correlating with
the severity of the disease (30, 31). Researchers speculate that
abnormal reductions in PI may be related to the structure of the
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cellular endoplasmic reticulum. The endoplasmic reticulum is a
complex membrane network that is ubiquitously distributed in
the cytoplasm and stably connected to almost all organelles. This
membrane characteristic creates a lipid gradient and corresponding
metabolic pathways at specific locations, leading to more significant
changes in phospholipid metabolites than in other metabolites
(32). Further studies have found that (33) COVID-19 patients have
higher anti-PI antibodies (0.223) compared to healthy controls
(0.103), and PI is a major component of the SARS-CoV-2 envelope
(34). Phosphatidylinositol could affect the binding efficiency of
the virus to host cell receptors, thereby influencing viral particle
endocytosis and release. This study conducted a correlation analysis
between Prevotella, which showed the greatest difference between
groups, and PI, the metabolite with the most significant intergroup
difference, and found a clear positive correlation between Prevotella
and PI in COVID-19 patients. It is also noteworthy that a significant
negative correlation was found when correlating COVID-19 virus
antibody IgG with PI. Therefore, this study postulates that the
group resistant to SARS-CoV-2 may have higher serum levels of
PI, which could also be positively correlated with the abundance of
gut Prevotella. This could be one of the potential mechanisms that
reduce the binding efficiency of the virus to the host cell receptors,
thereby increasing resistance to SARS-CoV-2.

To further elucidate the underlying mechanisms governing
alterations in PI metabolism, we engaged in a proteomic
analysis of serum samples. Through an integrated approach
combining proteomics with metabolomics, we discerned a
significant correlation between histone H1e and PI metabolism.
Histones, including H1 and its variant H1e, are classified as
linker histones and play a pivotal role in binding DNA between
nucleosomes to facilitate chromatin compaction and stabilization
into higher-order structures. This process is vital for the efficient
packaging of DNA within the nucleus and exerts a substantial
regulatory effect on gene expression patterns. Subsequently, we
conducted a KEGG enrichment analysis of the differential proteins
and found a significant enrichment in pathways including the
PI3K-Akt signaling pathway, B-cell receptor signaling pathway,
Fc epsilon RI signaling pathway, NF-κB signaling pathway,
natural killer cell-mediated cytotoxicity, and the phospholipase
D signaling pathway, among others. Specifically, the PI signaling
system, activated via PI3K, generates diacylglycerol (PIP2) and
triphosphoinositide (PIP3), which in turn activates downstream
signaling molecules such as protein kinase B (AKT), involved
in processes encompassing cellular proliferation, survival, and
differentiation. This suggests that the aforementioned pathways
may be the potential mechanisms through which a cohort resistant
to COVID-19 effectuates a lower susceptibility via PI signaling.

Nevertheless, our study is subject to some limitations. On
one hand, the sample size is relatively small, impacted by the
rapid spread of multiple outbreaks and the diminished population
resistant to COVID-19. Future efforts to increase the sample size
and to undertake multicenter studies will enhance the robustness
of the findings. On the other hand, multi-omics approaches have
revealed distinct subsets of gut microbiota, differentially abundant
serum metabolites, and host proteins associated with COVID-
19 resistance. While integrated analyses have uncovered potential
biological pathways, the mechanistic underpinnings at the genetic
level remain uncharacterized. However, these findings ultimately
demonstrate correlational relationships, necessitating mechanistic
studies to validate the specific pathways hypothesized through

bioinformatic analyses. In future research, we intend to conduct
more in-depth studies to clarify the host’s systemic adaptations
involved in combating COVID-19, such as those mediated by the
gut–lung axis, rather than just a single immune response. Building
on previous research on COVID-19 prevention, treatment, and
rehabilitation (35–38), we will further explore the potential
application value of specific biomarkers of resistant populations
(e.g., characteristic gut microbiota and related metabolites) in
interventions across these stages.

5 Conclusion

In summary, this study identifies preliminary microbial and
metabolic signatures associated with SARS-CoV-2 resistance in
our cohort, characterized by serum PI elevation and Prevotella
enrichment. While these correlations suggest testable hypotheses
about host-microbe interactions in viral susceptibility, they require
validation through controlled mechanistic studies—such as fecal
microbiota transplantation in animal models or targeted metabolic
interventions. This study provides a promising entry point for
further research into the pathogenesis and prevention strategies
of COVID-19. Beyond its immediate applications, the multi-
omics framework adopted in this work establishes a scalable
methodological pipeline that highlights host-microbe metabolic
crosstalk as a critical yet underexplored axis in epidemic resilience.
By integrating gut microbiota sequencing, metabolomics, and
proteomics, this approach offers a methodological reference for
rapidly identifying resistance biomarkers in future infectious
disease crises, while advances the integration of susceptibility
analysis into researchers’ methodological frameworks probably.
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