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Introduction: The estrogen receptor (ER) is routinely assessed by

immunohistochemistry (IHC) in breast cancer to stratify patients into therapeutic

and prognostic groups. Pathology laboratories are burdened by an increased

number of biopsies, and costly and resource-demanding molecular pathology

analyses. Automatic, artificial intelligence-based prediction of biological

properties from hematoxylin and eosin (HE)-stained slides could increase

e�ciency and potentially reduce costs at laboratories. The aim of this study

was to develop a model for prediction of ER status from HE-stained tissue

microarrays (TMAs). Our methodology can be used as proof-of-concept for the

prediction of more complex and costly molecular analyses in cancer.

Methods: In this study, TMAs from more than 2,000 Norwegian breast

cancer patients were used to train and predict ER status using the clustering-

constrained attention multiple-instance learning (CLAM) framework. Two patch

sizeswere evaluated,multi-branch and single-branchCLAMconfigurationswere

compared, and a comprehensive hyperparameter search with more than 16000

experiments was performed. Themodels were evaluated on internal and external

test sets.

Results: On the internal test set, the proposed model achieved a micro

accuracy, a macro accuracy, and an area under the curve of 0.91, 0.86, and 0.95,

respectively. The corresponding results on the external test set were 0.93, 0.76,

and 0.91, respectively. Using larger patch sizes resulted in significantly better

classification performance, while no significant di�erences were observed when

changing CLAM configurations.

KEYWORDS

deep learning, digital pathology, breast cancer, estrogen receptor, hematoxylin and

eosin, multiple instance learning, tissue microarray
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1 Introduction

In diagnostic pathology, tissue sections are routinely stained

using hematoxylin and eosin (HE) for visualization of tissue.

Modern cancer diagnostics also often includes costly and complex

laboratory analyses to map the biological properties of the tumor,

aiming for personalized cancer treatment. The use of molecular

pathology analyses has increased significantly in pathology

laboratories in the past decades (1). The increased workload and

recruitment difficulties pose challenges for pathology laboratories

worldwide. Developing efficient and automatic methods for

prediction of biological properties from hematoxylin and eosin

(HE)-stained cancer slides could therefore be of clinical importance

and potentially save resources in health services.

For subclassification of breast cancer into prognostic and

therapeutic groups, biomarkers such as the estrogen receptor

(ER) are routinely assessed according to the established breast

cancer guidelines (2, 3). ER is a nuclear hormone receptor,

present in benign epithelial cells and in a majority of invasive

breast cancers (4), and the binding of the estrogen steroid

to the ER stimulates epithelial proliferation (5). Estrogens are

involved in the development and growth of breast cancer through

direct and indirect mechanisms (6). ER status is determined

by immunohistochemistry (IHC) (3), a method that visualizes

proteins such as the ER in tissue. In the assessment of ER status,

only the invasive epithelial cells are included (3). A breast cancer

is classified as ER-positive if ≥ 1% of the invasive epithelial cells

have ER-positive nuclei, regardless of staining intensity (3, 7).

Determining ER status is important, as ER-positive patients may

benefit from endocrine therapy (2), improving their prognosis (8,

9). There are limited data on the effect of endocrine therapy for the

1%–10% ER-positive (ER low) group. However, only approximately

2%–3% of breast cancer patients have tumors in this category (3).

Less than 10% of normal breast epithelial cells are ER-positive (10),

while approximately 70%–80% of breast cancers are ER-positive (8,

11). ER-negative breast cancers are associated with more aggressive

clinical behavior than ER-positive breast cancers (12, 13). While

ER-negative breast cancers are a heterogeneous group, they are

associated with morphological features such as comedo-type

necrosis, lymphoid stroma, pushingmargins, and histological grade

III (14). The proportion of ER-negative breast cancers varies

between different histological subtypes. Cancers with medullary

features and metaplastic carcinomas, are, for instance, often ER-

negative (15, 16), whereas invasive lobular carcinomas are often

ER-positive (17).

With the introduction of digital pathology, artificial intelligence

(AI) has become an emerging field in diagnostic pathology (1).

It has been used for tasks such as segmentation, detection, and

prediction of prognosis and biological properties in cancer (18–

22). However, the extreme size of histopathological images, with

sizes up to 200,000 × 100,000 pixels, poses several technical AI

challenges. In diagnostics, breast cancer tumors are subclassified

based on biomarker status, resulting in patient-level labels.

However, as pathology images are large, patch-based methods are

commonly used in AI analysis of digital tissue sections.

Convolutional neural networks (CNNs) are widely used in

traditional image analysis due to their ability to automatically

learn spatial features from raw pixel data. While highly effective

in many computer vision tasks, their direct application for class

prediction in digital pathology presents challenges due to the

large image size (23). In patch-based approaches, CNNs process

individual image patches and aggregate predictions uniformly,

which may dilute critical signals, especially if only a small subset

of image regions reflect the diagnostic label. This limitation

becomes especially pronounced in heterogeneous slides where

applying a slide-level label to all patches can lead to suboptimal

performance (22, 24, 25). It is challenging to predict patient-

level labels from small image patches, as the morphology in

each patch may not reflect the given label. For instance, some

patches may contain invasive epithelial cells, while others contain

only adipose tissue, fibrous tissue, or inflammatory cells. Multiple

instance learning (MIL) is a weakly supervised technique that

can be used to solve the challenge of patch-based classification

on tumors with intratumor morphological heterogeneity. In MIL,

bags of instances, for example image patches or patch features,

are labeled and used for training instead of individual instances.

The bag can, for example, be labeled as positive if one instance

within the bag is positive, and negative otherwise. The model will

learn to separate positive and negative instances based on the

bag labels. Attention MIL further addresses these challenges by

allowing the model to weigh patches differently through attention

mechanisms while only requiring slide-level labels (26). Advanced

MIL variants such as clustering-constrained attention multiple

instance learning (CLAM) incorporate clustering-based contextual

learning to further enhance the performance in complex tissue

landscapes (27).

The prediction of biomarkers from scanned tissue slides is a

rapidly evolving area in cancer research (28–33). Prediction of ER

status fromHE-stained breast cancer slides has also been attempted

previously. Couture et al. used a truncated VGG16 CNN, pre-

trained on ImageNet, with the addition of a custom classifier

consisting of a support vector machine to predict ER status, tumor

grade, basal-like vs. non-basal-like, ductal vs. lobular, and risk of

recurrence score in tissue microarrays (TMAs) from breast cancer

tumors (28). They trained on a set of 571 patients and evaluated

on a test set of 288 patients, with accuracy, recall, and specificity of

84%, 88%, and 76%, respectively, using an ER cutoff of 10% (28).

While they achieved high accuracy, specificity, and recall, it is

possible the model would benefit from a CNN pretrained on HE-

stained slides, and not ImageNet. Akbarnejad et al. predicted the

proliferation marker Ki-67, ER status, progesterone receptor (PR)

status, and human epidermal growth factor receptor 2 (HER2)

status from HE images using patch-level labels from 59 whole

slide images (WSIs) with a ResNet-18 and a vision transformer,

and WSI labels with CLAM (31). The ground truth ER statuses

were automatically generated from HE and IHC WSIs, making

it difficult to compare with models trained on manually assessed

ER statuses. They achieved a median area under the curve (AUC)

of approximately 0.70 for ER prediction with CLAM. With a

vision transformer pipeline for patch classification, they achieved

a higher AUC. Wang et al. predicted ER, PR, and HER2 status

in WSIs of HE-stained slides with a multi-label model. For ER

status, they achieved AUCs of 0.88 and 0.92 and accuracies of 0.81

and 0.85 on two different datasets (n = 757 and n = 2,384) (34),

which indicates that the dataset may influence the results. To

counter this, Wang et al. did a comparison of multiple MIL
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models on the two datasets, where their model achieved the highest

AUC score for ER status and the third highest accuracy on both

datasets (34). Gamble et al. predicted ER, PR, and HER2 in HE-

stained slides achieving an AUC of 0.86 (32). They found that

ER-negative breast cancers were associated with tumor-infiltrating

lymphocytes and ER-positive cancers with low histological grade.

Tafavvoghi et al. (35) used a two-stage approach to classify HE-

stained breast cancer slides into molecular subtypes. They first

classified patches as tumorous or non-tumorous and then used

the tumorous patches only for classification of molecular subtypes.

Feature extraction in digital pathology involves transforming raw

WSIs, or patches of these, into meaningful representations that

capture tissue morphology and histopathological patterns. In a

comprehensive benchmark study of 14 feature extractors studying

their performance on nine downstream tasks, UNI (27), Lunit-

DINO (36), and CTransPath (37) outperformed the 11 other

feature extractors, including Swin (38), Vit-B (39), and ResNet-

50 (40), on all downstream tasks (41). The three leading feature

extractors also demonstrated robustness to stain variations and

augmentations in contrast to ImageNet baselines.

The aim of this study was to predict ER status in HE-stained

breast cancer TMAs using CLAM (27) with the vision-encoder

UNI (42). A thorough hyperparameter search was performed to

tailor CLAM to ER prediction in breast cancer tumors, and six

classification heads and two patch sizes were evaluated to find the

best configuration. The model was evaluated on two independent

test sets. Such methods can be used as proof-of-concept for the

prediction of other biological properties in cancer. The source code

to reproduce the experiments is available at https://github.com/

AICAN-Research/estrogen-receptor-prediction.

2 Materials and methods

2.1 Dataset

The dataset includes TMAs from four breast cancer cohorts:

• BCS-1: In 1956-1959, a population-based survey was

conducted in three counties in Norway (43). BCS-1 includes

women from the county for Nord-Trøndelag who were

invited to participate in this survey. The cohort comprises a

background population of 25,727 women who were followed

for breast cancer occurrence from 1961 to 2008 (44). The

women were born between 1886 and 1928. Breast cancer

tumors from 909 of these women were reclassified into

molecular subtypes (45), and in the present study, we

included 22 TMAs, comprising a total of 890 patients from

this cohort. A total of 25 patients were excluded during

preprocessing due to broken tissue, moved cores, or missing

ER status (Figure 1). Thus, 865 patients were included in our

study. This is described in more detail in Section 2.2.

• BCS-2: Between 1995 and 1997, a health survey was conducted

in Nord-Trnødelag County, Norway (46). BCS-2 includes

a background population of 34,221 women, born 1897-

1977, who were followed for breast cancer occurrence from

attendance in the survey, until 2009. Breast cancer tumors

from 514 of these women were previously reclassified into

molecular subtypes (44). In the present study, we included 12

TMAs, comprising a total of 438 patients from this cohort.

During preprocessing, seven patients were excluded due to

broken tissue, moved TMA cores, or missing ER status. Thus,

431 patients from BCS-2 were included in our study.

• BCS-3: A total of 22 931 women born at ECDahl’s Foundation,

Trondheim, Norway, between 1920 and 1966 were followed

for breast cancer occurrence between 1961 and 2012 (47).

Breast cancer tumors from 533 of these women were

previously reclassified into molecular subtypes (48). In the

present study, we included 12 TMAs comprising a total of 469

patients from this cohort. In total, three patients were excluded

due to broken tissue, moved TMA cores, or missing ER status.

Thus, 466 patients from BCS-3 were included in our study.

• HUS-BC includes 534 women with breast cancer, diagnosed

through the National Breast Cancer Screening Program in

Hordaland County, Norway, between 1996 and 2003 (49). The

women were between 50 and 69 years old at diagnosis. In

case of distant metastasis at the time of diagnosis, patients

were not included (49). In the present study, we included 12

TMAs, comprising a total of 463 patients from this cohort.

Due to broken tissue, moved TMA cores, or missing ER status,

five patients were excluded during preprocessing. Thus, 458

patients from HUS-BC were included in our study.

The TMAs from BCS-1, BCS-2, and BCS-3 were made in 2011,

2014, and 2016, respectively, whereas the TMAs from HUS-BC

were made in 2004 (50) and 2012 (49). All slides were HE-stained

and scanned at ×40 at the Norwegian University of Science and

Technology (NTNU) using Olympus VS120 and Olympus VS200

scanners. Extended focal imaging was used while scanning 12 of

the slides from BCS-1, BCS-2, and BCS-3 and when scanning all

slides from HUS-BC.

The TMAs from BCS-1, BCS-2, and BCS-3 comprised 1-3

cores from each tumor. Each core had a diameter of 1 mm,

and the TMA slides were 4 µm thick. The TMAs from HUS-BC

comprised 1-6 cores from each tumor. Each core had a diameter

of 0.6 (50) or 1 mm (49), and the TMA slides were 5 µm thick.

ER status was assessed using IHC in 2012, 2014, and 2016-2017

for BCS-1, BCS-2, and BCS-3, respectively. A cutoff of 1% was

used (44, 45, 48). The choice of ER cutoffwas based on international

guidelines (3, 7) ER status for HUS-BS was originally collected from

clinical records, using a cutoff of 10% (49). A new assessment of ER

status using a 1% cutoff was later performed in 2019 (previously

unpublished data).

2.2 Preprocessing

First, the TMAs were converted to the OME-TIFF format

using the bioformats2raw and raw2ometiff tools by Glencoe

Software (51). The TMA cores were then annotated in QuPath (52),

linking each core to its respective patient ID (Figure 2). The TMA

cores were then exported as separate TIFF images at magnification

×40 using QuPath. Since a tumor’s ER status is determined based

on ER expression in all of its TMA cores, the TMA core images from

each patient were merged into one image per patient (Figure 2).

This resulted in 1770 images from 1770 patients from BCS-1,

BCS-2, and BCS-3. ER status for eight patients was missing, thus

1762 patients with ER status were included in the study. Of the
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FIGURE 1

Data selection flow. Left: BCS-1, BCS-2, and BCS-3 were used for training, validation, and an internal test set. Right: HUS-BC was used as an external

test set. A total of 35 and 5 patients were removed from BCS-1, BCS-2, and BCS-3 and HUS-BC, respectively, due to broken or shifted cores, or

missing estrogen receptor (ER) status.

1762 included patients, 1473 were ER-positive and 289 were ER-

negative (Supplementary Table S1). The TMA core extraction, and

combination of cores into one image per patient, resulted in 458

images with ER status for HUS-BC (Figure 1).

The data were then split on patient level. The BCS-1, BCS-2,

and BCS-3 cohorts were merged to form the internal dataset. A

subset of 10% of the TMAs was randomly extracted from the three

cohorts to form the internal test set. The fourth cohort, HUS-BC,

was used as an external test set. The proportions of ER-negative

samples in the internal and external test sets were 16% and 13%,

respectively (Table 1).

Tissue segmentation was then performed using CLAM with a

custom preset file (Supplementary Table S5). Each TMA core was

then divided into image patches from within the tissue area with

CLAM, and features were extracted from the individual image

patches and stored on disk using UNI (Figure 2).

2.3 Classification approach

CLAM (27) is a framework for training WSI-level classifiers

using slide-level labels. It uses features extracted with an encoder as

input. CLAM is based onMIL, where a MIL bag consists of features

of patches from one image, and an instance is the features from

a single image patch. CLAM uses attention to identify important

features within a bag for the given classes. During training, a

clustering step is used to separate the most, and least, important

features (high and low attention) for each class in a bag. CLAM

can be used with single-branch attention or multi-branch attention.

Single-branch attention is used for binary classification tasks,

whereas multi-branch attention is best for multi-class classification

or complex binary classification tasks, where each class is assigned

an attention branch.

UNI (42) is a general-purpose self-supervised foundation

model for pathology that can be used to extract biologically

meaningful features from histopathology images. It generates a

unified feature space that captures tissuemorphology across diverse

cancer types.

In this study, CLAM was used to predict ER status from TMA

cores. Image patch features were extracted with size 1,024 × 1,024

frommagnification×40 using the UNI (42) encoder. Features from

TMA cores from the same patient ID were stored together in a bag.

Each bag was then assigned using the corresponding TMA-level

label. These labeled bags were then used to train CLAM. Multi-

branch class-wise attention was enabled, with one attention branch

for each class. To counter class imbalance, CLAM’s weighted

sampling scheme was used during training. The final output

was a slide-level attention vector, which was combined with the

nano classification head (number of neurons in each hidden

layer: {1,024, 512, 128, 64, 32}) to generate the final predictions

(Supplementary Tables S3, S4).

2.4 Experiments

To assess the impact of individual components in CLAM

and determine the best performing design, an exhaustive

hyperparameter search was performed. Monte Carlo cross-

validation with k = 10 splits was used for model training. This split

was kept fixed for all experiments.

A total of 24 different configurations of CLAM were tested

(Figure 3). The following components were evaluated: patch size,

classification head, and CLAM design (multi-branch and single-

branch). Patch sizes of 256× 256 and 1,024× 1,024 were compared

to investigate whether patch size affects performance. Six different

classifier heads were compared. Finally, the impact of using a single

attention branch (single-branch) or one attention branch per class

was tested (multi-branch) due to the high complexity of the binary

classification task.

For each configuration, 70 hyperparameter trials were

performed. Overall, a total of 24 × 70 × 10 = 16,800 separate
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FIGURE 2

Preprocessing. The tissue microarray (TMA) slides were HE-stained. The patient IDs were annotated in QuPath. Each TMA core was exported as a

single TIFF image using QuPath. The TMA cores from the same patient were merged into one TIFF image. The images were then patched, and their

features were extracted using CLAM (27).

TABLE 1 Data description.

Cohorts ER status

BCS-1 BCS-2 BCS-3 HUS-BC ER+ ER- Total

Histological subtype

Ductal 606 339 401 383 1484 245 1,729

Lobular 118 48 27 48 223 18 241

Medullary 22 17 20 4 20 43 63

Mucinous 36 14 8 14 69 3 72

Papillary 31 5 0 0 32 4 36

Metaplastic 12 3 1 0 2 14 16

Tubular 3 0 2 6 11 0 11

Other 36 5 7 3 30 21 51

Missing 1 0 0 0 1 0 1

Histological grade

I 102 84 55 186 416 11 427

II 461 214 227 196 1,017 81 1,098

III 300 133 184 76 437 256 693

Missing 2 0 0 0 2 0 2

Total 865 431 466 458 1872 348 2,220

Histological subtype and histological grade of patients included in BCS-1, BCS-2, BCS-3, and HUS-BC. Estrogen receptor (ER) status for all four cohorts combined.

models were trained. Each model was trained using early stopping

with a patience of 20 epochs. Only trials where at least one split

ran for more than 70 epochs were kept to ensure that the model

converged and learned meaningful patterns. The hyperparameter

search was performed using the Optuna (53) framework. To give

the minority class a high priority during the hyperparameter

search, it was optimized toward a weighted class accuracy. The

class weights were determined from the inverse class frequency,

resulting in weights of 0.8 and 0.2 for the ER-positive and

ER-negative classes, respectively.

Due to class imbalance, the weighted class accuracy

(Supplementary Equation S1), the sum of the ER-positive

class accuracy multiplied by 0.2 and the ER-negative class accuracy

multiplied by 0.8, was then calculated for each of the configurations

and averaged across the 10 folds. For each of the 24 configurations,

the trial that resulted in the highest average weighted accuracy was

kept. The final model was created using weight averaging, where

the weights of the 10 model splits were aggregated and averaged to

form a single, more robust model. The final 24 models were then

evaluated on the internal and external test sets.
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FIGURE 3

Experiment workflow. A total of 70 trials for 24 di�erent configurations of CLAM were performed. The best trial per configuration was selected, and

the final best models per configuration were selected through averaging weights from respective cross-validation runs. The final 24 aggregated

models were then evaluated on two separate test sets.

The micro accuracy, macro accuracy

(Supplementary Equation S2), and AUC for the two test sets

were calculated using the averaged model for each of the 24

configurations. The micro accuracy is the sum of the true-positive

cases (correctly predicted ER-positive patients) and true-negative

cases (correctly predicted ER-negative patients) divided by the

number of patients. The macro accuracy is the average of the two

class accuracies. A tumor was classified as ER positive when the

model predicted a positive tumor with a probability of 0.50 or

greater. The best performing model, based on weighted accuracy,

on the internal test set was used to generate heatmaps for the

internal test set and calculate the true positives, false positives, true

negatives, and false negatives for the two test sets by histological

subtype and histological grade.

The data were further analyzed in the feature space by

visualizing the two main components of the slide-level features

obtained from a two-component principal component analysis

(PCA). The PCA transformation was computed using the training

and validation feature sets, capturing their variation. This

transform was then applied to both test sets.

Statistical analysis was conducted to determine whether any

of the following factors impacted classification accuracy: patch

size, classification head, CLAM design (single-branch or multi-

branch), and test set. A binomial logistic regression model was

used, treating the classification accuracy as a dependent variable

and the four remaining variables as independent factor variables.

Independent variables were checked for multicollinearity, and

all had a variance inflation factor of less than 2, indicating

negligible multicollinearity.

TMA cores were extracted using QuPath v0.5.1 (52). All

experiments were conducted in Python 3.10.12. Model training

was performed using PyTorch v2.3.0 (54), hyperparameter tuning

using Optuna v3.6.1 (53), and statistical analysis using statsmodels

v0.14.4 (55). The experiments were carried out on an Intel Xeon

Gold 6239 central processing unit (CPU), using a dedicated Quadro

RTX 6000 NVIDIA graphics processing unit (GPU), 256 GB RAM,

and a regular hard drive.

This study was approved by the Regional Committee for

Medical Research Ethics Central Norway (2018/2141). The need for

consent was waived.

3 Results

The best performing model was a CLAM multi-branch

model trained on patch size 1,024 × 1,024 with a nano

classification head. Patch size 1,024 × 1,024 was significantly

better than patch size 256 × 256, while there was no overall

significant difference between CLAM multi-branch and CLAM

single-branch models, nor between the different classification

heads. The best performing models tended to have configurations

with low dropout rates and favored SGD as the optimizer

(Supplementary Table S9).

The proposed method achieved macro accuracies of 0.86

and 0.76 on the internal and external test sets and weighted

accuracies of 0.82 and 0.52 on the internal and external test

sets, respectively (Table 2 and Supplementary Table S6). The

ER-negative class accuracy and the ER-positive class accuracy

on the internal test set were 0.79 and 0.93, respectively,

whereas on the external test set, the ER-negative class

accuracy was 0.53 and the ER-positive class accuracy was

0.99 (Supplementary Table S6). The micro accuracy and AUC on

the internal and external test sets were 0.91 and 0.95, and 0.93 and

0.91, respectively.

The five correctly predicted ER-negative tumors with the

highest probability scores in the internal test set had histological

grade III and medullary or ductal histological subtypes. ER status

was correctly predicted with high confidence and themodel focused

on invasive epithelial cells in the generated heatmaps from the

internal test set in Figure 4. Five of the seven medullary tumors

in the internal test set were correctly predicted as ER-negative

tumors, while one was correctly predicted as ER-positive, and

one incorrectly predicted as ER-negative. In the external test set,

three of the four medullary tumors were correctly predicted as

ER-negative tumors, whereas one was incorrectly predicted as

ER-positive tumors (Supplementary Table S7).

In the internal test set, 93.2% and 79.3% of the ER-positive and

ER-negative tumors were correctly predicted as ER-positive and

ER-negative tumors, respectively. In the external test set, 98.7% and

52.5% of the ER-positive and ER-negative tumors were correctly

predicted as ER-positive and ER-negative tumors, respectively

(Supplementary Tables S6, S7).
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TABLE 2 Performance metrics.

Configurations Internal test set External test set

Method Patch size Classifier ACC mACC AUC ACC mACC AUC

(1) sb 256 Big 0.881 0.749 0.930 0.902 0.648 0.897

(2) sb 256 Small 0.898 0.745 0.924 0.906 0.657 0.890

(3) sb 256 Mini 0.892 0.783 0.930 0.906 0.664 0.898

(4) sb 256 Micro 0.898 0.773 0.928 0.908 0.666 0.897

(5) sb 256 Nano 0.875 0.773 0.914 0.902 0.655 0.887

(6) sb 256 Pico 0.881 0.804 0.919 0.906 0.664 0.893

(7) mb 256 Big 0.881 0.790 0.911 0.908 0.659 0.886

(8) mb 256 Small 0.892 0.783 0.921 0.913 0.675 0.895

(9) mb 256 Mini 0.869 0.770 0.917 0.910 0.667 0.891

(10) mb 256 Micro 0.875 0.773 0.917 0.908 0.659 0.890

(11) mb 256 Nano 0.875 0.773 0.916 0.908 0.666 0.887

(12) mb 256 Pico 0.881 0.762 0.921 0.910 0.674 0.890

(13) sb 1,024 Big 0.909 0.835 0.952 0.926 0.741 0.922

(14) sb 1,024 Small 0.915 0.852 0.951 0.928 0.764 0.916

(15) sb 1,024 Mini 0.909 0.849 0.947 0.924 0.739 0.912

(16) sb 1,024 Micro 0.915 0.852 0.951 0.928 0.764 0.917

(17) sb 1,024 Nano 0.909 0.849 0.952 0.926 0.748 0.916

(18) sb 1,024 Pico 0.915 0.852 0.950 0.924 0.739 0.907

(19) mb 1,024 Big 0.898 0.814 0.947 0.924 0.732 0.914

(20) mb 1,024 Small 0.909 0.835 0.946 0.924 0.747 0.915

(21) mb 1,024 Mini 0.909 0.835 0.947 0.924 0.739 0.916

(22) mb 1,024 Micro 0.915 0.852 0.948 0.932 0.773 0.918

(23) mb 1,024 Nano 0.909 0.863 0.951 0.928 0.756 0.915

(24) mb 1,024 Pico 0.898 0.787 0.945 0.906 0.664 0.902

Results for each configuration on the internal test set and the external test set. SB, single-branch; MB, multi-branch; ACC, accuracy; mACC, macro accuracy; AUC, area under the curve. The

bold values represent the highest value for each column.

The visualization of the learned feature space using PCA did

not show a clear separation between the two classes (Figure 5).

However, in the training and validation data, two distinct

clusters were observed, independent of class labels. In addition,

differences between the test sets became apparent, with the internal

and external test samples forming separate upper and lower

clusters, mainly separated by the second principal component.

The visualization also indicated that class separation was less

pronounced in the external test set compared to the internal test

set (Figure 5).

4 Discussion

In this study, CLAM (27) was used to predict ER status

in scanned images of HE-stained TMA slides from breast

cancer tumors. Patch sizes and CLAM classification heads

were compared. The best performing model achieved a macro

accuracy, ER-negative accuracy, and ER-positive accuracy of 0.86,

0.79, and 0.93, respectively, on the internal test set. On the

external test set, the corresponding results were 0.76, 0.53, and

0.99, respectively.

The proposed model achieved an AUC and micro accuracy of

0.91 and 0.93, respectively, on the external test set. The performance

is similar to the results reported by Wang et al. (34) and Gamble

et al. (32). Wang et al. achieved AUCs of 0.88 and 0.92, and

accuracies of 0.81 and 0.85 with a multi-label model on two

different datasets. Gamble et al. achieved an AUC score of 0.86

(0.84–0.87 confidence interval (CI)). The overall AUC and accuracy

are not, however, necessarily an optimal measure when comparing

results, as they are influenced by the class distribution of the

datasets used.

The models’ performances were better on the internal test set

than on the external test set. This could be due to differences

in the datasets. The distribution of ER-positive and ER-negative

tumors was similar in the two test sets, but ER-negative tumors in

the external test set had a higher proportion of ductal carcinomas

and histological grade II tumors compared to ER-negative tumors

in the internal test set. Another difference is that the external
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FIGURE 4

Attention heatmaps of TMA cores from two breast cancer tumors from the internal test set where ER status was correctly predicted. Left: ductal

carcinoma, histological grade I, ER-positive tumor. The high attention (red) areas are mainly found among invasive epithelial cells. Non-invasive

epithelial cells are found in low attention areas (blue). Right: ductal carcinoma, histological grade III, ER-negative tumor. The high attention (red)

areas are mainly found among invasive epithelial cells, while connective and adipose tissues are found in low attention areas (blue).

FIGURE 5

Principal component analysis (PCA). Left: result of PCA with two components of the features from the train and validation sets, with the

transformation calculated from the training and validation. Right: PCA with two components of the features from the two test sets, with the

transformation calculated from the training and validation.

test set was a screening cohort, while the internal test comprised

patients with clinical and screening-detected cancers. It is shown

that screening-detected breast cancers have a higher proportion of

ER-positive tumors compared to clinical cancers (56, 57). However,

the proportions of ER-positive and ER-negative cancers in our

internal and external test sets were similar. The PCA of the features

from the test sets also showed a difference between the internal and

the external test sets. The features in the internal test set were placed
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similarly to the majority of the features in the train and validation

sets, in the principal component 1-principal component 2 space,

while the features in the external test set were placed similarly to a

minority of the features in the train and validation sets. The features

of the external test set also had more overlap of the ER-positive

and ER-negative tumors in principal component one. The PCA also

showed that with twomain components, a clear separation between

ER-negative tumors and ER-positive tumors was not found even

in the training data, though there was a trend in component one.

It is possible, however, that if more components were included in

the illustration, a better separation between the classes could be

demonstrated with PCA.

Since the model likely uses morphological features in the

tissue to predict ER status, differences in histological subtype and

histological grade between the test sets could influence the results.

To counter this, one could have added random augmentation to

the data or stain normalization, prior to the patching and feature

extraction, or included data from multiple laboratories in the

training and validation sets.

Breast cancer is known for its morphological heterogeneity,

and to cover all variations, a larger dataset may be needed to

improve the results. Some morphological features associated with

ER-negative tumors are typically found near the tumor border,

such as pushing tumor margins and infiltration of lymphoid cells,

typically seen in medullary carcinomas. TMAs may not cover

these areas of the tumor, and including WSIs could be necessary

to improve the model performance. On the other hand, pushing

margins are often seen in medullary carcinomas, which also have

other characteristic morphological features presented in TMAs,

such as sheets of tumor cells instead of tubular structures. It is also

possible that WSIs could introduce redundant information, and

more variance, and one might have to adjust for imbalance in the

tissue between different slides. The use of WSIs would also lead to

much more data, which would increase training time.

Most breast cancers are ER-positive. ER-positive cancers

were also overrepresented in our dataset. Weighting during the

hyperparameter optimization and CLAM’s weighted sampling

scheme were used to counter the class imbalance. However, the

model still performed worse on ER-negative cancers than ER-

positive cancers. In the clinic, correct assessment of ER status is

of great importance for prognostication and treatment of breast

cancer patients. In general, ER-positive tumors are associated with

a better prognosis than tumors that are ER-negative (9). Patients

with ER-positive tumors will most likely be given antihormonal

treatment (2), and such treatment is shown to improve prognosis

for this subgroup. False-positive ER prediction may lead to

unnecessary hormonal treatment, with a low likelihood of effect,

but with a risk of unwanted side effects. On the other hand,

a false-negative ER prediction may lead to missed hormonal

therapy, which is also an undesired scenario for the patient. The

proposed model predicted ER-positive tumors with a higher class

accuracy than ER-negative tumors. It produced few false-negative

predictions (incorrect ER-negative predictions) on both test sets.

In this study, two patch sizes were tested. The models trained

with patch size 1,024× 1,024 achieved better results on ER-negative

tumors than those trained with patch size 256 × 256, indicating

that a larger context may be necessary when predicting ER status in

HE-stained slides. Patch size 2,048 × 2,048 was evaluated, without

noticeable improvement. However, one could argue that it may be

necessary to investigate even more extreme patch sizes, or keep the

same patch size, but extract TMA cores at different magnifications.

It is also possible that a multi-scale model, including both a larger

context and local information, would improve the results.

The model predicted ER-positive tumors well but struggled

more with ER-negative samples. A larger, more balanced dataset

could potentially improve the model’s performance on the ER-

negative tumors. As breast cancer is heterogeneous, and IHC is

needed for visualization of estrogen receptors, correct prediction

of ER status in HE-stained slides based on the analysis of tissue

morphology may need a larger and more diverse dataset. In

this study, we wanted to predict ER status from images alone.

However, if morphological patterns covered by tabular data

such as histological subtype and histological grade are the main

contributors to the model’s decision, it would be interesting to

compare the results of our image-basedmodel with a model trained

on tabular data. However, tabular data describing patterns such

as tumor-infiltrating lymphocytes, pushing margins, and necrosis

are not available in standard pathology reports, and thus favor

an image-based model. Furthermore, image-based models could

possibly decrease pathologists’ workload more than models based

on tabular data, since tabular data such as histological subtype and

grade would have to be determined by a pathologist.

A main limitation in this study is the class imbalance in the

dataset, with a high proportion of ER-positive tumors. Although

a high proportion of ER-positive tumors is also found in the

clinic, the model may have performed better if we had a higher

proportion of ER-negative tumors in our dataset. All slides were

stained and scanned at NTNU. The model may have been

more robust if we had included slides stained and scanned at

other laboratories in the training data. A test set stained and

scanned at another laboratory would also have strengthened the

study, and we would have been able to assess generalizability

even better.

A main strength in this study is the use of internal and external

test sets, allowing for a more robust assessment of generalizability.

The samples were divided on patient level, and to allow fair

comparison between the experiments, the same data split was used

for all experiments. More than 2,000 patients from four different

cohorts were included in the study. Extensive hyperparameter

tuning was conducted to find the best configuration. Class-wise and

micro- and macro-averaged metrics were reported to give different

insights into performance. Statistical analysis was performed to

further assess generalizability and to assess which component of

the model affected performance. Principal component analysis was

also used to further enhance the understanding of the performance

differences between the datasets.

5 Conclusion

The proposed method classified breast cancer tumors as either

ER-positive or ER-negative. The highest accuracy was achieved

for ER-positive tumors. Two patch sizes were compared, and the

results were significantly better with the large patch size than the

small patch size. While the model’s results are good on ER-positive
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tumors, further studies are needed to generalize to new datasets and

improve performance on ER-negative tumors.
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