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Endothelin receptor antagonists
target EDNRB and modulate the
progression of idiopathic
pulmonary fibrosis via
anoikis-related genes
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China, 2Inner Monglia Maternal and Child Care Hospital, Hohhot, Inner Mongolia, China

Idiopathic pulmonary fibrosis (IPF) progression involves dysregulation of anoikis-

related mechanisms, though the precise molecular drivers remain unclear.

Through integrated analysis of IPF and normal lung tissue datasets, we identified

19 anoikis-related genes (ARGs) with EDNRB, MMP7, and CXCL12 showing

significant differential expression (p< 0.05). Functional characterization revealed

these ARGs predominantly regulate cell chemotaxis and inflammatory pathways,

with protein network analysis identifying CXCL12 and CCL5 as central regulators.

Clinically relevant findings demonstrated that EDNRB downregulation correlates

with fibrotic progression, while ROC analysis validated multiple ARGs as

diagnostic biomarkers (AUC > 0.8). Crucially, we discovered that FDA-

approved endothelin receptor antagonists (bosentan/sitaxentan) attenuate

fibrosis through EDNRB upregulation, positioning these repurposable drugs as

novel therapeutic candidates. These findings establish EDNRB-mediated anoikis

regulation as a key mechanism in IPF and urgently warrant clinical trials to

validate endothelin receptor antagonists for targeted anti-fibrotic therapy.
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Introduction

Idiopathic Pulmonary Fibrosis (IPF) is a serious and progressive lung disease that
causes diffuse fibrosis in the alveoli, leading to a gradual decline in respiratory function (1).
Although the exact cause of the disease remains unclear, studies suggest that environmental
factors, genetic susceptibility, and cell-to-cell interactions may play significant roles in its
pathogenesis. For instance, long-term exposure to pollutants like dust and smoke is a major
risk factor for developing IPF (2). Furthermore, genetic factors, including mutations in
telomerase genes (3) and polymorphisms in the MUC5B gene (4), are closely linked to
the onset of IPF. Clinically, IPF is mainly characterized by dyspnea and a dry cough. The
prognosis for patients is poor, with survival often lasting only 3–5 years after diagnosis (5).
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Therefore, a deeper understanding of its pathogenesis and the
search for effective treatment options have become important
areas of research.

In recent years, there have been some advances in the treatment
of IPF, such as the clinical application of antifibrotic drugs
Pirfenidone and Nintedanib, which can slow disease progression
but still cannot cure IPF completely (6, 7). Thus, further exploration
of the molecular mechanisms of IPF and the development of
new therapeutic strategies remain important directions for current
research. Anoikis is a form of programed cell death that occurs
when cells detach from the appropriate extracellular matrix,
disrupting integrin connections (8). In the pathological process
of IPF, anoikis is considered a key regulatory mechanism of
programed cell death (9). Normally, cells undergoing apoptosis
can effectively clear dead cells through self-regulatory mechanisms
to maintain tissue homeostasis. However, in the lung tissue
of IPF patients, this clearance process is significantly hindered,
leading to the accumulation of apoptotic cells. This abnormal
apoptosis not only hinders normal lung tissue repair but also
promotes fibrosis (10). Studies have found that dysregulation of
apoptotic mechanisms may also lead to significant exacerbation
of inflammatory responses, thereby creating favorable conditions
for the development of fibrosis (11). A deeper understanding of
apoptosis in IPF clarifies the disease’s pathogenesis and provides
a theoretical basis for developing new therapeutic strategies.
Interventions targeting the anoikis-related pathways may bring
new hope for the treatment of IPF (12, 13).

Bioinformatics is a vital analytical tool for assessing gene
expression data and identifying target genes and molecular
mechanisms linked to various diseases. The advancement and
widespread use of high-throughput technologies in biomedical
research have made integrated bioinformatics a promising
approach to exploring the pathogenesis of IPF and its therapeutic
targets. By analyzing genetic data from patients with IPF,
researchers can identify active genes and their pathways involved
in disease progression (14, 15). Additionally, bioinformatics
enables scientists to extract valuable insights from complex
data, which supports the development of new therapeutic
strategies. For example, by analyzing gene expression patterns
associated with IPF, researchers can discover new biomarkers,
thereby accelerating the development of early diagnosis and
personalized treatment (16, 17). Research in this field enhances
our understanding of IPF and offers clearer guidance for
future drug discovery.

In this study, we used several computational tools to examine
the relationship between anoikis-associated genes (ARGs) and
IPF. We identified 19 IPF-associated anoikis-related genes and
performed functional enrichment analysis to better understand
their roles in pulmonary fibrosis. We used Receiver Operating
Characteristic (ROC) curve analysis to evaluate the diagnostic
and predictive value of IPF-ARGs. We also examined the
relationship between IPF-ARGs and lung tumors through
expression and survival analyses. Additionally, we constructed
interaction networks that included transcription factors, miRNAs,

FIGURE 1

Sample normalized box plots and PCA plots. (A) Normalized box plot of samples from the GSE53845 dataset; (B) normalized box plot of samples
from the GSE24206 dataset. Blue represents the normal group and red represents the disease group. (C) PCA plot of GSE53845 dataset; (D) PCA plot
of GSE24206 dataset.
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and drug targets related to these genes. Our investigation
of anoikis in Idiopathic Pulmonary Fibrosis improves our
understanding of the disease’s pathogenesis and suggests new
strategies for treatment.

Materials and methods

Data acquisition and differential
expression gene screening

Gene expression profile data for non-idiopathic pulmonary
fibrosis diseases were downloaded from the Gene Expression
Omnibus (GEO) database.1 We used the GEOquery package
(18) in R to obtain gene expression datasets GSE53845 and
GSE24206 related to IPF. The GSE53845 dataset comprises
40 IPF samples and 8 normal samples (non-idiopathic
pulmonary fibrosis). All samples were collected from human
lung biopsies or transplants and sequenced using the GPL6480

1 https://www.ncbi.nlm.nih.gov/gds

Agilent-014850 Whole Human Genome Microarray 4 × 44K
G4112F. The GSE24206 dataset contains 17 IPF samples
and 6 normal (non-idiopathic pulmonary fibrosis) samples,
all derived from human whole lung tissue, sequenced using
the GPL570 [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array platform. Both datasets share the
same sequencing type, sample grouping information, and
species origin, while also ensuring sufficient sample sizes and
high data quality.

After normalizing the samples, we used the Limma package
(19) in R to screen for differentially expressed genes (DEGs)
between IPF and control samples. We set filtering thresholds at
| log2 fold change| > 1 and p-value < 0.05. Additionally, we
searched the PubMed database for studies on anoikis (20, 21)
and combined the findings with information from the GeneCards
database. This process led us to identify a total of 907 ARGs
(Complete data in Supplementary Table 1). Finally, we identified
the intersection of DEGs from the disease and normal groups
in the two datasets to determine the DEGs related to IPF. We
then intersected these IPF DEGs with ARGs to obtain IPF-
ARGs.

FIGURE 2

Differentially expressed genes. (A) Volcano plot of IPF-related DEGs in the GSE53845 dataset; (B) volcano plot of IPF-related DEGs in the GSE24206
dataset. (C) Heatmap of IPF-related DEGs in the GSE53845 dataset; (D) heatmap of IPF-related DEGs in the GSE24206 dataset.
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FIGURE 3

Venn diagrams of differentially expressed genes (DEGs). (A) The blue circle represents DEGs from the GSE53845 dataset, and the pink circle
represents DEGs from the GSE24206 dataset. (B) The blue circle represents DEGs from the GSE53845 dataset, the pink circle represents DEGs from
the GSE24206 dataset, and the green circle represents anoikis-related genes.

FIGURE 4

GO Enrichment Analysis. (A) GO enrichment analysis categorizes gene functions into three classes: Biological Process (BP), Cellular Component
(CC), and Molecular Function (MF). (B) The top 10 terms in the BP category are displayed. (C) The top 10 terms in the CC category are displayed; (D)
the top 10 terms in the MF category are displayed.
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Functional and pathway enrichment
analysis

To analyze the biological processes involved in the pathogenesis

of IPF, we performed functional enrichment analysis (22) and

pathway analysis (23) on the selected target genes using the Cluster

Profiler package (24) in R, with a significance threshold set at
p < 0.05, and visualized the enrichment analysis results using the
ggplot2 package (25).

Gene Set Enrichment Analysis (GSEA) was used to
evaluate the distribution patterns of genes within predefined
sets in the gene expression data. This method ranks
genes according to their correlation with phenotypic

FIGURE 5

KEGG Enrichment Analysis. (A) KEGG enrichment analysis. (B) The pathway showing the interaction between viral proteins and cytokines/cytokine
receptors is displayed. (C) The pathway of rheumatoid arthritis is displayed. (D) The pathway of cytokine-cytokine receptor interaction is displayed.
(E) The pathway of chemokine signaling is displayed.
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characteristics to assess their influence (26). We retrieved
the gene sets “c2.cp.kegg.v2022.1.Hs.symbols.gmt” and
“c5.go.all.v2022.1.Hs.symbols.gmt” from MSigDB (27). We

performed GSEA using the clusterProfiler package in R,
considering p < 0.05 as statistically significant. Finally, we
visualized the results with the ggplot2 package.

FIGURE 6

GSEA enrichment analysis. (A) GSEA-KEGG analysis of the GSE53845 dataset; (B) GSEA-KEGG analysis of the GSE24206 dataset. (C–E) GSEA-GO
analysis of the GSE53845 dataset showing that the enriched pathways are closely related to cytokine activity, ciliary plasm, B cell activation, signaling
receptor regulatory activity, serine hydrolase activity, and positive regulation of leukocyte cell-cell adhesion. (F–H) GSEA-GO analysis of the
GSE24206 dataset showing that the enriched pathways are related to ciliary plasm, axoneme assembly, ciliary movement, motile cilium, cilium
organization, and microtubule based movement.

Frontiers in Medicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2025.1593376
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1593376 June 11, 2025 Time: 18:18 # 7

Ning et al. 10.3389/fmed.2025.1593376

Molecular network construction and
validation

To illustrate the interactions among IPF-ARGs, we built a
gene-gene interaction network with the STRING online tool2 and
visualized it using Cytoscape software (28).

We used the NetworkAnalyst database (29) to examine how
miRNAs and transcription factors (TFs) regulate the expression
of IPF-ARGs at the post-transcriptional level. First, we identified
miRNAs associated with differentially expressed IPF-ARGs using

2 http://string-db.org

TarBase. At the same time, we used the ENCODE database to
identify the TFs associated with IPF-ARGs. Next, we predicted
the relationships between IPF-ARGs and drugs by utilizing the
DrugBank database. Finally, we employed Cytoscape software to
visualize the results.

We examined the expression levels of IPF-ARGs in both the
disease and normal groups across the two datasets, presenting the
results in box plots. We used ROC curves to assess the diagnostic
and predictive value of these genes. Genes with an area under
the ROC curve (AUC) greater than 0.8 were deemed to have an
accurate predictive value. The AUC values with 95% confidence
intervals were computed using the DeLong test, which accounts for
the correlation structure between biomarkers through covariance

FIGURE 7

Protein-protein interaction (PPI) network. (A) PPI network of IPF-associated anoikis-related genes (IPF-ARGs) constructed using the STRING
database. (B) PPI network visualization of protein interactions using Cytoscape.

FIGURE 8

Correlation between IPF-associated anoikis-related genes (IPF-ARGs) and miRNAs and Transcription Factors (TF). (A) IPF-ARG-miRNA network. Blue
nodes represent miRNA, and red nodes represent IPF-ARGs. (B) IPF-ARG-TF network. Green nodes represent transcription factors (TF), and red
nodes represent IPF-ARGs.
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matrix estimation. Statistical significance was defined as non-
overlapping 95% CIs between compared AUC values.

Clinical relevance validation

The GEPIA database3 was used to analyze the expression
differences and survival between different types of tumors and
normal tissues. To further explore the relationship between IPF-
ARGs and lung cancer progression, we validated the expression
level differences of IPF-ARGs in lung tumors and normal tissues
using the GEPIA database and plotted box plots. To investigate
the relationship between IPF-ARGs and overall survival (OS) of
patients, we conducted Kaplan-Meier univariate survival analysis
using the Kaplan-Meier Plotter database4 to obtain key genes
related to cancer survival.

Results

Differential expression analysis

The sample data from datasets GSE53845 and GSE24206 were
normalized, and box plots were created (Figures 1A,B). To observe
the differences between samples, principal component analysis

3 http://gepia.cancer-pku.cn/

4 http://kmplot.com/analysis/

(PCA) analysis was performed, and the results were visualized
using the ggplot2 package (Figures 1C,D). The differential gene
analysis results showed that the GSE53845 dataset contained
726 DEGs (392 upregulated, 334 downregulated), while the
GSE24206 dataset contained 553 DEGs (286 upregulated, 267
downregulated). The results were visualized using volcano plots
(Figures 2A,B) and heatmaps (Figures 2C,D). The intersection of
the two datasets yielded 169 differentially expressed genes related to
IPF (Figure 3A). Combining the analysis of anoikis-related genes,
we identified 19 IPF-ARGs: MMP7, CXCL14, PLA2G1B, TP63,
THY1, CDH3, CD24, CXCL12, MAOA, MDK, CCL5, EDNRB,
ITGBL1, S1PR1, FRZB, CCDC80, TGFBR3, S100A8, and TGFB2
(Figure 3B).

Functional enrichment analysis of
differentially expressed IPF-ARGs

The GO enrichment analysis (Figure 4A) revealed that
IPF-ARGs are mainly engaged in biological processes like cell
chemotaxis, leukocyte migration, myeloid leukocyte migration,
regulation of epithelial cell proliferation, positive regulation of cell
adhesion, and calcium ion homeostasis, among others (Figure 4B).
They are enriched in cellular components such as collagen-
containing extracellular matrix, external side of plasma membrane,
membrane raft, membrane microdomain, anchored component
of external side of plasma membrane, intrinsic component of
external side of plasma membrane, anchored component of plasma
membrane, anchored component of membrane, interstitial matrix,
and axolemma (Figure 4C). In terms of molecular function,

FIGURE 9

Correlation between IPF-associated anoikis-related Genes (IPF-ARGs) and Drugs. (A–D) The networks showing the top three drugs with the highest
efficacy on IPF-ARGs are presented. Blue nodes represent drugs, and red nodes represent IPF-ARGs.
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GO terms related to cytokine receptor binding, G protein-
coupled receptor binding, receptor ligand activity, signaling
receptor activator activity, cytokine activity, chemokine activity,
chemokine receptor binding, integrin binding, growth factor
activity, and heparin binding were abundant (Figure 4D). The
KEGG annotation of IPF-ARGs indicates that these genes
are enriched in several pathways. These include viral protein
interactions with cytokines and their receptors, rheumatoid
arthritis, cytokine-cytokine receptor interactions, and chemokine
signaling pathways (Figure 5A). These pathways emphasize the
important role of cytokines and their receptors in managing
immune responses, inflammation, and viral infections. Viruses

may achieve immune evasion or induce immune pathological
damage by interfering with these pathways, which can also become
important targets for treating inflammatory diseases and viral
infections (Figures 5B–E).

Gene set enrichment analysis

The GSEA enrichment analysis results show that the GSE53845
dataset mainly influences pathways associated with cell adhesion
molecules cams (CAMs) (NES = 1.602, FDR = 0.029), vascular
smooth muscle contraction (NES = –1.614, FDR = 0.028),

FIGURE 10

Expression of IPF-associated anoikis-related Genes (IPF-ARGs). (A) Expression levels of 19 IPF-ARGs in the GSE53845 dataset. Blue represents the
normal group, and red represents the disease group. The abscissa indicates the IPF-ARGs, and the ordinate indicates the gene expression values
(p > 0.05). (B) Expression levels of 19 IPF-ARGs in the GSE24206 dataset. Blue represents the normal group, and red represents the disease group.
The abscissa represents the IPF-ARGs, and the ordinate represents the gene expression values (p < 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ns, not
significant).
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O glycan biosynthesis (NES = 1.715, FDR = 0.028), steroid
biosynthesis (NES = –1.848, FDR = 0.028), intestinal immune
network for IgA production (NES = 1.743, FDR = 0.023),
nitrogen metabolism (NES = –1.816, FDR = 0.023), terpenoid
backbone biosynthesis (NES = –1.891, FDR = 0.017), chemokine
signaling pathway (NES = 1.733, FDR = 0.005), primary
immunodeficiency (NES = 1.927, FDR = 0.005), and cytokine
cytokine receptor interaction (NES = 1.955, FDR < 0.001)
(Figure 6A). The GSE24206 dataset primarily impacts several key
biological functions, including nitrogen metabolism (NES = –
1.945, FDR = 0.007), terpenoid backbone biosynthesis (NES = –
1.950, FDR = 0.005), type 2 diabetes mellitus (NES = –1.944,
FDR = 0.004), lysosomal (NES = 1.728, FDR = 0.003), asthma
(NES = 1.910, FDR = 0.003), extracellular matrix (Ecm) receptor
interaction (NES = 1.857, FDR = 0.001), nod like receptor

signaling pathway (NES = –2.062, FDR < 0.001), cytokine
cytokine receptor interaction (NES = –1.700, FDR < 0.001), and
both Jak stat signaling pathway (NES = –1.900, FDR < 0.001)
and mark signaling pathway (NES = –1.765, FDR < 0.001)
(Figure 6B).

Our findings reveal that gene expression in the two datasets
influences distinct biological pathways. In the GSE53845 dataset,
the genes primarily affect pathways such as cytokine activity,
ciliary plasma, B cell activation, signaling receptor regulation,
serine hydrolase activity, and positive regulation of leukocyte
adhesion (Figures 6C–E). Genes in the GSE24206 dataset primarily
control biological pathways related to ciliary plasma, axoneme
assembly, ciliary movement, motile cilia, cilium organization, and
microtubule-based movement (Figures 6F–H).

FIGURE 11

Receiver operating characteristic (ROC) curve prediction of IPF-associated anoikis-related Genes (IPF-ARGs). (A,B) ROC curves for IPF-associated
anoikis-related genes (IPF-ARGs) in the GSE53845 dataset (AUC > 0.8). (C,D) ROC curves of IPF-ARGs in the GSE24206 dataset (AUC > 0.8).
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Construction of protein-protein
interaction networks

Using the STRING database, we constructed a gene interaction
network for IPF-ARGs, which includes 12 nodes and 28 edges.
The four nodes with the strongest interactions are CXCL12, CCL5,
TGFB2, and CD24 (Figure 7A). After constructing the network, we
visualized it using Cytoscape software (Figure 7B).

Network analysis of IPF-ARGs with
related miRNAs, transcription factors,
and drugs

We constructed an anoikis-related gene-miRNA interaction
network featuring 19 genes and 419 miRNAs linked to Idiopathic
Pulmonary Fibrosis (IPF) using the NetworkAnalyst database
(Figure 8A). Additionally, the IPF-related gene-transcription
factor (ARG-TF) interaction network included 15 genes and

109 transcription factors (Figure 8B). The IPF-related gene-drug
interaction network consists of four separate networks, with each
network displaying 24, 12, 4, and 4 drug effects, respectively
(Figures 9A–D).

Expression analysis of IPF-ARGs and ROC
validation

We used the ggpubr and reshape2 packages in R to create
box plots that display the expression levels of IPF-ARGs in the
GSE53845 and GSE24206 datasets. The analysis revealed significant
differences in the expression levels of genes, including MMP7,
CXCL14, PLA2G1B, TP63, CDH3, CD24, CXCL12, MAOA,
MDK, CCL5, EDNRB, ITGBL1, S1PR1, FRZB, CCDC80, TGFBR3,
S100A8, and TGFB2, within the GSE53845 dataset (P < 0.05)
(Figure 10A). Similarly, the expression levels of IPF-ARGs also
showed significant differences in the GSE24206 dataset (P < 0.05)
(Figure 10B).

FIGURE 12

Expression of key genes in LUAD and LUSC. (A) CDH3; (B) EDNRB; (C) MAOA; (D) PLA2G1B. *Indicates a significance threshold of p < 0.05.
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FIGURE 13

Survival analysis of key genes. (A) CDH3; (B) EDNRB; (C) MAOA; (D) PLA2G1B.

ROC curve analysis revealed that multiple genes exhibited
outstanding diagnostic performance across both datasets. In the
GSE53845 dataset, CD24 (AUC = 0.994; 95% CI: 0.979–1.000)
and EDNRB (AUC = 0.988; 95% CI: 0.960–1.000) showed
the most prominent performance (Figures 11A,B), while in the
GSE24206 cohort, MDK (AUC = 1.000; 95% CI: 1.000–1.000) and
MAOA (AUC = 0.971; 95% CI: 0.905–1.000) demonstrated the
highest discriminative power (Figures 11C,D; complete data in
Supplementary Table 2).

Expression and survival analysis of
IPF-ARGs in lung cancer

We investigated the relationship between IPF-ARGs and lung
cancer progression using the GEPIA database. Our expression
analysis revealed that CDH3, EDNRB, MAOA, and PLA2G1B
matched our differential gene analysis results in IPF, Lung
Adenocarcinoma (LUAD), and Lung Squamous Cell Carcinoma
(LUSC) tissues. Notably, CDH3 was significantly upregulated,
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FIGURE 14

miRNA, TF, and drug target network of key genes. Red represents mRNA, green represents transcription factors (TF), yellow represents miRNA, and
blue represents drugs.

while EDNRB, MAOA, and PLA2G1B were significantly
downregulated in these tissues (Figure 12).

Survival analysis showed that CDH3, EDNRB, MAOA, and
PLA2G1B are linked to the overall survival (OS) of patients
(Figure 13). When we analyze the expression data, we observe that
low expression of CDH3 is linked to longer survival; conversely,
high expression of EDNRB, MAOA, and PLA2G1B is linked
to longer survival. This finding indicates that CDH3 acts as
an oncogene in LUAD and LUSC, while EDNRB, MAOA, and
PLA2G1B serve as tumor suppressor genes in these types of lung
cancer.

We integrated the results from the prior establishment of the
IPF-ARG transcription factor and miRNA networks, along with
the drug target analysis of CDH3, EDNRB, MAOA, and PLA2G1B.
This integration allowed us to obtain a relationship network of
target genes, transcription factors, miRNAs, and drug targets (PF-
ARGs-TF-miRNA-drug), which we visualized using Cytoscape
(Figure 14).

The analysis of the IPF-ARGs-TF-miRNA-drug network
highlighted three endothelin receptor antagonists targeting
EDNRB: Bosentan, Sitaxentan, and Ambrisentan. Clinical studies
suggest that endothelin receptor antagonists can improve lung
function, delay the progression of idiopathic pulmonary fibrosis
(IPF), and enhance patients’ quality of life (30–32). Experimental
results show that Bosentan, Sitaxentan, and Ambrisentan inhibit
the level of pulmonary fibrosis by upregulating EDNRB.

Discussion

This study utilized bioinformatics analysis to explore the
mechanisms of anoikis-associated genes in Idiopathic Pulmonary
Fibrosis (IPF) and their potential molecular targets, focusing on
the endothelin B receptor (EDNRB) and the possible use of
endothelin receptor antagonists in treating IPF. We conducted
differential expression analysis on two independent IPF gene
expression datasets (GSE53845 and GSE24206) from the GEO
database, identifying 19 genes significantly linked to anoikis in
IPF. Consequently, these genes likely play significant roles in the
pathogenesis of IPF.

Functional enrichment analysis indicated that these IPF-
ARGs are primarily involved in biological processes such as cell
chemotaxis, cell adhesion, and cytokine activity, and are enriched

in pathways such as cytokine-cytokine receptor interaction and
chemokine signaling pathways. Gene Set Enrichment Analysis
(GSEA) also highlighted the potential roles of these genes in
processes like cell adhesion and cytokine signaling. These findings
indicate that anoikis dysregulation in IPF causes the accumulation
of apoptotic cells, which hinders normal lung tissue repair
and worsens fibrosis. Therefore, interventions targeting anoikis
dysregulation may offer new insights for treating IPF.

We constructed protein-protein interaction (PPI) networks
and identified genes like CXCL12, CCL5, TGFB2, and CD24 that
exhibit high connectivity within the IPF-ARG interaction network,
indicating their potential roles in the pathological process of IPF.
Furthermore, analyzing the interaction networks of IPF-ARGs with
miRNAs, transcription factors, and drugs revealed potential targets
for post-transcriptional regulation and drug intervention, thereby
enhancing our understanding of therapeutic strategies.

The diagnostic performance of identified biomarkers was
assessed through internal validation on the original cohorts. While
the observed high AUC values (e.g., EDNRB (AUC = 0.988;
95% CI: 0.960–1.000) suggest strong discriminative capacity,
further external validation using prospective patient cohorts is
warranted to confirm clinical applicability. Furthermore, our study
investigated the relationship between IPF-ARGs and lung cancer,
identifying CDH3 as an oncogenic gene and recognizing EDNRB,
MAOA, and PLA2G1B as tumor suppressor genes. This finding
suggests a possible link between IPF and lung cancer development.
It calls for further investigation into the mechanisms that connect
these two conditions.

In our study, EDNRB was confirmed as a key ARG closely
related to the progression of IPF. The EDNRB (endothelin B
receptor) gene is located on human chromosome 13q22.1 and
encodes the endothelin B receptor (EDNRB) protein, which is
part of the G protein-coupled receptor family. These receptors
exhibit a high degree of conservation across species and play
significant roles in various biological processes (33–35). Known
biological functions of EDNRB include regulating cell proliferation,
migration, and metabolic processes, with particular relevance to
its anti-tumor characteristics in cancer biology. For example,
decreased expression of EDNRB in prostate cancer and triple-
negative breast cancer is associated with tumor progression and
poor prognosis (36–38). Although specific literature on the role
of endothelin receptor type B in pulmonary fibrosis is lacking,
our study shows that this receptor is important for apoptosis.
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In the pathological process of pulmonary fibrosis, EDNRB may
influence the proliferation of fibroblasts and their transition into
myofibroblasts. This change is crucial for the development of lung
tissue fibrosis.

Endothelin receptor antagonists (ERAs) targeting the
endothelin B receptor (EDNRB) exhibit multidimensional
therapeutic potential, particularly in idiopathic pulmonary fibrosis
(IPF). Classified by receptor selectivity-including ETA-selective
antagonists (e.g., atrasentan), ETB-selective antagonists (e.g.,
BQ-788), and dual ETA/ETB antagonists (e.g., bosentan)-these
agents modulate distinct pathological pathways. In IPF, ETA
antagonists reduce collagen deposition by 40% through TGF-β
signaling inhibition, while ETB activation enhances endothelin
clearance, as demonstrated in preclinical models (39). Beyond
fibrosis, EDNRB dysregulation influences cancer progression:
low EDNRB expression promotes metastasis via ERK pathway
activation, whereas bosentan suppresses tumor cell migration
by 62% and reverses epithelial-mesenchymal transition (38).
Clinical translation, however, faces challenges. While atrasentan
reduced proteinuria by 34% in diabetic nephropathy trials, its
oncology applications are limited by fluid retention, potentially
linked to EDNRB’s ceRNA regulatory network involving lncRNA
FENDRR and miR-148a (40). Emerging combination strategies
address these limitations-dual ET-1/PDGF pathway inhibition with
nintedanib reduces IPF lung function decline by 58% annually,
and ginsenoside Rg3 synergizes with PD-1 inhibitors to enhance
antitumor immunity via EDNRB upregulation, achieving 2.1-
fold survival improvement in murine models (41). Future efforts
must prioritize EDNRB molecular profiling to balance efficacy and
safety, advancing personalized ERA-based regimens for fibrotic and
neoplastic diseases.

This study has limitations to acknowledge: The retrospective
design of public database analysis may introduce selection
bias, while computational findings require experimental
confirmation. The diagnostic model needs validation across
diverse populations and disease stages. EDNRB’s mechanistic
role and observed IPF-cancer connections warrant functional
studies to establish causality. These considerations highlight
opportunities for integrating multi-omics approaches in future
translational investigations.

In summary, identifying and validating risk genes associated
with IPF enhances our understanding of its pathophysiology and
paves the way for future clinical advancements. Integrating these
genes into clinical practice as diagnostic and prognostic tools
could greatly improve patient care and personalized treatment
options. Future studies should aim to clarify how these biomarkers
function and their interactions with different therapeutic agents.
In particular, research should focus on endothelin receptor
antagonists, which have shown promising clinical benefits in
related conditions.
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