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Background: Early detection of subclinical atherosclerosis progression is crucial 
for preventing atherosclerotic cardiovascular disease (ASCVD). Carotid intima–
media thickness (CIMT) is a recognized surrogate marker for atherosclerosis, but 
accurate prediction of its progression remains challenging. This study aimed to 
develop and validate machine learning models for predicting CIMT progression 
via routine clinical biomarkers.

Methods: In this three-year prospective cohort study, we analyzed data from 
904 participants from the Third Xiangya Hospital of Central South University 
Health Examination Cohort who underwent three consecutive annual CIMT 
measurements. The participants were categorized into CIMT thickening and 
nonthickening groups on the basis of a final CIMT ≥1.0 mm or an increase 
≥0.1 mm across consecutive measurements. We  evaluated seven machine 
learning algorithms: logistic regression, random forest, XGBoost, support 
vector machine (SVM), elastic net, decision tree, and neural network. Model 
performance was assessed through discrimination (AUC, sensitivity, specificity) 
and calibration metrics, with Platt scaling applied to optimize probability 
estimates. Clinical utility was evaluated through decision curve analysis.

Results: Compared with the more complex algorithms, the elastic net model 
demonstrated superior performance (AUC 0.754). Baseline CIMT, absolute 
monocyte count, sex, age, and LDL-C were identified as the most influential 
predictors. After Platt scaling, the calibration improved significantly across 
all the models. Decision curve analysis revealed a positive net benefit across 
a wide threshold range (0.01–0.5). On the basis of calibrated probabilities, 
we developed a three-tier risk stratification framework that identified distinct 
groups with progressively higher event rates: medium-risk (13.9%), high-risk 
(50.0%), and very-high-risk (60.0%). Subgroup analysis revealed better predictive 
performance in younger participants (<50 years), those with lower baseline 
CIMT (<0.8 mm), and females.

Conclusion: Machine learning approaches, particularly the elastic net model, 
can effectively identify individuals at high risk for CIMT progression via routine 
clinical biomarkers. The superior performance of simpler models suggests 
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predominantly linear relationships between predictors and CIMT progression. 
Following appropriate calibration, the model demonstrated strong clinical 
utility across diverse decision thresholds, supporting a stratified approach to 
atherosclerosis prevention.
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carotid intima–media thickness (CIMT), machine learning, atherosclerosis 
progression, risk prediction, cardiovascular prevention

1 Introduction

Atherosclerotic cardiovascular disease (ASCVD) remains the 
leading cause of mortality and morbidity worldwide, with 
atherosclerosis as its primary pathophysiological mechanism (1). 
Early detection and intervention of subclinical atherosclerosis 
represent key strategies for reducing the global burden of 
ASCVD. Carotid intima–media thickness (CIMT), measured by 
ultrasonography, has emerged as a recognized surrogate marker for 
atherosclerosis and a powerful predictor of future cardiovascular 
events (2).

CIMT measurement offers multiple advantages as a clinical tool: 
it is noninvasive, relatively cost-effective, widely available, and highly 
reproducible when standardized protocols are followed (3, 4). 
Numerous longitudinal studies have confirmed that increased CIMT 
is independently associated with elevated risks of myocardial 
infarction, stroke, and cardiovascular mortality (5). Moreover, some 
studies suggest that baseline CIMT measurements provide valuable 
prognostic information for cardiovascular risk prediction (6, 7).

Despite these advantages, the clinical application of CIMT 
remains limited by challenges in predicting individual progression 
over time. Current approaches typically rely on established risk factors 
and scoring systems designed to predict cardiovascular events rather 
than CIMT progression (8). These methods generally demonstrate 
moderate predictive performance and fail to capture complex 
nonlinear relationships between risk factors and subclinical 
atherosclerosis progression (9). Consequently, more accurate 
predictive tools are urgently needed to identify individuals at highest 
risk for CIMT progression who might benefit most from intensified 
preventive interventions (10).

Machine learning (ML) methods offer promising solutions to 
these challenges through their ability to model complex nonlinear 
relationships and interactions among multiple predictors (11). Some 
studies suggest that ML algorithms have the potential to improve 
cardiovascular risk prediction compared with traditional statistical 
methods (12–14). However, most ML applications in cardiovascular 
medicine have focused on predicting clinical events rather than 
subclinical markers of disease progression (15). Although it is a 
valuable predictor of ASCVD, no ML-related studies exist.

In this three-year prospective cohort study, we aimed to develop 
and validate ML models for predicting CIMT progression via readily 
available clinical and laboratory parameters from the Xiangya Third 
Hospital of Central South University Health Examination Cohort. 
We evaluated multiple ML algorithms, including logistic regression, 
random forest, XGBoost, support vector machine, elastic net, 
decision tree, and neural network methods. We  assessed model 
performance through comprehensive metrics of discrimination and 
calibration and applied Platt scaling to optimize probability 

estimates. Finally, we evaluated the potential clinical utility of these 
models at different threshold probabilities through decision 
curve analysis.

By establishing accurate CIMT progression prediction models, 
this study aims to facilitate early identification of individuals at high 
risk for atherosclerosis, allowing for targeted preventive interventions 
before the development of clinical cardiovascular disease by extending 
the prediction window for ASCVD. This approach aligns with the 
evolving paradigm of precision medicine and may contribute to more 
efficient allocation of cardiovascular prevention resources.

2 Materials and methods

2.1 Study population

The present study utilized biochemical and hematological 
indices from 128,938 individuals enrolled in the “Third Xiangya 
Hospital of Central South University Health Examination Cohort” 
established in 2015. Following preliminary screening, 54,212 records 
were included in the cohort, while the remainder were excluded 
because of incomplete documentation. This cohort underwent 
annual health examinations, with 31,158 individuals enrolled 
between 2015 and 2023. The cohort encompasses not only 
biochemical parameters but also carotid intima–media thickness 
(CIMT) measurements at four anatomical locations (left/right 
carotid bifurcation and distal left/right common carotid artery). Our 
predictive model was developed on the basis of the mean CIMT 
values across these four locations.

2.2 Patient selection

From the initial database of 31,158 participants, we established a 
longitudinal cohort with regular follow-up intervals to assess carotid 
intima–media thickness (CIMT) progression. We first screened 
patients who completed three independent CIMT measurements 
during health examinations and had baseline CIMT values <1 mm 
(n  = 3,544). To ensure standardized follow-up intervals, only 
participants with adjacent examinations spaced 300–430 days apart 
(approximately annual intervals) were included (n = 904). This time 
window allows reasonable scheduling flexibility while maintaining the 
periodicity of annual assessments. Among these 904 participants, in 
accordance with clinical guidelines and previous research, we divided 
the population into CIMT thickening and nonthickening groups 
according to the following criteria: a final examination of CIMT 
≥1.0 mm (3, 16–18) or increase ≥0.1 mm (19–21) across consecutive 
measurements (Figure 1).
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After completing the subject screening, we  first evaluated the 
proportion of missing values for all the variables. Variables with >20% 
missing data were excluded. Correlation analysis was performed on 
retained variables to identify multicollinearity, eliminating the 
clinically less significant variable from highly correlated variable pairs 
(correlation coefficient >0.7).

For the remaining variables, missing data were imputed via 
predictive mean matching (PMM), generating five imputed 
datasets (m = 5, maxit = 50), with the first complete dataset 
selected for subsequent analysis. Near-zero variance predictors 
were identified and removed via the nearZeroVar function from 
the caret package.

Feature selection was conducted via the random forest-based 
Boruta algorithm, which identifies statistically significant variables for 
classification tasks through the shadow attribute method. The 
algorithm runs for 100 iterations (maxRuns = 100), retaining variables 
confirmed as “important” by Boruta and “tentative” variables. 
Additionally, age and sex were forcibly included as clinically important 
variables regardless of Boruta analysis results.

2.3 Model development and performance 
evaluation

The dataset was divided into training and testing sets at a 7:3 
ratio via stratified sampling to maintain a consistent class 
distribution. To address class imbalance in the training set, a mixed 
sampling strategy from the ROSE package was employed 
(method = “both,” p = 0.5), which simultaneously oversamples the 
minority class and undersamples the majority class. All the models 
were optimized through 5-fold cross-validation (repeated 3 times), 
with the area under the receiver operating characteristic curve 
(AUC) as the primary metric for model selection during 
cross-validation.

We developed models via seven machine learning algorithms: 
logistic regression, random forest, XGBoost, support vector machine 
with a radial basis function (SVM) kernel, elastic net, decision tree, 
and neural network.

To validate model performance, we  assessed the following 
metrics: area under the curve (AUC), sensitivity, specificity, 

FIGURE 1

Study cohort selection process for CIMT progression analysis.
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positive predictive value (PPV), negative predictive value (NPV), 
F1-score, expected calibration error (ECE), Brier score, and 
log loss.

Model calibration was performed via Platt scaling, which involves 
fitting a logistic regression to transform the original model outputs. 
We tested three regularization methods (ridge L2, lasso L1, and elastic 
net) combined with stratified k-fold cross-validation for calibration 
model development. Calibration performance was assessed via the 
expected calibration error (ECE), Brier score, and log-loss metrics. 
Calibration curves were generated to visually evaluate the alignment 
between the predicted probabilities and actual outcomes before and 
after Platt scaling.

To evaluate model stability and data efficiency, we created learning 
curves by training models on increasing fractions (5, 10, 20, 50, and 
100%) of the training dataset. For each fraction, we performed five 
iterations and calculated the mean AUC and standard deviation to 
assess performance stability across different training data volumes.

For subgroup analysis, we  stratified the test set by age 
(≤35 years, 35–50 years, >50 years), sex (male, female), and baseline 
CIMT level (low: <0.6 mm, medium: 0.6–0.8 mm, high: >0.8 mm). 
Model performance and calibration effectiveness were evaluated 
separately for each subgroup via the same metrics applied to the 
overall population. This analysis helped assess whether model 
performance remained consistent across different demographic and 
clinical subgroups.

For feature importance analysis, we  compared the coefficient 
magnitudes and significance from both elastic net and logistic 
regression models to provide comprehensive insights into predictor 
relevance. This comparative approach allowed for more robust 
identification of key predictors for CIMT thickening.

Finally, we conducted decision curve analysis (DCA) using the 
calibrated models. DCA estimates the net benefit of using prediction 
models to guide clinical decisions at different threshold probabilities. 
The DCA curve of the best-performing model was compared with two 
default strategies: “treat all” and “treat none.” This analysis helps 
identify the range of threshold probabilities where the model provides 
clinical value beyond these baseline strategies.

The optimal thresholds were determined via Youden index 
analysis, which identifies the point that maximizes the sum of 
sensitivity and specificity. On the basis of the DCA results and clinical 
considerations, we developed a risk stratification approach to classify 
patients into risk categories (medium, high, and very high risk) with 
corresponding intervention recommendations. Risk thresholds were 
determined on the basis of a combination of the Youden index, 
maximum net benefit point, and clinically significant event rates.

The DCA curve of the best-performing model was compared 
with two default strategies: “treat all” and “treat none” (22). This 
analysis helps identify the range of threshold probabilities where 
the model provides clinical value beyond these baseline strategies 
(23). In clinical decision analysis, “treat all” and “treat none” 
represent two extreme baseline strategies used as reference 
benchmarks to measure the clinical utility of prediction models: 
treating all ensures coverage of all patients needing treatment but 
leads to overtreatment (high false positives); treating none 
completely avoids overtreatment but misses all patients requiring 
treatment (high false negatives) (24). Through decision curve 
analysis, if a model’s net benefit curve exceeds both baselines within 
a specific threshold range, it indicates that selective treatment based 

on model predictions better balances treatment benefits and risks 
(25), delineating the clinical value interval for practical model 
application (26).

2.4 Statistical analysis

All analyses were conducted via R version 4.4.2. Statistical 
significance was set at p < 0.05.

3 Results

3.1 Baseline characteristics

On the basis of our thickening criteria (final examination CIMT 
≥1.0 mm or increase ≥0.1 mm across consecutive measurements), 
904 individuals from the “Third Xiangya Hospital of Central South 
University Health Examination Cohort” of 31,158 participants were 
included for model development (Figure 1).

No significant differences in age (42.0 vs. 43.0 years, p = 0.119), 
sex distribution (male: 63.1% vs. 68.3%, p = 0.181), or BMI (24.20 vs. 
24.12 kg/m2, p = 0.568) were detected between the nonthickened and 
thickened groups. Blood pressure parameters were comparable 
between the groups: systolic pressure (122.0 vs. 121.0 mmHg, 
p = 0.919) and diastolic pressure (75.0 vs. 76.0 mmHg, p = 0.324). 
Lipid metabolism indices were not significantly different: total 
cholesterol (4.93 vs. 5.01 mmol/L, p = 0.319), triglycerides (1.40 vs. 
1.44 mmol/L, p = 0.292), HDL-C (1.26 vs. 1.29 mmol/L, p = 0.625), 
and LDL-C (2.87 vs. 2.88 mmol/L, p = 0.386). The white blood cell 
count (6.09 vs. 5.95 × 109/L, p = 0.916) and absolute monocyte count 
(0.36 vs. 0.38 × 109/L, p = 0.140) were similarly distributed between 
the groups.

The most notable difference between the groups was the baseline 
CIMT: 0.75 mm (IQR: 0.65–0.80) in the nonthickened group versus 
0.65 mm (IQR: 0.60–0.75) in the thickened group (p  < 0.001, 
SMD = 0.509). These findings suggest that individuals with lower 
baseline CIMT may be overlooked by conventional risk assessments 
despite having higher actual progression risk. The absence of 
differences in traditional risk factors (e.g., age, lipid profiles) between 
the two groups may indicate limited predictive performance of these 
factors for CIMT progression in populations with normal baseline 
CIMT (Supplementary material 1).

3.2 Feature selection

Through the Boruta algorithm, we  screened all 47 features 
(Figure 2). In terms of the calculated Z values, SBP, DBP, TG, HDL, 
LDL, CR, WBC, Monocyte_ABS, sex, age, and CIMT visit 1 were 
identified as variables closely associated with CIMT thickening.

3.3 Assessment of dataset covariate shift

To evaluate potential covariate shifts between the training and 
test datasets, we conducted Kolmogorov–Smirnov tests for all the 
input features (Figure 3). The results revealed that eight out of 
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nine features presented no significant distributional differences 
between the training and test datasets. Only age demonstrated a 
statistically significant distributional discrepancy (p = 0.0183).

Notably, despite this age distribution difference, our model 
maintained robust performance in the test set (AUC >0.7), indicating 
a degree of resilience to age-related covariate shifts. This result 
strengthens our confidence in the model’s generalizability, suggesting 
that it may maintain stable predictive performance when confronted 
with minor population distribution differences in real-world scenarios.

3.4 Model performance comparison

We generated seven ML algorithms to predict patient CIMT 
thickening within three years. Figure  4 and Table  1 show the 
discriminative performance of the nine models in terms of their 
ROC curves.

To identify the optimal model, we  performed DeLong tests 
(Figure 5). The results revealed no statistically significant differences 
in the AUC among the elastic net, logistic regression, and SVM 
methods (p = 0.623 and p = 0.992, respectively), suggesting the need 
for further comprehensive analysis.

Using paired bootstrap t-tests (1,000 resamples), we calculated the 
performance differences between the models. For the AUC, Elastic 
Net outperformed logistic regression by an average of 0.0140 
(p < 0.001) and SVM by 0.0146 (p < 0.001). In terms of sensitivity, 

Elastic Net demonstrated superiority over logistic regression by 0.0294 
(p < 0.001) and over SVM by 0.0579 (p < 0.001).

To comprehensively evaluate the three models, we implemented 
a multimetric weighted scoring approach, assigning weights to the 
AUC, sensitivity, F1-score, and log loss according to clinical relevance 
(30, 30, 20, and 20%, respectively). Elastic Net achieved the highest 
score (0.628), followed by logistic regression (0.615) and SVM (0.613).

Considering statistical significance testing, weighted scoring 
results, and Elastic Net’s intrinsic feature selection capabilities, 
we selected Elastic Net as the optimal model for subsequent analyses.

To address potential overfitting and underfitting concerns, 
we  constructed learning curves (Figure  6). Analysis revealed that 
Elastic Net consistently demonstrated superior performance across all 
training data volumes (AUC improvement from 0.634 with 5% data 
to 0.754 with 100% data). Notably, the three top-performing models—
Elastic Net, logistic regression, and SVM—achieved AUCs exceeding 
0.70 even with minimal data (10%), indicating excellent data 
efficiency. This analysis further validated Elastic Net’s stability and 
superiority while confirming that the current data volume was 
sufficient for model training (Table 2).

3.5 Model calibration performance

To increase the reliability of the predictive probabilities, 
we  implemented Platt scaling across all the models via three 

FIGURE 2

Feature selection results using the Boruta algorithm for CIMT thickening prediction.
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regularization methods (ridge L2, lasso L1, and elastic net) combined 
with stratified k-fold cross-validation to prevent overfitting. The 
optimal calibration methods varied by model: both elastic net and 
logistic regression performed best with ridge regularization, whereas 
SVM yielded superior results with lasso regularization, highlighting 
the influence of model characteristics on the selection of the 
calibration method. Calibration not only improved the ECE but also 
significantly enhanced metrics such as the Brier score and log loss (see 
Table 3). Figure 7 shows the calibration curves of each model before 
and after Platt scaling.

3.6 Feature importance analysis

Although Elastic Net was identified as the optimal model, 
we conducted a comparative feature importance analysis between 
Elastic Net and logistic regression (both linear models) to provide 
more comprehensive feature selection insights. Both models identified 
the following variables as important predictors: baseline CIMT, 
absolute monocyte count, sex, age, and LDL-C (Figure 8).

3.7 Subgroup performance analysis

To assess model performance consistency across different patient 
populations, we conducted stratified analyses of the test set by age 
(≤35 years, 35–50 years, >50 years), sex (male, female), and baseline 
CIMT level (low: <0.6 mm, medium: 0.6–0.8 mm, high: >0.8 mm). 
The sample size distribution across subgroups is presented in Table 4.

To ensure calibration performance across subgroups, we applied 
Platt scaling to the elastic net model (Table 5). All the subgroups 
demonstrated improvement. Figure 9 presents the ECE improvement 
before and after calibration. The predictive performance for the older 
age and high baseline CIMT subgroups was significantly lower than 
that for the other groups, suggesting increased prediction difficulty in 
these populations. Compared with male subjects, female subjects 
consistently demonstrated superior prediction performance, 
indicating sex-related prediction bias that warrants consideration in 
clinical applications. Despite varying initial calibration levels across 
subgroups, Platt scaling achieved substantial calibration improvements 
in all subgroups, confirming the robustness of the calibration 
methodology (see Table 6).

FIGURE 3

Kolmogorov–Smirnov tests for training and testing sets.
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FIGURE 4

Receiver operating characteristic (ROC) curves comparing the discriminative performance of seven machine learning models.

TABLE 1 Performance comparison of seven machine learning models for predicting CIMT thickening.

Model AUC 
(lower 

CI–
upper CI)

Accuracy 
(lower CI–
upper CI)

Sensitivity 
(lower CI–
upper CI)

Specificity 
(lower CI–
upper CI)

PPV 
(lower 

CI–
upper CI)

NPV 
(lower 

CI–
upper CI)

F1 (lower 
CI–

upper CI)

LogLoss 
(lower CI–
upper CI)

Elastic Net
0.763 (0.695–

0.831)

0.701 (0.646–

0.753)

0.706 (0.603–

0.814)
0.700 (0.638–0.763)

0.440 (0.345–

0.535)

0.877 (0.827–

0.923)

0.542 (0.446–

0.622)

0.603 (0.576–

0.636)

Logistic 

Regression

0.748 (0.679–

0.818)

0.694 (0.631–

0.745)

0.676 (0.558–

0.790)
0.700 (0.627–0.758)

0.430 (0.330–

0.525)

0.866 (0.815–

0.914)

0.526 (0.432–

0.617)

0.589 (0.539–

0.652)

SVM
0.748 (0.678–

0.818)

0.731 (0.679–

0.779)

0.647 (0.523–

0.750)
0.759 (0.699–0.814)

0.473 (0.375–

0.568)

0.865 (0.815–

0.912)

0.547 (0.446–

0.631)

0.575 (0.501–

0.657)

Random 

Forest

0.712 (0.641–

0.782)

0.734 (0.675–

0.786)

0.471 (0.356–

0.590)
0.823 (0.760–0.871)

0.471 (0.352–

0.587)

0.823 (0.769–

0.873)

0.471 (0.364–

0.563)

0.556 (0.516–

0.602)

XGBoost
0.681 (0.608–

0.755)

0.694 (0.633–

0.749)

0.456 (0.344–

0.574)
0.773 (0.708–0.833)

0.403 (0.289–

0.515)

0.809 (0.756–

0.865)

0.428 (0.315–

0.526)

0.685 (0.583–

0.802)

Neural 

Network

0.646 (0.571–

0.721)

0.661 (0.605–

0.720)

0.588 (0.469–

0.701)
0.685 (0.619–0.746)

0.385 (0.290–

0.473)

0.832 (0.769–

0.886)

0.465 (0.359–

0.555)

0.893 (0.745–

1.056)

Decision Tree
0.563 (0.481–

0.644)

0.579 (0.520–

0.638)

0.456 (0.324–

0.580)
0.621 (0.545–0.690)

0.287 (0.197–

0.369)

0.773 (0.712–

0.835)

0.352 (0.253–

0.439)

2.309 (1.470–

3.164)
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FIGURE 5

DeLong test results for AUC comparison between models.

FIGURE 6

Learning curves for each model.
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3.8 Decision curve analysis

To evaluate the clinical utility of the Elastic Net model for 
predicting CIMT thickening, we conducted decision curve analysis 
(DCA) and Platt calibration-based risk stratification. See 
Supplementary material 2 for the DCA graphs of each model.

Youden index analysis revealed that the optimal threshold 
decreased from 0.57 (sensitivity 0.588, specificity 0.862) in the original 
model to 0.36 (sensitivity 0.588, specificity 0.857) after calibration, 
while maintaining similar discriminative ability (Youden index ≈0.45) 
but providing more accurate probability estimates. The DCA revealed 
a maximum net benefit threshold of 0.01 (net benefit value 0.243), 
with positive net benefit maintained across the threshold range of 
0.01–0.5, demonstrating the model’s clinical utility across a broad 
range of thresholds (Figure 10).

On the basis of calibrated probabilities and clinical risk 
stratification, patients were classified into three groups: a medium-risk 
group (probability <0.36), comprising 202 individuals with an event 
rate of 13.9%; a high-risk group (probability 0.36–0.41), comprising 
14 individuals with an event rate of 50.0%; and a very-high-risk group 
(probability ≥0.41), comprising 55 individuals with an event rate of 
60.0%. This stratification demonstrated a clear risk gradient, providing 
an objective basis for clinical intervention.

On the basis of these risk stratification results, we recommend 
differentiated intervention strategies: for the medium-risk group 
(13.9% event rate), regular follow-up and lifestyle guidance; for the 
high-risk group (50% event rate), intensified lifestyle interventions 
and consideration of pharmacological therapy; and for the very-high-
risk group (60% event rate), aggressive pharmacological intervention 
and close monitoring. This stratified intervention approach facilitates 
the optimization of healthcare resource allocation and enhances cost-
effectiveness in preventing and managing CIMT.

4 Discussion

In this three-year prospective cohort study, we developed and 
validated machine learning models based on routine clinical 
biomarkers for predicting CIMT progression. Our findings 
demonstrate that machine learning approaches, particularly the elastic 
net model, can effectively identify individuals at high risk for CIMT 
thickening, thereby supporting targeted preventive interventions 
for atherosclerosis.

Our comprehensive evaluation of seven diverse machine learning 
algorithms was strategically designed to cover different modeling 
paradigms. The selection of these specific algorithms was based on 
several considerations: (1) linear models (logistic regression, elastic 
net) for interpretability and regularization capabilities; (2) tree-based 
models (decision tree, random forest, XGBoost) for their ability to 
capture nonlinear relationships and interactions without requiring 
extensive feature engineering; (3) kernel-based methods (SVMs) for 
their effectiveness with high-dimensional data and complex decision 
boundaries; and (4) neural networks for their potential to model 
complex patterns through multiple layers of abstraction. This diverse 
algorithmic approach allowed us to assess whether linear or nonlinear 
methods were better suited for CIMT progression prediction.

Interestingly, our comparative analysis revealed that simpler 
models (elastic net, LR, and SVM) outperformed complex algorithms 
such as random forest and neural networks in our dataset. This finding 
aligns with previous research indicating that when sample sizes are 
moderate (as in our study with n = 904) and relationships between 
predictors and outcomes are predominantly linear, simpler models 
often perform better than or at least comparably to complex models 
(27). Additionally, these models have a lower risk of overfitting, which 
is crucial for ensuring generalizability in clinical applications. The 
superior performance of the elastic net suggests that the relationship 
between clinical biomarkers and CIMT progression may be more 
linear than complex interactions.

A key strength of our study was the implementation of Platt 
scaling for probability calibration. Our analysis demonstrated that the 
original models, despite having good discrimination (AUC), produced 
probability estimates that were not well calibrated, particularly for the 
neural network and decision tree algorithms, which presented high 
expected calibration error (ECE) values. By applying Platt scaling with 
appropriate regularization methods (ridge for elastic net and logistic 
regression, lasso for SVM), we significantly improved the calibration 
performance across all the models, with the most dramatic 
improvements observed in the more complex models.

The significant improvement in the calibration metrics has 
profound clinical implications. Well-calibrated models provide 
reliable probability estimates that directly correspond to observed 
event rates, which is essential for accurate risk stratification in clinical 
practice (28). When physicians rely on predicted probabilities to guide 
treatment decisions, poorly calibrated models may lead to 
inappropriate interventions or missed prevention opportunities (29). 
Our findings emphasize that when developing clinical prediction 

TABLE 2 Learning curve performance of machine learning models with varying training data volumes.

Model 5% training data 
(32 samples)

10% training data 
(63 samples)

20% training data 
(127 samples)

50% training data 
(316 samples)

100% training 
data (633 
samples)

Elastic Net 0.634 ± 0.069 0.700 ± 0.038 0.727 ± 0.022 0.743 ± 0.015 0.754 ± 0.000

SVM 0.563 ± 0.020 0.639 ± 0.049 0.674 ± 0.050 0.730 ± 0.020 0.753 ± 0.000

Logistic Regression 0.617 ± 0.061 0.704 ± 0.034 0.731 ± 0.018 0.743 ± 0.016 0.748 ± 0.000

XGBoost 0.547 ± 0.048 0.630 ± 0.046 0.648 ± 0.032 0.695 ± 0.044 0.690 ± 0.000

Random Forest 0.530 ± 0.010 0.631 ± 0.023 0.632 ± 0.052 0.674 ± 0.034 0.676 ± 0.014

Neural Network 0.522 ± 0.030 0.545 ± 0.015 0.555 ± 0.068 0.588 ± 0.092 0.620 ± 0.111

Decision Tree 0.545 ± 0.068 0.601 ± 0.061 0.599 ± 0.073 0.598 ± 0.047 0.567 ± 0.000

Model performance on test set with varying training data sizes. Test set performance measured by AUC (area under ROC curve).
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FIGURE 7

Calibration curves before and after Platt scaling correction for seven machine learning models.
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tools, attention should be given not only to discrimination metrics 
such as the AUC but also to ensuring good calibration performance.

Our decision curve analysis (DCA) further validated the clinical 
utility of the calibrated elastic net model, which demonstrated positive 
net benefit across a wide range of threshold probabilities (0.01–0.5). 
The DCA revealed that our model outperformed both the “treat all” 
and “treat none” strategies within this threshold range, indicating that 
selective intervention on the basis of our model’s predictions would 
provide better clinical outcomes than would treating either everyone 
or no one. The maximum net benefit was observed at a threshold of 
0.01 (net benefit value 0.243), suggesting high utility even at low-risk 
thresholds, while maintaining positive net benefit up to a threshold of 
0.5 demonstrated robust clinical applicability across diverse decision-
making preferences.

On the basis of our calibrated probability estimates and decision 
curve analysis, we developed a three-tier risk stratification framework 
that identified distinct groups with progressively higher event rates: 
medium-risk (13.9%), high-risk (50.0%), and very-high-risk (60.0%) 
groups. Youden index analysis revealed that the optimal threshold 
decreased from 0.57 in the original model to 0.36 after calibration 
while maintaining similar discriminative ability (Youden index ≈0.45) 
but providing more accurate probability estimates. This finding 
underscores the importance of proper calibration for clinical 
threshold determination.

We combined the absolute threshold cutoff (baseline CIMT 
≥1.0 mm) with a dynamic progression warning (increase ≥0.1 mm 
during follow-up), which, compared with traditional single-
dimensional criteria, can both identify structural lesions (baseline 
values indicating irreversible arterial wall remodeling) and capture 
active progression (significant increases reflecting accelerated 
atherosclerotic processes, even when baseline values do not reach the 
threshold). This integrated criterion better aligns with the ‘cumulative-
trigger’ two-stage model of cardiovascular events (30, 31).

CIMT values ≥1.0 mm, as a criterion for thickening, have been 
recognized in multiple international studies and guidelines (3) and are 
widely accepted as indicators of subclinical atherosclerosis. An 
increase of ≥0.1 mm in consecutive measurements reflects progressive 
changes in arterial wall structure, potentially indicating active 
progression of vascular lesions even when the absolute value has not 
reached the 1.0 mm threshold. Multiple prospective studies have 
shown that rapid CIMT progression is associated with increased 
cardiovascular event risk. Moreover, evidence suggests that CIMT 
progression itself (independent of baseline values) is associated with 
increased cardiovascular event risk (32, 33).

Moreover, the finding that the baseline CIMT is the strongest 
predictor aligns with previous research suggesting that subclinical 
atherosclerosis may promote further plaque development through 
mechanical and inflammatory mechanisms (34). The important 
contribution of inflammatory markers (monocyte count) in our 
model supports the increasingly recognized view that inflammation 
is a key driver of atherosclerotic progression (35–37).

Several limitations of our study warrant consideration. First and 
foremost, our model was developed and validated with data from a 
single center (Third Xiangya Hospital of Central South University 
Health Examination Cohort), which may limit its generalizability. The 
lack of external validation in diverse populations across different 
ethnic backgrounds, geographic regions, and healthcare settings 
represents a significant limitation that may lead to overestimation of T
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TABLE 4 Predictive performance of the elastic net model across different subgroups.

Subgroup Model N AUC Sensitivity Specificity

Age group = 35–50

Decision Tree

124

0.592 0.436 0.694

Elastic Net 0.821 0.846 0.729

Logistic Regression 0.812 0.769 0.718

Neural Network 0.69 0.641 0.729

Random Forest 0.761 0.59 0.918

SVM 0.805 0.769 0.776

XGBoost 0.744 0.513 0.894

Age group = >50

Decision Tree

71

0.51 0.375 0.473

Elastic Net 0.598 0.5 0.582

Logistic Regression 0.583 0.562 0.509

Neural Network 0.615 0.5 0.655

Random Forest 0.574 0.25 0.709

SVM 0.637 0.375 0.764

XGBoost 0.547 0.375 0.636

Age group = ≤35

Decision Tree

76

0.633 0.615 0.651

Elastic Net 0.779 0.538 0.762

Logistic Regression 0.761 0.538 0.841

Neural Network 0.57 0.538 0.651

Random Forest 0.712 0.385 0.794

SVM 0.731 0.615 0.73

XGBoost 0.669 0.385 0.73

CIMT group = High

Decision Tree

65

0.479 0.3 0.673

Elastic Net 0.484 0.1 0.855

Logistic Regression 0.529 0.1 0.782

Neural Network 0.502 0.1 0.745

Random Forest 0.577 0.1 0.818

SVM 0.538 0.2 0.818

XGBoost 0.609 0.1 0.745

CIMT group = Low

Decision Tree

49

0.629 0.611 0.613

Elastic Net 0.801 1 0.419

Logistic Regression 0.79 0.944 0.516

Neural Network 0.642 0.833 0.419

Random Forest 0.741 0.611 0.742

SVM 0.767 0.889 0.516

XGBoost 0.647 0.5 0.581

CIMT group = Medium

Decision Tree

157

0.535 0.425 0.598

Elastic Net 0.786 0.725 0.701

Logistic Regression 0.775 0.7 0.709

Neural Network 0.654 0.6 0.726

Random Forest 0.754 0.5 0.846

SVM 0.776 0.65 0.795

XGBoost 0.755 0.525 0.838

(Continued)
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FIGURE 8

Comparison of the feature importance between the elastic net and logistic regression.

TABLE 4 (Continued)

Subgroup Model N AUC Sensitivity Specificity

Sex = Female

Decision Tree

98

0.606 0.591 0.632

Elastic Net 0.827 0.727 0.803

Logistic Regression 0.824 0.682 0.816

Neural Network 0.755 0.727 0.75

Random Forest 0.812 0.409 0.882

SVM 0.782 0.682 0.789

XGBoost 0.737 0.409 0.816

Sex = Male

Decision Tree

173

0.541 0.391 0.614

Elastic Net 0.73 0.696 0.638

Logistic Regression 0.712 0.674 0.63

Neural Network 0.589 0.522 0.646

Random Forest 0.662 0.5 0.787

SVM 0.726 0.63 0.74

XGBoost 0.648 0.478 0.748

TABLE 5 Calibration performance improvement of the elastic net model before and after Platt scaling across different subgroups.

Model Group Subgroup N ECE_uncalibrated ECE_calibrated Improvement

Elastic Net

Age

35–50 124 0.2224 0.0749 66.3

≤35 76 0.2719 0.0984 63.8

>50 71 0.2515 0.1401 44.3

CIMT

High 65 0.2128 0.0035 98.4

Low 49 0.2061 0.0739 64.1

Medium 157 0.2433 0.0844 65.3

Sex
Female 98 0.2345 0.0485 79.3

Male 173 0.2233 0.0872 60.9
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FIGURE 9

Calibration curves before and after Platt scaling for different subgroups in the elastic net model. (A) Age subgroups. (B) CIMT thickness subgroups. 
(C) Gender subgroups.

the model’s actual applicability and performance in real-world 
settings. External validation across multiple diverse cohorts should 
be  a priority for future research to establish the model’s true 
clinical value.

Second, while our comprehensive algorithm selection covered 
major machine learning paradigms, emerging deep learning 

approaches specifically designed for longitudinal data, such as 
recurrent neural networks or transformer models, were not 
evaluated. These methods might capture temporal patterns in 
CIMT progression more effectively and could be  explored in 
future studies with larger datasets containing more temporal  
measurements.
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Third, despite conducting subgroup analyses, the sample sizes for 
certain subgroups (particularly the >50 age group and high baseline 
CIMT group) were relatively small, which may have contributed to the 
observed performance limitations. The short and significantly 
deviating calibration curves in these subgroups reflect this limitation 
and suggest caution when applying the model to these populations. 
Future studies with enriched sampling of these challenging subgroups 
could help develop more robust prediction approaches for these 
specific populations.

Fourth, our feature set was limited to routinely available clinical 
and laboratory parameters. The incorporation of additional data 
modalities, such as genetic markers, advanced imaging features, or 
novel biomarkers of vascular inflammation, might increase the 
prediction accuracy, particularly for subgroups in which the current 
performance is suboptimal.

Finally, while our three-year follow-up period allows for 
meaningful assessment of CIMT progression, longer-term studies 
would provide valuable insights into the durability of prediction and 

FIGURE 10

DCA curves and Youden curves for the elastic net. (A) DCA curves for elastic net before and after Platt scaling. (B) Youden index analysis for elastic net.
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the relationship between predicted CIMT progression and hard 
cardiovascular outcomes. The integration of cardiovascular event data 
strengthens the clinical relevance of our prediction model.
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TABLE 6 Comparison of optimal decision thresholds and discriminative metrics before and after Platt scaling across machine learning models.

Model Calibration Best threshold Youden index Sensitivity Specificity

Elastic Net
Original 0.57 0.45 0.588 0.862

Calibrated 0.36 0.445 0.588 0.857

SVM
Original 0.53 0.406 0.632 0.773

Calibrated 0.3 0.406 0.632 0.773

Logistic Regression
Original 0.62 0.391 0.544 0.847

Calibrated 0.37 0.391 0.544 0.847

Random Forest
Original 0.36 0.336 0.779 0.557

Calibrated 0.2 0.346 0.794 0.552

Neural Network
Original 0.48 0.297 0.618 0.68

Calibrated 0.26 0.283 0.603 0.68

XGBoost
Original 0.36 0.283 0.588 0.695

Calibrated 0.25 0.283 0.588 0.695

Decision Tree
Original 0.17 0.14 0.544 0.596

Calibrated 0.23 0.14 0.544 0.596
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