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Background: Acute ST-segment elevation myocardial infarction (STEMI) is a 
cardiovascular emergency that is associated with a high risk of death. In this 
study, we developed explainable machine learning models to predict the overall 
survival (OS) of STEMI patients to help improve prognosis and increase survival.

Methods: After applying the inclusion and exclusion criteria, we selected 893 
patients who underwent emergency coronary angiography and percutaneous 
coronary intervention (PCI) for STEMI at the First Affiliated Hospital of Kunming 
Medical University. The best predictor variables were screened by least absolute 
shrinkage and selection operator (LASSO) regression. These variables were used 
to construct Cox proportional hazards regression (coxph) and random survival 
forest (rfsrc) models. Three criteria (C-index, Brier score, and C/D AUC) were 
utilised to compare the performance of the two models. Then, by applying 
the time-dependent variable importance and the partial dependence survival 
profile, a global explanation of the entire cohort was conducted. Finally, local 
explanations for individual patients were performed with the SurvSHAP(t) and 
SurvLIME plots and the ceteris paribus survival profile.

Results: Combining the results of the comparison of the three criteria, the 
performance of the rfsrc model was shown to be superior to that of the coxph 
model. LASSO regression was used to screen 11 predictor variables, such as 
diastolic blood pressure (DBP), Killip class, hyperlipidaemia, global registry 
of acute coronary events (GRACE) Score, creatine kinase isoenzyme-MB, 
myoglobin, white blood cells, monocytes, thrombin time, globulin (GLB), and 
conjugated bilirubin. The global explanation of the whole cohort revealed that 
DBP, GRACE Score, myoglobin, and monocytes had a significant effect on the 
OS of STEMI patients in the coxph model and that DBP, GRACE Score, and GLB 
were the variables that significantly affected the OS of STEMI patients in the rfsrc 
model. Incorporating a single patient into the model can yield a local explanation 
of each patient, thus guiding clinicians in developing precision treatments.

Conclusion: The rfsrc model outperformed the coxph model in terms 
of predictive performance. Clinicians can use these predictive models to 
understand the major risk factors for each STEMI patient and thus develop more 
individualised and precise treatment strategies.
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1 Introduction

ST-segment elevation myocardial infarction (STEMI), which is a 
deadly cardiovascular emergency, is often caused by thrombotic 
blockage of a coronary artery and necessitates prompt diagnosis and 
reperfusion treatment. STEMI survival rates have increased over the 
past few decades as a result of initial percutaneous coronary 
intervention (PCI) programs, contemporary antithrombotic 
treatment, and secondary preventive strategies (1, 2). Nonetheless, 
coronary artery disease continues to be the leading cause of death 
worldwide and significantly affects public health, mostly early 
mortality (1). Therefore, thinking about how to increase the survival 
rate and improve the prognosis of STEMI patients worthwhile.

The use of survival prediction models can help address this issue. 
Most survival prediction models are constructed primarily on the 
basis of traditional statistical methods. These models are further 
limited by the small number of variables for which they can account 
due to concerns about overfitting and multicollinearity, and these 
models require the statistical assumption of independent, linear 
connections between dependent and independent variables (3). 
Without being constrained by predetermined assumptions about data 
behaviour and variable preselection, machine learning (ML) 
algorithms build models by identifying or discovering underlying 
patterns in the data. Thus, ML is a potential solution for overcoming 
these limitations (4).

Predictive variables need to be  screened before models are 
constructed. Traditional statistical techniques, such as univariate and 
multivariate regression analyses, are most often used in variable 
selection. Contradictory hazard ratios between univariate and 
multivariate Cox regressions are occasionally produced by these 
techniques. The multicollinearity between variables causes this 
contradiction, which skews the results (5). A regression-based 
approach that allows for the inclusion of a high number of variables 
in the model, the least absolute shrinkage and selection operator 
(LASSO), overcomes overfitting by creating a penalty function (6). 
Additionally, LASSO addresses multicollinearity problems, producing 
more pertinent predictive variables and compensating for the 
drawbacks of conventional techniques (7). In this study, LASSO 
regression was used to screen variables for the survival 
prediction models.

After the variables are screened, the method that will be used to 
build the predictive models is selected. In medicine, ML techniques 
are becoming recognised as useful instruments. These techniques 
enable the proper analysis of large datasets and promote the use of 
individualised and accurate medical approaches. However, traditional 
ML models lack interpretability, which makes it difficult for medical 
professionals to trust the models’ outcomes in diagnostic and decision-
making (8). In compliance with the General Data Protection 
Regulation (GDPR), the European Union has established basic 
requirements for the use of ML systems in public health. One of these 
requirements is that the model must be explainable. In the field of 
artificial intelligence, explainable machine learning (XAI) is emerging 
as a potential study area. The goal of this area of research is to look for 

ways to analyse or supplement ML black box models so that the 
internal workings and results of algorithms may be  made more 
understandable and visible (9). Recently, we  developed an XAI 
package—the survex package—that improves the interpretability and 
transparency of predictive models and can be better applied in clinical 
work. To the best of our knowledge, the survex package has been 
applied in clear cell renal cell carcinoma, uveal melanoma, bone 
marrow transplantation, heart failure, etc., but it has not yet been 
applied in the field of STEMI (10–13). Therefore, two survival models, 
the Cox proportional hazards regression (coxph) model and the 
random survival forest (rfsrc) model, were constructed in this study 
using the variables screened by LASSO regression. These two survival 
models will be interpreted and compared with the survex package to 
help clinicians estimate the overall survival (OS) of STEMI patients as 
well as the determinants of OS.

2 Materials and methods

2.1 Study population

This was a retrospective study. We included 1,341 STEMI patients 
who underwent emergency coronary angiography and PCI at the First 
Affiliated Hospital of Kunming Medical University between June 2018 
and January 2023. After admission, all patients received standardised 
treatment according to the recommended guidelines for STEMI. The 
inclusion criteria for this study were as follows: (i) the diagnosis of 
STEMI needed to meet the criteria of the 2023 ESC Guidelines for 
Management of Acute Coronary Syndromes (14); (ii) emergency PCI 
performed within 24 h of symptom onset. The exclusion criteria for 
this study were as follows: (i) loss to follow-up; (ii) missing essential 
data; and (iii) other serious comorbidities (e.g., severe hepatic and 
renal insufficiency, haematological disorders, malignant tumours, 
autoimmune diseases, and acute infections). In the end, the data from 
893 STEMI patients who underwent emergency PCI were analysed in 
this study.

2.2 Data collection

A total of 144 variables, including data on demographic 
characteristics, history of other diseases, current treatment regimen, 
laboratory indicators, coronary angiography, electrocardiography, and 
echocardiography results, were collected from STEMI patients at the 
time of admission. After collating the data and removing variables 
with missing values, 56 variables remained. We made a baseline table 
of some of these 56 variables to help understand the general 
characteristics of the study population. These variables included age, 
sex, body mass index (BMI), blood pressure (BP), Killip class, medical 
history, red blood cells (RBCs), white blood cells (WBCs), neutrophils, 
lymphocytes, monocytes, haemoglobin, platelets, creatine kinase 
isoenzyme-MB (CKMB), myoglobin, troponin, and prothrombin time 
(PT); thrombin time (TT), activated partial thromboplastin time 
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(APTT), alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), albumin, globulin (GLB), conjugated bilirubin (CB), 
unconjugated bilirubin (UCB), uric acid, total cholesterol (TC), 
triglycerides (TG), high-density lipoprotein-C (HDL-C), low-density 
lipoprotein-C (LDL-C), estimated glomerular filtration rate (eGFR), 
number of stents implanted, Gensini Score, and global registry of 
acute coronary events (GRACE) Score.

All the blood samples were collected during an 8-to-12-h fasting 
period and were later dispatched to the laboratory of the First 
Affiliated Hospital of Kunming Medical University for additional 
analysis and testing. The investigators obtained survival data for this 
study by telephone follow-up with patients or their families, 
considering the patients who did not answer the phone as being lost 
to follow-up. Verbal informed consent was obtained from each patient 
by telephone, and all data were fully anonymised.

2.3 Outcome

OS was the study’s main outcome, and it was defined as the 
amount of time that passed between a STEMI patient’s discharge and 
their last follow-up visit or death from any cause.

2.4 Statistical methods

Comparison of the baseline characteristics of patients with 
STEMI: Results are displayed as means ± standard deviations for 
continuous variables with a normal distribution, and the t-test was 
used for intergroup comparisons. Continuous variables that did not 
follow a normal distribution are displayed as medians (P25, P75), and 
the Mann–Whitney U test was used to compare groups. Categorical 
variables are expressed as frequencies and percentages, and their 
intergroup comparisons were made using the Chi-square test.

Screening of variables for inclusion in the models: To choose 
variables associated with the OS of STEMI patients, contemporary 
statistical shrinkage techniques—especially LASSO regression—were 
used in the creation of the prediction models. LASSO regression 
analysis can be used for shrinkage and variable selection in linear 
regression models. By constraining the model parameters so that the 
regression coefficients for some variables decrease towards zero, 
LASSO regression analysis minimises the prediction error for a 
quantitative response variable, yielding a subset of predictors. 
Following the shrinkage process, variables with a regression coefficient 
of zero are removed from the model, whereas variables with a 
regression coefficient of nonzero have the strongest correlation with 
the response variable. The R software’s LASSO regression analysis 
selects the optimal lambda value after ten iterations of K cross-
validation for the centralisation and normalisation of the included 
variables on the basis of the type measure of −2 log-likelihood and 
binomial family. “Lambda.lse” can provide a model with the fewest 
independent variables and high performance (15). Ultimately, 
we identified the most predictive variables on the basis of one standard 
error criterion.

Comparison and interpretation of the models: We  constructed 
coxph and rfsrc models using variables screened by LASSO regression. 
First, the C-index, C/D AUC, and Brier score were used to evaluate the 
performance of the coxph and rfsrc models. Significance of performance 

differences was assessed via hypothesis testing: bootstrap test for 
C-index and C/D AUC (α = 0.05, 1,000 resamples) and Wilcoxon signed 
rank test for Brier score. Second, we utilised the partial dependence 
survival profile and the time-dependent variable importance to provide 
a global explanation for the whole cohort. Finally, a local explanation for 
a single patient was obtained with the SurvSHAP(t) and SurvLIME 
plots, together with the ceteris paribus survival profile. The X-axis in 
each graph shows the interval between discharge and the last follow-up 
visit or any cause of death. All event times are presented in red, whereas 
census times are presented in grey. IBM SPSS and Statistics version 26.0, 
R 4.3.2, was used to perform the statistical analysis in this study. A p 
value < 0.05 was considered to indicate a statistically significant 
difference, and all the statistical tests were two-tailed.

3 Results

3.1 Patient characteristics

After patients whose data were incomplete or who were lost to 
follow-up were excluded, this study ultimately included 893 patients 
with acute STEMI. Of these, 82 patients died, with a median OS of 
8.5 months, and 811 patients survived, with a median OS of 37 months. 
Among the total number of patients, 755 (84.5%) were male, and 138 
(16.5%) were female. The mean age was 60.57 ± 12.02 years. We divided 
the patients into a deceased group and a survivor group. Compared with 
the survivor group, the deceased group had lower RBC, haemoglobin, 
and albumin levels and higher monocyte, myoglobin, uric acid, and 
Gensini and GRACE Scores (p < 0.05). Additional demographic and 
clinical characteristics of the patients are shown in Table 1.

3.2 Predictive indicators selected from 
LASSO regression

In this study, we applied LASSO regression to screen the variables. 
Figure 1A, shows the variation characteristics of the coefficients of 
these variables in detail. Figure 1B displays the results of iterative 
analyses using the 10-fold cross-validation method, which identified 
26 variables when the model error was minimal and 11 variables when 
the model error was one standard error. To make clinical application 
easier, the variables screened when log(λ) was one standard error, 
namely, diastolic blood pressure (DBP), Killip class, hyperlipidaemia, 
GRACE Score, CKMB, myoglobin, WBC, monocytes, TT, GLB, and 
CB, were ultimately selected.

3.3 Model performance for the whole 
cohort

We used 11 variables selected by LASSO regression (DBP, 
Killip class, hyperlipidaemia, GRACE Score, CKMB, myoglobin, 
WBC, monocytes, TT, GLB, and CB) to construct two survival 
models (coxph and rfsrc) to predict the survival and prognosis of 
STEMI patients. Next, we  utilised three methods, namely, the 
C-index, Brier score, and C/D AUC, to estimate the performance 
of the two models. The lower the Brier score was, the better the 
model performance was, and the higher the C/D AUC and 
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TABLE 1 Baseline characteristics.

Variables Total (n = 893) Deceased group
(n = 82)

Survivor group
(n = 811)

p

Basic characteristics

OS (month) 35.00 (22.00, 51.00) 8.50 (0.00, 27.00) 37.00 (24.00, 52.00) <0.001

Age (year) 60.57 ± 12.02 69.59 ± 11.21 59.66 ± 11.73 <0.001

Male 755 (84.5%) 58 (70.7%) 697 (85.9%) <0.001

BMI (kg/m2) 24.32 ± 3.17 24.01 ± 2.88 24.35 ± 3.20 0.35

Systolic BP (mmHg) 126.47 ± 24.02 126.88 ± 23.16 126.43 ± 24.11 0.872

Diastolic BP (mmHg) 81.13 ± 16.28 78.87 ± 16.71 81.36 ± 16.23 0.186

Killip class <0.001

I 589 (66.0%) 32 (39.0%) 557 (68.7%)

II 215 (24.1%) 28 (34.1%) 187 (23.1%)

III 43 (4.8%) 9 (11.0%) 34 (4.2%)

IV 46 (5.2%) 13 (15.9%) 33 (4.1%)

Medical history

Heart failure 251 (28.1%) 45 (54.9%) 206 (25.4%) <0.001

Hypertension 489 (54.8%) 56 (68.3%) 433 (53.4%) 0.010

Diabetes 278 (31.1%) 29 (35.4%) 249 (30.7%) 0.383

Hyperlipidemia 304 (34.0%) 13 (15.9%) 291 (35.9%) <0.001

Stroke 43 (4.8%) 11 (13.4%) 32 (3.9%) <0.001

Smoking 520 (58.2%) 36 (43.9%) 484 (59.7%) 0.006

Laboratory indicators

RBC (10^12/L) 4.91 ± 0.70 4.69 ± 0.77 4.93 ± 0.69 0.002

WBC (10^9/L) 10.74 (8.27, 12.98) 10.81 (8.90, 14.32) 10.72 (8.23, 12.90) 0.225

Neutrophils (10^9/L) 8.26 (5.85, 10.57) 8.42 (6.04, 11.99) 8.26 (5.82, 10.42) 0.307

Lymphocytes (10^9/L) 1.57 (1.12, 2.04) 1.52 (1.08, 1.94) 1.58 (1.15, 2.05) 0.485

Monocytes (10^9/L) 0.56 (0.41, 0.80) 0.73 (0.48, 0.95) 0.56 (0.40, 0.79) <0.001

Haemoglobin (g/L) 153.03 ± 23.99 144.56 ± 26.03 153.89 ± 23.62 0.001

Platelet (10^9/L) 217.00

(175.00, 267.00)

221.50

(180.75, 270.25)

217.00

(175.00, 267.00)

0.698

CKMB (ng/mL) 20.42 (3.56, 75.99) 15.79 (6.24, 69.51) 21.43 (3.36, 76.67) 0.716

Myoglobin (ng/mL) 154.00

(56.65, 360.45)

221.50

(108.62, 397.75)

140.00

(53.07, 355.00)

0.005

Troponin (ng/mL) 2.36 (0.12, 15.14) 3.80 (0.30, 16.55) 2.23 (0.10, 15.10) 0.323

PT (second) 13.78 ± 2.63 14.56 ± 3.81 13.70 ± 2.47 0.005

TT (second) 18.50

(17.30, 20.30)

18.45 (17.00, 19.82) 18.50

(17.30, 20.50)

0.355

APTT (second) 38.90

(35.40, 44.50)

40.85

(36.78, 45.38)

38.60

(35.30, 44.40)

0.048

ALT (IU/L) 42.10

(29.00, 63.00)

39.55

(27.75, 68.00)

43.00

(30.00, 62.40)

0.669

AST (IU/L) 70.00

(31.00, 169.60)

66.50

(36.75, 195.75)

70.00

(31.00, 167.70)

0.570

Albumin (g/L) 39.57 ± 4.96 37.87 ± 5.61 39.75 ± 4.87 0.001

GLB (g/L) 32.34 ± 5.70 33.52 ± 5.68 32.22 ± 5.70 0.049

CB (umol/L) 3.50 (2.40, 4.95) 3.75 (2.90, 5.38) 3.40 (2.40, 4.90) 0.053

UCB (umol/L) 8.00 (5.70, 12.10) 8.55 (6.15, 13.40) 8.00 (5.60, 11.90) 0.179

Uric acid (μmol/L) 387.60

(317.80, 471.60)

450.45

(345.58, 527.30)

382.00

(314.60, 462.20)

<0.001

TC (mmol/L) 4.50 ± 1.17 4.22 ± 1.07 4.52 ± 1.18 0.011

TG (mmol/L) 1.50 (1.06, 2.06) 1.36 (0.99, 1.84) 1.51 (1.07, 2.12) 0.034

HDL-C (mmol/L) 1.03 (0.88, 1.22) 1.02 (0.88, 1.19) 1.03 (0.88, 1.22) 0.652

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 893) Deceased group
(n = 82)

Survivor group
(n = 811)

p

LDL-C (mmol/L) 2.80 (2.17, 3.51) 2.48 (1.93, 3.29) 2.81 (2.21, 3.54) 0.026

eGFR (ml/min) 71.88

(55.20, 89.91)

50.37

(36.01, 72.10)

73.97

(57.28, 91.83)

<0.001

Coronary angiography data

Number of stents Implanted 1.00 (1.00, 2.00) 1.00 (1.00, 2.00) 1.00 (1.00, 2.00) 0.292

Gensini Score 66.00

(42.00, 89.00)

81.00

(45.75, 104.00)

64.00

(42.00, 88.00)

0.011

GRACE Score 148.00

(129.00, 170.00)

182.00

(150.00, 207.00)

146.00

(127.00, 167.00)

<0.001

(1) If the data for continuous variables were normally distributed, independent samples t tests were employed; if not, Mann–Whitney U tests were utilised. Chi-square tests were used to 
analyze the differences between groups in categorical variables. p values were obtained by comparing the survivor group and the deceased group; p values less than 0.05 were considered 
statistically significant. (2) OS, overall survival; BMI, body mass index; BP, blood pressure; RBC, red blood cell count; WBC, white blood cell count; CKMB, creatine kinase isoenzyme-MB; PT, 
prothrombin timel; TT, thrombin time; APTT, activated partial thromboplastin time; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GLB, globulin; CB, conjugated bilirubin; 
UCB, unconjugated bilirubin; TC, total cholesterol; TG, triglycerides; HDL-C, high density lipoprotein-C; LDL-C, low density lipoprotein-C; eGFR, estimated glomerular filtration rate.

FIGURE 1

Screening of variables based on LASSO regression. (A) The variation characteristics of the coefficient of variables; (B) the selection process of the 
optimum value of the parameter λ in the LASSO regression model by cross-validation method.
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C-index values were, the better the model performance was. The 
C-index was 0.771, the C/D AUC was 0.613, and the Brier score 
was 0.063 for coxph. The C-index was 0.941, the C/D AUC was 
0.698, and the Brier score was 0.047 for rfsrc. We assessed the 
significance of the difference in performance between the two 
models (using 1,000 repetitions of the paired Bootstrap test for the 
C index and the C/D AUC and the Wilcoxon signed rank test for 
the Brier scores), and the results, as shown in Table 2, indicate that 
the rfsrc demonstrated statistically superior performance over 
coxph (<0.05). Combining the above findings, we can conclude 
that the model performance of rfsrc is better than the coxph for 
every measure (Figure  2A) and the duration of follow-up 
(Figure 2B).

3.4 Global explanation: time-dependent 
feature importance for the whole cohort

Two techniques were used to evaluate the significance of the 
time-dependent variables for the entire cohort: Brier score loss 
after permutation and C/D AUC loss after permutation. The loss 
function’s change after each covariate’s replacement is shown on 
the y-axis. Variable significance is subject to variation over time; 
higher values of the loss function suggest that the variable has a 
greater impact on OS. The results of the Brier score loss after 
permutation (Figure 3A) and the C/D AUC loss after permutation 
(Figure 3B) revealed that, in both the coxph and the rfsrc models, 
the GRACE Score had the greatest effect on the OS of patients 
with STEMI.

3.5 Global explanation: partial 
dependence survival profile for the whole 
cohort

The partial dependence survival profiles (PDPs) show how 
changes in one variable while all other factors remain the same 
affect the whole cohort’s OS. The larger the difference in a 
variable’s value was, the greater the impact that the variable had 
on OS, and the wider the region of the curve was. Figures 4, 5 
show that DBP, GRACE Score, myoglobin, and monocytes had a 
significant effect on the OS of STEMI patients in the coxph model 
while DBP, GRACE Score, and GLB were the variables with a 
significant impact on the OS of STEMI patients in the rfsrc model. 
Among these factors, the GRACE Score has the widest curve area 
in both the coxph model and the rfsrc model, suggesting that it is 
the most important factor influencing the OS of STEMI patients.

3.6 Local explanation: SurvSHAP(t) plot for 
a single patient

SurvSHAP(t) plots may be  applied to analyse the relative 
contributions of each risk factor to OS across time for a particular 
patient. Every factor’s SurvSHAP(t) value is shown on the y-axis: a 
positive number suggests that the factor increased the patient’s OS, 
whereas a negative number suggests that the factor decreased the 
OS. The inclusion of STEMI Patient #204 (DBP 51 mmHg, Killip class 
I, GRACE Score 181, no hyperlipidaemia, CKMB 7.40 ng/mL, 
myoglobin 51.76 ng/mL, WBC 6.38 × 10^9/L, monocytes 
0.40 × 10^9/L, TT 15.60 s, GLB 32.3 g/L, and CB 3.60 μmol/L) in the 
survival model enabled it to transition from predicting outcomes for 
the whole cohort to specific individuals. According to Patient #204’s 
SurvSHAP(t) plot, the absence of hyperlipidaemia increased the 
patient’s chances of survival in the coxph model, whereas myoglobin 
increased the patient’s chances of survival in the rfsrc model (Figure 6).

3.7 Local explanation: SurvLIME plot for a 
single patient

In addition to the SurvSHAP(t) plot, the SurvLIME plot can also 
be used to identify the predictors that have the greatest effects on the 
OS of a particular patient. Each variable’s influence on a selected 
patient’s survival is shown on the SurvLIME plot’s left. A larger area 
indicates a greater impact on the patient’s OS and a higher SurvLIME 
local significance value indicates a worse chance of survival for the 
patient. The black-box model’s predictions and those of the coxph or 
rfsrc models are compared in the right section: the model’s outcomes 
are more precisely described when the two functions are closer. 
Following Patient #204 into the rfsrc and coxph models, two SurvLIME 
plots were produced (Figures  7A,B). Drawing conclusions from 
Figure 7A, we may infer that in the coxph model, the GRACE Score 
lowers the patient’s odds of survival, whereas GLB increases them. In 
the rfsrc model, Figure 7B shows that while DBP and GLB increase the 
patient’s odds of survival, the Killip class and GRACE Score decrease 
those odds. The estimate of patient survival may be  considered 
relatively accurate because these two functions are somewhat close.

3.8 Local explanation: ceteris paribus 
survival profile for a single patient

The ceteris paribus survival profile (CPP) is a PDP equivalent that 
can only be used on a single subject at a time. Similar to PDP, patients’ 
OS decreased as the CPP function’s y-axis values decreased, and the 
variables that had the greatest interlevel variability also had the 
greatest effects on OS. We again analysed Patient #204 with the coxph 
and rfsrc models to obtain two CPPs (Figures 8, 9), and the red line 
indicates the value corresponding to this patient in each variable.

4 Discussion

Acute myocardial infarction is a major cause of morbidity and 
mortality worldwide (16, 17). The mortality rate after STEMI has 
decreased as a result of developments in early reperfusion therapy and 

TABLE 2 Comparison of performance metrics of coxph and rfsrc models.

Metric coxph vs rfsrc 
Difference (95% CI)

p value

C-index −0.170 (−0.218, −0.129) <0.001*

C/D AUC −0.195 (−0.198, −0.193) <0.05*

Brier score 0.0082 (0.0044, 0.0124) 0.009#

*p values were derived from comparisons using the paired bootstrap test (1,000 iterations).
#p values were derived from comparisons using the Wilcoxon signed rank test.
CI, confidence interval.
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adjunctive medication. Nevertheless, low- and middle-income 
countries have not seen comparable advances (18). Therefore, it is 
necessary to construct models using XAI techniques to predict the 
prognosis of STEMI patients. This helps clinicians determine the 
primary risk factors contributing to mortality, thus helping to identify 
high-risk groups that require enhanced treatment regimens and close 
follow-up.

In the present study, we  screened the best predictor variables 
(DBP, Killip class, hyperlipidaemia, GRACE Score, CKMB, myoglobin, 
WBC, monocytes, TT, GLB, and CB) using LASSO regression. These 
variables were then used to construct two models, namely, the coxph 
and rfsrc models, to predict the OS of patients with STEMI. Finally, 
we utilised the survex package to compare the two survival prediction 
models and interpret the predicted results, which can help clinicians 

FIGURE 2

Model performance for the whole cohort. Explainable machine learning (XAI) data are shown as bar plots (A) and a time-dependent estimation (B).
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FIGURE 3

Global explanation: time-dependent feature importance and for the whole cohort, Brier score loss after permutation (A) and C/D AUC loss after 
permutation (B).
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FIGURE 4

Global explanation: partial dependence survival profile for the whole cohort; coxph model. CB, conjugated bilirubin; CKMB, creatine kinase 
isoenzyme-MB; TT, thrombin time; WBC, white blood cell count; GLB, globulin; DBP, diastolic blood pressure.

FIGURE 5

Global explanation: partial dependence survival profile for the whole cohort; rfsrc model. CB, conjugated bilirubin; CKMB, creatine kinase isoenzyme-
MB; TT, thrombin time; WBC, white blood cell count; GLB, globulin; DBP, diastolic blood pressure.
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implement clinical decisions more accurately. The use of the survex 
package is divided into the following three sections.

In the first part, three criteria, namely, the C-index, C/D AUC and 
Brier score, were utilised to assess the performance of the coxph and 
rfsrc models. The results of this study show that the rfsrc model has 
higher C-index and C/D AUC values and lower Brier scores than the 
coxph model, and the difference in the performance of the two models 
is statistically significant, indicating that the rfsrc model performs 
better and is more predictive than the coxph model.

In the second part, a variety of global explanations of the coxph 
and rfsrc models were conducted to investigate the predictive power 
of the models for the whole patient population. We  utilised two 
different loss functions (the Brier score and the 1-CD/AUC) to assess 
the significance of each variable in the models, which involves a 
process of change over time. According to the Brier score loss and the 
C/D AUC loss after permutation, the GRACE Score had the greatest 
impact on the OS of STEMI patients in the both coxph and rfsrc 
models. Furthermore, the PDPs showed that DBP, GRACE Score, 
myoglobin, and monocytes had a significant effect on the OS of 
STEMI patients in the coxph model, while DBP, GRACE Score, and 
GLB were the variables with a significant effect on the OS of STEMI 
patients in the rfsrc model. Among these variable, the GRACE Score 
had the widest area of the curve in both models, reconfirming that the 
GRACE Score has the most important influence on the OS of STEMI 
patients. This finding reminds us that the GRACE Score is the first 
thing that should be considered when assessing the OS of STEMI 
patients. The GRACE Score is calculated from eight variables, 
including age, cardiac arrest on admission, Killip class, ST-segment 
deviation, creatinine level, elevated cardiac enzymes, heart rate and 
systolic blood pressure. Several studies have shown that the GRACE 
Score is the best predictor of in-hospital death and 6-month 

postdischarge prognosis in patients with acute coronary syndrome 
(19, 20).

Consistent with Hung J et al.’s (21) multi-center validation, the 
GRACE score remained the strongest univariate predictor of OS in 
our LASSO-selected feature set. This reaffirms its irreplaceable role in 
STEMI risk stratification. Unlike previous studies (22, 23), while 
reaffirming the importance of the GRACE score, our LASSO 
regression identifies an additional set of variables that, in combination 
with the GRACE score, provide the best set of predictions for our 
model. In this study, these variables were applied to the XAI models 
to visualise risk factors, which not only helps clinicians to 
comprehensively assess patients from various aspects to identify early 
high-risk patients but also solves the problem of delayed risk 
assessment and the “actionability gap” pointed out by the 2023 ESC 
guideline (14), and achieves precise interventions targeting patient-
specific risk factors.

In the third part, we use several local explanation techniques to 
better understand how the model predicts a particular patient’s 
circumstances. The SurvSHAP(t) function is used to analyse the effect 
of each risk factor on OS for a specific patient at different time points. 
The SurvLIME function is able to reveal the significance of each risk 
factor in the OS of selected patients and the positive or negative 
impact of changes in these factors over time on the predicted result. 
Similar to the PDP for the entire cohort, the CPP makes it possible to 
visually quantify the contribution of each risk factor to OS for each 
selected patient.

Through the above series of operations, we  can accurately 
determine the main factors that affect the OS of STEMI patients and 
the extent to which these factors affect OS. This approach can even 
identify important factors that affect the OS of individual patients, for 
whom clinicians can develop individualised treatment plans, thus 

FIGURE 6

Local explanation: SurvSHAP(t) plot for a single patient. DBP, diastolic blood pressure; TT, thrombin time; CB, conjugated bilirubin; CKMB, creatine 
kinase isoenzyme-MB; GLB, globulin.
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FIGURE 7

Local explanation: SurvLIME plot for a single patient; coxph model (A) and rfsrc model (B). GLB, globulin; WBC, white blood cell count; DBP, diastolic 
blood pressure; CB, conjugated bilirubin.

https://doi.org/10.3389/fmed.2025.1594273
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Shi et al. 10.3389/fmed.2025.1594273

Frontiers in Medicine 12 frontiersin.org

FIGURE 8

Local explanation: ceteris paribus survival profile for a single patient; coxph model. DBP, diastolic blood pressure; CKMB, creatine kinase isoenzyme-
MB; WBC, white blood cell count; TT, thrombin time; GLB, globulin; CB, conjugated bilirubin.

FIGURE 9

Local explanation: ceteris paribus survival profile for a single patient; rfsrc model. DBP, diastolic blood pressure; CKMB, creatine kinase isoenzyme-MB; 
WBC, white blood cell count; TT, thrombin time; GLB, globulin; CB, conjugated bilirubin.
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enabling precision medicine to help improve patient prognosis 
and survival.

However, there are several limitations to this study. First, this 
study is a retrospective observational study, which is inevitably 
subject to a certain degree of bias. In the future, we can perform a 
prospective study to validate the two prediction models. Second, this 
was a single-centre study. Although the ML model showed 
outstanding predictive ability, there is a need for future validation 
using multicentre datasets to further refine the predictive models. 
Third, critical pre-hospital time intervals (pain-to-first-medical-
contact time and pain-to-PCI time) were not available in our dataset, 
preventing assessment of their impact on outcomes. Finally, our 
study did not capture STEMI network-level variables (e.g., direct 
admission vs. transfer status, hub-spoke designation), limiting 
analysis of system-level efficiencies. Future prospective studies 
should prioritise collecting these metrics to validate our model across 
care pathways.

5 Conclusion

In this study, we used LASSO regression to screen 11 predictor 
variables to construct the models. By comparison, the rfsrc model 
was comprehensively superior to the coxph model. We  then 
performed global and local explainability analyses of the 
predictive models using the survex package. As shown by the 
analysis, our models can provide valuable predictive information 
not only for the entire STEMI patient population but also for a 
single specific STEMI patient, thus providing important guidance 
for clinicians in developing individualised and precise 
treatment plans.
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Glossary

STEMI - Acute ST-segment elevation myocardial infarction

OS - Overall survival

PCI - Percutaneous coronary intervention

LASSO - Least absolute shrinkage and selection operator

coxph - Cox proportional hazards regression

rfsrc - Random survival forest

DBP - Diastolic blood pressure

GRACE - Global registry of acute coronary events

GLB - Globulin

ML - Machine learning

GDPR - General Data Protection Regulation

XAI - Explainable machine learning

BMI - Body mass index

BP - Blood pressure

RBCs - Red blood cells

WBCs - White blood cells

CKMB - Ccreatine kinase isoenzyme-MB

PT - Prothrombin time

TT - Thrombin time

APTT - Activated partial thromboplastin time

ALT - Alanine aminotransferase

AST - Aspartate aminotransferase

CB - Conjugated bilirubin

UCB - Unconjugated bilirubin

TC - Total cholesterol

TG - Triglycerides

HDL-C - High-density lipoprotein-C

LDL-C - Low-density lipoprotein-C

eGFR - Estimated glomerular filtration rate

PDP - Partial dependence survival profile

CPP - Ceteris paribus survival profile
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