
Frontiers in Medicine 01 frontiersin.org

Artificial intelligence-based 
model for diagnosing 
Helicobacter pylori in whole-slide 
images
Kehan Teng 1†, Lihua Ren 2†, Xiaoyu Yan 3†, Yawei Duan 1, 
Zhe Chen 1, Hansheng Li 3, Lihua Zhang 1* and Lei Cui 3*
1 Department of Pathology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 
Jiangsu, China, 2 Department of Gastroenterology, Zhongda Hospital, Southeast University School of 
Medicine, Nanjing, Jiangsu, China, 3 School of Information Science and Technology, Northwest 
University, Xi’an, China

Introduction: Helicobacter pylori (H. pylori) infection is considered to be a 
primary causative factor for gastric cancer and a common cause of chronic 
gastritis worldwide. Identifying H. pylori infection through hematoxylin and 
eosin (H&E) staining is demanding and tedious for pathologists. We aimed to 
use artificial intelligence (AI) models to improve the accuracy and efficiency of 
H. pylori diagnosis and to reduce the workload of pathologists.

Methods: Here, we developed three multi-instance learning (MIL) models: AB-
MIL, DS-MIL, and Trans-MIL, to automatically detect H. pylori infection. A total 
of 1,020 digitized histological whole-slide images (WSI) from 817 patients were 
used for training, validating and testing sets at a ratio of 3:1:1. Additionally, 100 
cases (218 WSIs) were randomly selected from the test set for pathologists to 
identify H. pylori under the microscope. The accuracy, specificity, sensitivity, 
false negative rate, false positive rate, and other metrics were calculated 
separately for the MIL models and the pathologists.

Results: All three models demonstrated good diagnostic performance in 
predicting H. pylori infection, with the DS-MIL classification model showing 
the best diagnostic performance, achieving an accuracy of 89.7% and an area 
under the curve (AUC) of 0.949, which is higher than the accuracy rate of 
senior pathologists at 81.7%. Furthermore, the model demonstrates superior 
performance in terms of sensitivity and specificity. The reliability of DS-MIL is 
confirmed through the Visual model.

Discussion: Our research presents an AI - based predictive model for H. 
pylori infection, which significantly enhances clinical efficiency and diagnostic 
accuracy. Currently, we are conducting multi-center validation to enhance the 
model’s generalization capability.
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Introduction

Helicobacter pylori (H. pylori), a Gram-negative bacterium, is a well-established colonizer 
of the human gastric mucosa and a significant pathogen implicated in the etiology of various 
diseases. From 2011 to 2022, the global prevalence of Helicobacter pylori (Hp) was 43.1% (1). 
It is recognized as a major pathogenic factor in chronic active gastritis, peptic ulcers, gastric 
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mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric 
cancer. Gastric cancer associated with Hp infection accounted for 
63.4% of all gastric cancers (2). Furthermore, it is associated with 
extra-gastrointestinal diseases such as cardiovascular, neurological, 
and immune disorders (3–5). Despite the substantial health risks 
posed by H. pylori, the clinical manifestations of infection are often 
subtle, with many infected individuals remaining asymptomatic or 
exhibiting non-specific symptoms.

Gastric mucosal biopsy is considered the gold standard for 
H. pylori detection. However, the microscale of the bacterium and the 
interference from gastric pit debris make its identification in 
hematoxylin and eosin (H&E)-stained sections challenging and labor-
intensive for pathologists, leading to unsatisfactory sensitivity and 
specificity of diagnosis (6). In particular, post-treatment with proton 
pump inhibitors (PPIs) or other medications, H. pylori may undergo a 
spherical transformation, complicating its identification and increasing 
the risk of false-negative results (6, 7). Immunohistochemical (IHC) 
staining offers specificity, sensitivity, and accuracy rates exceeding 98%, 
unaffected by bacterial activity and spherical transformation (7), but it 
is more costly. Therefore, there is a pressing necessity for more precise, 
efficient, and cost-effective auxiliary techniques.

The available evidence suggests that H. pylori exerts a range of 
effects on gastric epithelial cells, leading to the impairment of epithelial 
barrier function, inflammation promotion, and oncogenic 
transformation (8, 9). Consequently, the presence of H. pylori infection 
can be inferred from certain morphological characteristics, including 
the presence of superficial (upper 1/3) band-like lymphoplasmacytic 
infiltration, intraepithelial acute inflammatory cell infiltration, varying 
degrees of damage to the gastric mucosal epithelium, and intestinal 
metaplasia (10). Recently, the application of artificial intelligence (AI) 
technology in the field of pathology diagnosis has garnered significant 
attention, encompassing tasks such as the segmentation of pathological 
areas, the localization and quantification of cells, and the prediction of 
immune phenotypes or molecular classifications (11–13). To the best 
of our knowledge, there are less studies applying AI for the detection 
of H. pylori infection on H&E-stained slides.

We hypothesized that an AI-based diagnostic model could 
be developed to automate the detection of H. pylori, leveraging state-
of-the-art algorithms, advanced computing power, and big data. The 
objective of our study is to construct an AI model that analyzes 
morphological changes in H. pylori-positive H&E-stained sections, 
aiming to the presence of H. pylori infection. This approach aims to 
enhance diagnostic sensitivity and specificity while reducing the 
workload of pathologists.

Methods

Samples and assays

The gastrointestinal mucosal biopsy cases diagnosed as chronic 
gastritis/chronic atrophic gastritis were retrospectively collected in the 
Pathology Department of Zhongda Hospital affiliated with Southeast 
University from September 2022 to September 2023. Cases with poor 
quality that did not meet the research requirements were excluded, 
such as those with tissue section folding, knife marks, poor staining, 
discoloration, or too few specimens in the section affecting observation. 
H. pylori immunohistochemical staining was performed using H. pylori 

immunohistochemical working solution (purchased from Lan’ou 
Medical Technology Co., Ltd.) on the Dako fully automatic 
immunohistochemical staining machine, and the immunohistochemical 
results were used as the gold standard for H. pylori infection diagnosis. 
The IHC staining outcomes were interpreted by two pathologists. 
When there was a disagreement between the two pathologists, a third 
pathologist’s expertise was enlisted to provide an adjudication, ensuring 
the reliability and accuracy of the diagnostic assessments. H. pylori 
immunohistochemical positivity was defined as the presence of 
H. pylori infection. High-quality whole-slide images (WSI) were 
acquired using the Hamamatsu (Japan) and BingLi (China) whole-slide 
scanners at a 20x magnification, and the images were preprocessed to 
meet the training requirements of the deep learning model. Our 
research design is illustrated in Figure 1.

This study has been reviewed and approved by the Ethics 
Committee of Zhongda Hospital affiliated with Southeast University 
(2024ZDSYLL330-Y01).

Algorithm

This study utilized the H. pylori whole-slide imaging dataset, 
comprising a total of 1,020 images. The dataset was divided into 
training, validation, and testing sets in an 3:1:1 ratio, with the division 
based on individual whole-slide images (WSIs). Initially, the whole-
slide images were segmented, with the background tissues filtered out 
using the Otsu method. These segmented images were then further 
divided into 256 × 256 pixel patches under 20× magnification. Figure 2 
demonstrates the contrast between the whole-slide images before and 
after tissue background filtration, showing that the Otsu method 
effectively removes a significant portion of the background tissues, 
allowing the model to focus more on the tissue regions. Subsequently, 
the information from all patch images was embedded into a single 
feature, creating the feature file for the entire dataset. Feature extraction 
was performed using a ResNet50 model pretrained on ImageNet. 
Following this, the model was trained using the feature file from the 
initial dataset split, and the model’s performance was evaluated on the 
validation set at each epoch. Training was halted when the loss showed 
minimal improvement or began to increase. Finally, the best-
performing model was used for testing. This study utilized three MIL 
methods, namely AB-MIL, DS-MIL, and Trans-MIL, for the 
classification of H. pylori positive and negative cases.

The core of using the AB-MIL (14) method for WSI classification 
lies in weighting each instance through the attention mechanism. This 
method multiplies the features of each instance by its corresponding 
attention score and aggregates the weighted features to obtain a 
representation of WSI, which is then classified by the classifier.

The DS-MIL (15) method employs a dual-stream architecture for 
WSI classification, which consists of two main streams. The first 
stream identifies key instances via max pooling. The second stream 
calculates the similarity of each instance to the key instances, generates 
attention weights, and aggregates the features. The final bag score is 
the average of the scores from both streams, which is used for the final 
WSI classification.

The Trans-MIL (16) method utilizes the self-attention mechanism 
of the Transformer to capture correlations between instances and 
encodes spatial information via the Pyramid Position Encoding 
Generator (PPEG) module for WSI classification.
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Evaluation metrics

The predictive evaluation metrics for the classification diagnostic 
model include Accuracy (ACC), Precision (PRE), Sensitivity (SEN), 
Specificity (SPE), False Negative Rate (FNR), False Positive Rate 
(FPR), and F1-score. These metrics are calculated from the true 
positives (TP), true negatives (TN), false positives (FP), and false 
negatives (FN) in the confusion matrix, with the following formulas. 
The receiver operating characteristic (ROC) curves are plotted for 
each model, and the area under the curve (AUC) is calculated.

 
+

=
+ + +
TP TNACC ;

TP TN FP FN

 
=

+
TPPRE ;

TP FP

 
=

+
TPSEN ;

TP FN

 
=

+
TNSPE ;

TN FP

 
=

+
FNFNR ;

TP FN

 
=

+
FPFPR ;

FP TN

 
× ×

− =
+

2 PRE SENF1 score
PRE SEN

FIGURE 1

The research design concept. (A) We scanned H&E-stained sections from patients with chronic gastritis/chronic atrophic gastritis to obtain WSIs. All 
cases underwent H. pylori immunohistochemical staining, with IHC results serving as the gold standard. Cases were randomly divided into training, 
validation, and test sets at an 3:1:1 ratio. Pathologists also assessed H. pylori infection based on HE sections. We compared the diagnostic performance 
between the model and pathologists by calculating their accuracy, specificity, sensitivity, false negative rate, and false positive rate. (B) The neural 
network was trained on the training set, fine-tuned and optimized based on its performance in the validation set, and its overall efficacy was evaluated 
in the test set.
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Manual diagnosis

A random selection of 100 cases (a total of 218 slides) from the 
test set was independently reviewed by a group of junior 
pathologists, a group of intermediate pathologists, and a group of 
senior pathologists (2–4 pathologists in each group), none of 
whom were aware of the immunohistochemistry results. The 
pathologists with fewer than 5 years of professional experience are 
categorized as Junior, those with 5 to 10 years of experience are 
classified as Intermediate, and those who have dedicated over 
10 years to the study of gastrointestinal pathology are designated 
as Senior. The ACC, SPE, SEN, FNA, and FPR of the diagnosis 
made by the junior, intermediate, and senior pathologists were 
calculated, respectively.

Statistical analysis

Statistical analysis was conducted using SPSS 27.0 software. The 
Shapiro–Wilk test was utilized to assess whether the metrics of each 
model adhere to a normal distribution. If the data conform to a 
normal distribution, an Analysis of Variance (ANOVA) test is applied; 
if the data do not conform to a normal distribution, the Kruskal–
Wallis test is employed to examine the differences between the models. 
Additionally, we used the chi-squared (χ2) test to assess the differences 
in diagnostic performance among pathologists of various levels, as 
well as between the DS-MIL model and pathologists. A p-value < 0.05 
was considered statistically significant.

Results

Case numbers and characteristics

In this study, we collected cases diagnosed with chronic gastritis/
atrophic gastritis from the Department of Pathology at Zhongda 
Hospital affiliated with Southeast University between September 2022 
and September 2023. A total of 817 cases, comprising 1,020 
histological images were enrolled, with 436 cases (530 images) 
identified as H. pylori-positive and 381 cases (490 images) as H. pylori-
negative. These cases were divided into training, validation, and 
testing sets in a ratio of 3:1:1. The evaluation metrics for the models 
included accuracy, sensitivity, specificity, and others.

Performance metrics of three models: 
AB-MIL, DS-MIL, and Trans-MIL

Here, we developed three multi-instance learning (MIL) models: 
AB-MIL, DS-MIL, and Trans-MIL to test the prediction of H. pylori 
infection. The AB-MIL (Attention-Based Multiple Instance Learning) 
is an attention-based multi-instance learning framework that assigns 
importance scores to instances within a bag. The DS-MIL (Dual-
Stream Multiple Instance Learning) is a dual-stream architecture for 
WSI classification that integrates self-supervised contrastive learning 
with a novel MIL aggregator. The Trans-MIL is a Transformer-based 
methodology tailored for correlated MIL in the context of 
WSI classification.

FIGURE 2

The algorithm is mainly divided into 5 steps: first, use the Otsu method to filter the background of the input Whole-slide image, highlighting the 
relevant tissue parts; then, slice the filtered image into small patches for further analysis at the local level; next, extract key features from these image 
patches for subsequent analysis and classification tasks; then, aggregate and combine the extracted features to form a comprehensive feature 
representation, containing information from all blocks; finally, we employed three MIL algorithms, which are AB-MIL, DS-MIL, and Trans-MIL, and 
compared the results to achieve the final predictions or classifications based on grouped instances.
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As shown in Table 1, the AB-MIL model demonstrated excellent 
performance metrics, with an accuracy of 88.7%, precision of 88.8%, 
sensitivity of 87.9%, and specificity of 89.5%. This model demonstrates 
a false negative rate of 12.1%, a false positive rate of 10.5%, along with 
an F1-score of 0.883, and an AUC of 0.920. This model outperforms 
the other two in terms of precision and may be more suitable for 
application scenarios requiring high certainty. The DS-MIL model has 
demonstrated exceptional diagnostic capabilities, with the highest 
accuracy of 89.7% and the highest AUC of 0.949 among the three 
models. It achieves a precision of 83.7%, sensitivity of 94.3%, and 
specificity of 86.3%. Additionally, the DS-MIL model exhibits a low 
false negative rate of 5.7% and a false positive rate of 13.7%, along with 
an F1-score of 0.888. These findings suggest that the DS-MIL model 
is not only accurate but also consistently reliable in diagnostic tasks. 
In contrast, the Trans-MIL model, showing the highest sensitivity of 
95.2% in comparison to DS-MIL and AB-MIL, achieves a precision of 
80.6%, specificity of 84.3%, and the lowest false negative rate of 4.8%. 
This is complemented by an F1-score of 0.873 and an AUC of 0.934, 
highlighting the Trans-MIL model’s effectiveness in accurately 
identifying H. pylori-positive cases, which is crucial for minimizing 
the rate of missed diagnoses. The comparative efficacy of the models 
is further illustrated by the ROC curves depicted in Figure 3.

By conducting the Shapiro–Wilk test, we  found that AB-MIL 
(p = 0.0036), DS-MIL (p = 0.0086), and Trans-MIL (p = 0.0142) 
exhibited statistically significant differences in their performance, 
deviating from a normal distribution. Consequently, we employed the 
Kruskal–Wallis test to compare the metric differences among the 
models. The results indicated no significant statistical differences in 
diagnostic performance among the three models (p = 0.9614).

The reliability of DS-MIL can be validated 
by visual model

Although there was no statistically significant difference in 
diagnostic performance among the three models, DS-MIL achieved 
the highest AUC and ACC, leading us to select this model for 
visualization analysis. To elucidate the model’s focal To elucidate the 
model’s focal points, a heatmap was constructed to graphically 
represent the attention distribution across different patches within the 
model, as depicted in Figure 4. Typically, the model’s salient patches, 
which are the top  50 with the highs predicted probabilities, are 
selected for further analysis, as these are deemed to be  the most 
significant contributors to the model’s predictive power (17). Upon 
review by pathologists, it was determined that the majority of the 
patches, which garnered the model’s attention, contained features such 
as acute and chronic inflammatory cell infiltration, intestinal 
metaplasia, and mucosal damage. These observations corroborate the 
model’s predictive accuracy and reliability in diagnostic applications.

Diagnostic performance variation among 
pathologists across different levels

The diagnostic performance of pathologists across different levels 
has been demonstrated in Tables 2, 3, with all participants being 
blinded to the outcomes of the IHC. The junior pathologist 
demonstrated a diagnostic accuracy of 67.0%, a specificity of 45.4%, 
a sensitivity of 88.9%, a false negative rate of 11.1%, and a false 
positive rate of 54.5%. The intermediate pathologist displayed a 
diagnostic accuracy of 73.9%, a specificity of 55.0%, a sensitivity of 
92.7%, a false negative rate of 7.3%, and a false positive rate of 45.0%. 
The senior pathologist demonstrated a diagnostic accuracy of 81.7%, 
a specificity of 94.5%, a sensitivity of 68.5%, a false negative rate of 
31.5%, and a false positive rate of 5.5%. The elevated false positive 
rates observed among junior and intermediate pathologists 
underscore an imperative need for enhancements in diagnostic 
precision. Despite the senior pathologists demonstrating the most 
impressive diagnostic accuracy, the sensitivity of 68.5% and a false 
negative rate of 31.5%, suggest that a negative case being misdiagnosed 
as positive is minimal, a considerable number of actual infections may 
still remain undetected.

The DS-MIL model outperforms 
pathologists in comprehensive 
performance

Due to the superior performance of DS-MIL, we compared the 
DS-MIL model with pathologists, as detailed in Figure 5 and Table 4. 
The model has significantly surpassed the diagnostic accuracy of 
junior (p < 0.001), intermediate (p < 0.001), and even senior 
pathologists (p = 0.019), highlighting its substantial potential in 
improving the accuracy of diagnosing H. pylori infections. 
Additionally, the DS-MIL model excelled in both specificity and false 
positive rate, significantly outperforming junior and intermediate 
pathologists (p < 0.001). Furthermore, the DS-MIL model 
demonstrated superior performance in sensitivity and false negative 
rate, significantly outperforming senior pathologists (p < 0.001). These 
findings suggest that the DS-MIL model is valuable for enhancing 
diagnostic accuracy and efficiency, especially in minimizing 
missed diagnoses.

Discussion

Helicobacter pylori is intricately linked with multiple gastric 
conditions, and its deleterious effects are gaining increasing 
recognition. It is estimated that approximately 5.5% of all cancers 
globally are related to H. pylori infection, accounting for 25% of all 

TABLE 1 Performance metrics of three models.

Models ACC/% PRE/% SEN/% SPE/% FNR/% FPR/% F1-score AUC

AB-MIL 88.7 88.8 87.9 89.5 12.1 10.5 0.883 0.920

DS-MIL 89.7 83.7 94.3 86.3 5.7 13.7 0.888 0.949

Trans-MIL 88.7 80.6 95.2 84.3 4.8 15.7 0.874 0.934

ACC, accuracy; PRE, precision; SEN, sensitivity; SPE, specificity; FNR, false negative rate; FPR, false positive rate; F1-score: A metric for evaluating the accuracy of a binary classification 
model.
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infection-related malignancies (2, 6, 18). However, due to the 
microscale of H. pylori and the interference from gastric mucosal 
secretions and impurities within the gastric pits that impede 
visualization, the diagnostic process is exceedingly labor-intensive, 
and the diagnostic quality is also suboptimal. Consequently, we aimed 
to develop an AI-assisted diagnostic tool designed to enhance 
diagnostic precision and alleviate the workload of pathologists.

Liscia et al. (19) developed a model for detecting H. pylori in 
W-S stained images, with an AUC of 0.93. Klein et al. (20) conducted 

a similar study, in which they achieved an AUC of 0.92 for 
identifying H. pylori in Giemsa-stained sections, but it fell to 0.81 
with H&E staining. Lin et  al. (21) developed a two-tier deep-
learning-based model to diagnose H. pylori infection with 
pathologist-level accuracy on H&E-stained sections. Based on the 
morphological alterations resulting from H. pylori infection, 
Franklin et  al.’s (22) CNN model matches gastrointestinal 
pathologists in accuracy for distinguishing H. pylori gastritis from 
autoimmune gastritis. The team also trained a model to distinguish 

FIGURE 3

Receiver operating characteristic (ROC) curves of the three models. The lighter colors represent the ROC curves of the AB-MIL, DS-MIL, and Trans-MIL 
models on the training set, with AUC values of 0.953, 0.982, and 0.985; the darker colors represent the ROC curves of the three models on the testing 
set, with AUC values of 0.920, 0.949, and 0.934.

FIGURE 4

Visual model. (a) Each patch’s predicted probability value is mapped onto the heatmap, displaying the importance of each patch or the model’s 
confidence in its classification through varying colors. (b–e) In the heatmap, the brighter the color represents the higher the predicted probability value 
for that area. Through our review, these areas mostly exhibit significant inflammation, the presence of intestinal metaplasia, dilated and congested 
interstitial blood vessels, or hemorrhage. (f) In the IHC section, the areas that the model focuses on highly indeed show strong positive expression of 
H. pylori.

https://doi.org/10.3389/fmed.2025.1594614
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Teng et al. 10.3389/fmed.2025.1594614

Frontiers in Medicine 07 frontiersin.org

between normal gastric mucosa, H. pylori-associated gastritis, and 
reactive gastropathy (23), achieving an AUC of 100% for recognizing 
H. pylori-associated gastritis. This demonstrates the feasibility of 

predicting the presence or absence of H. pylori infection predicated 
on morphological features.

Compared to some other studies, the three models in our study are 
capable of directly detecting H. pylori infection on H&E-stained sections 
without additional IHC or special staining. We utilized a substantial 
dataset comprising 817 cases with a total of 1,020 H&E-stained images. 
The scale of this dataset is particularly remarkable compared to similar 
studies, providing a solid foundation for our models training. Moreover, 
we meticulously designed the experimental procedure, allocating 60% 
of these cases for training and optimizing models, ensuring that the 
model can learn sufficient features and patterns from the rich data, 
thereby enhancing its generalization capabilities and predictive 
accuracy. As a result, our three models outperformed most comparable 
studies in terms of AUC performance.

Multi-Instance Learning (MIL) is a form of weakly supervised 
learning that addresses the unique challenge of data representation 
and classification. Unlike conventional supervised learning 
techniques, where each training instance is linked to a specific label, 
MIL operates under the premise that data is organized into discrete 
‘bags’, with labels assigned only at the bag level, rather than to 
individual instances within the bags. This method is particularly 
advantageous in scenarios where obtaining labels for each instance is 
impractical or infeasible, reducing the burden of manual annotation 

TABLE 2 Average confusion matrix across pathologist levels.

Pathologists’ 
level

Pathologists’ 
diagnosis

H. pylori IHC Total

H. pylori 
(+)

H. pylori 
(−)

Junior 

pathologists

H. pylori (+) 96 60 156

H. pylori (−) 12 50 62

Total 108 110 218

Intermediate 

pathologists

H. pylori (+) 101 49 150

H. pylori (−) 8 60 68

Total 109 109 218

Senior 

pathologists

H. pylori (+) 74 6 80

H. pylori (−) 34 104 138

Total 108 110 218

Each group consists of 2–4 pathologists, with the confusion matrix based on their average 
scores.

TABLE 3 Diagnostic evaluation indicators of pathologists.

Pathologists’ level ACC/% SEN/% SPE/% FNR/% FPR/%

Junior pathologists 67.0 88.9 45.5 11.1 54.5

Intermediate pathologists 73.9 92.7 55.0 7.3 45.0

Senior pathologists 81.7 68.5 95.3 31.5 5.5

χ2/P (primary vs. intermediate pathologists) 2.477/0.116 0.922/0.377 2.015/0.156 0.922/0.337 2.015/0.156

χ2/P (intermediate vs. senior pathologists) 3.832/0.050 20.257/<0.001 45.419/<0.001▲ 20.257/<0.001 45.419/<0.001▲

χ2/P (primary vs. senior pathologists) 12.303/<0.001▲ 13.369/<0.001 63.117/<0.001▲ 13.369/<0.001 63.117/<0.001▲

The diagnostic performance of pathologists indicates that there is no statistical significance between junior and intermediate pathologists. In contrast, senior pathologists demonstrate 
significantly higher evaluation indicators compared to both junior and intermediate pathologists. ▲Significance, p < 0.05.

FIGURE 5

Diagnostic efficacy of DS-MIL and pathologists at all levels. Despite a slightly higher FNR, the DS-MIL’s overall performance is satisfactory, particularly in 
terms of ACC, SPE, and FPR.
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while capitalizing on the benefits of weak supervision. In this study, 
we constructed three MIL models, all of which exhibit distinctive 
strengths. In our study, although there was no statistically significant 
difference in performance among the three models, they each 
demonstrated distinct strengths and focuses. The AB-MIL 
demonstrated a balanced performance, achieving an accuracy of 
88.7% and a precision of 88.8%. Nonetheless, it did not show a 
significant advantage in any particular metric, and the model’s false 
negative rate (12.1%) and false positive rate (10.5%) were relatively 
high. The Trans-MIL demonstrated the best performance in 
sensitivity (95.2%) and false negativity rate (4.8%), showing a typical 
capability to accurately identify H. pylori-positive cases ensures that 
the maximum number of truly infected patients are detected. 
However, this led to a decrease in specificity (84.3%) and an increase 
in the false positivity rate (15.7%), resulting in a higher risk of 
misdiagnosis. In contrast, the DS-MIL stood out with its superior 
accuracy (89.7%) and AUC values (0.949), becoming the top choice 
for comprehensive diagnostic capabilities and the most suitable MIL 
model for H. pylori detection, offering a reliable and efficient solution 
to enhance diagnostic accuracy in clinical application.

Upon analysis of the diagnostic outcomes from pathologists of 
varying levels of expertise, it is evident that both junior and 
intermediate pathologists exhibit increased FPRs, with rates of 54.5 
and 45.0%, respectively. This trend suggests a proclivity for these 
pathologists to erroneously categorize H. pylori-negative cases as 
H. pylori-positive, potentially due to the impact of debris within the 
gastric pits. In contrast, the FPRs are not elevated among senior 
pathologists. This may be attributed to their extensive diagnostic 
experience, which renders them less susceptible to misinterpretation 
by extraneous factors. However, it is possible that the relatively high 
FNR of the senior pathologist may result in the inadvertent omission 
of some authentic H. pylori-positive cases. Our three models, 
particularly the DS-MIL, have demonstrated diagnostic accuracy and 
sensitivity that exceeds that of senior pathologists while achieving 
specificity higher than that of junior and intermediate pathologists. 
Furthermore, there is a notable reduction in FNRs, which is of 
considerable importance in enhancing diagnostic precision and 
minimizing the occurrence of missed diagnosis. Additionally, the 
evident advantages of AI models in processing large volumes of data 
allow them to analyze a vast number of WSI in a relatively short 
period. This capability markedly enhances diagnostic efficiency and 
alleviates the workload of pathologists. In summary, when compared 
with pathologists, the advantages of DS-MIL remain significant.

Although our three models have demonstrated excellent diagnostic 
performance, there are still several issues that need to be addressed prior 
to their clinical application in pathological practice. First, the data 
we used for developing this AI-assisted pathology diagnostic system was 
sourced solely from a single center. Although the predictive performance 
of the three models in the test set is already satisfactory, further 
validation with multi-center datasets is still needed. Secondly, in 

accordance with the expert consensus on the pathological histology of 
H. pylori infection, the severity of H. pylori infection is categorized into 
four grades: none, mild, moderate, and severe, and H. pylori can 
be further classified into two molecular subtypes, CagA and VacA (24). 
To date, our models are capable of predicting the presence of H. pylori 
infection but are not yet equipped to assess the severity of infection or 
to identify molecular subtypes, which remains a target for our ongoing 
research. Lastly, this study did not record the medication history of 
patients within 1–2 months prior to gastric mucosal biopsy, especially 
the use of non-steroidal anti-inflammatory drugs, proton pump 
inhibitors, and antibiotics. In further research, we hope to integrate 
clinical symptoms, medication history, and other clinical data, as well as 
images and diagnoses from gastrointestinal endoscopy, to construct a 
multimodal AI diagnostic system that can integrate multidisciplinary 
information and provide comprehensive diagnoses.

In conclusion, the findings of our study underscore that the three 
models exhibit superior performance compared to traditional H. pylori 
detection methods across a range of evaluative metrics, including 
diagnostic accuracy, precision, sensitivity, and specificity. Among 
them, DS-MIL has become the preferred choice due to its optimal 
diagnostic performance. It has the potential to replace pathologists in 
detecting H. pylori infections in the future, significantly improving the 
accuracy and efficiency of diagnosis. However, currently the 
predictions generated by AI models must be subjected to review and 
confirmation by pathologists prior to the issuance of pathology reports.
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