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Objective: To develop a risk predictive model for inadvertent hypothermia (IH) 
in intensive care unit (ICU) patients and to validate the accuracy of the model.
Methods: The data was collected at the ICU of a tertiary hospital in Zunyi from 
November 2022 to June 2023 for model construction and internal validation. 
Data collected at the ICU of another tertiary hospital in Zunyi from July 2023 to 
December 2023 was used for external validation. The Least Absolute Shrinkage 
and Selection Operator (LASSO) was used to screen for strongly correlated 
predictors and build a predictive model, which was presented in the form of a 
nomogram and perform internal and external validation.
Results: This study included a total of 720 participants, the incidence of IH in ICU 
patients was 18.19%. Six predictor variables were ultimately screened to construct the 
model: risk of IH in ICU patients = 1/(1 + exp−(−3.631 + 0.984 × catecholamines 
− 3.200 × antipyretic analgesics + 1.611 × RRT + 1.291 × invasive mechanical 
ventilation + 1.160 × GCS + 0.096 × lactate)). The results of the prediction 
model evaluation showed an AUC of 0.852 (95%CI: 0.805, 0.898) and internal 
validation yielded a C-statistic of 0.851. The Hosmer-Lemeshow test showed 
that x2 = 7.438, p = 0.282 and the calibration curve showed that the actual 
prediction was close to the ideal prediction. The results of the DCA showed 
that the model is able to provide effective evidence to support clinical decision 
making. External validation showed an AUC of 0.846 (95%CI: 0.779, 0.913). The 
Hosmer-Lemeshow test showed x2 = 13.041, p = 0.071 and the calibration curve 
was close to the ideal prediction situation.
Conclusion: The IH predictive model for ICU patients constructed in this study 
passed both internal and external validation, and has good differentiation, 
calibration, clinical utility, and generalizability, which can help healthcare 
professionals to effectively identify high-risk groups for IH in the ICU.
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Introduction

Hypothermia is typically defined as a patient’s body temperature 
falling below 36 °C, resulting from excessive heat loss, reduced heat 
production, or impaired thermoregulation (1, 2). Hypothermia that 
occurs in patients, excluding cases of targeted temperature 
management, is often referred to as inadvertent hypothermia (IH) (3). 
IH is a common clinical abnormality in intensive care unit (ICU) 
patients, with an incidence ranging from 16 to 25% (1, 4, 5). IH can 
exacerbate or lead to severe adverse outcomes, including coagulation 
dysfunction, metabolic disturbances, elevated cardiovascular risk, 
organ dysfunction, immunosuppression, heightened infection risk, 
and delayed sedation recovery (6–10). Additionally, it contributes to 
prolonged hospital stays, increased healthcare costs, and poses a 
significant threat to patient safety (11). Studies have demonstrated that 
IH is an independent risk factor for ICU patient mortality, with a 
reported mortality rate ranging from 22 to 31% among ICU patients 
who develop IH (1, 12). Furthermore, mortality rates exhibit a positive 
correlation with both the severity of hypothermia and the prolonged 
duration of IH (3). Therefore, early identification of risk factors and 
stratification of high-risk populations are essential for preventing or 
mitigating the progression of IH.

Inadvertent hypothermia is potentially avoidable with early 
warning and management (13, 14). Some researchers have explored 
methods to identify patients at risk of hypothermia in the fields of 
perioperative, perinatal, emergency, and pediatric medicine (15–17). 
However, to our knowledge, no previous work has developed a model 
to predict hypothermia of ICU adult patients. Due to differences in 
disease types, severity, medications, and treatment modalities 
compared to perioperative, perinatal, emergency, and pediatric 
medicine, the risk factors for hypothermia in ICU patients may also 
differ. Existing hypothermia prediction models are not applicable to 
ICU patients. To prevent adverse reactions caused by inadvertent 
hypothermia, it is necessary to comprehensively identify risk factors 
for hypothermia in ICU patients and establish a prediction model.

As a result, our goal is to construct a hypothermia risk prediction 
model for ICU patients that enables early and accurate risk estimation. 
Considering that the risk factors affecting hypothermia in ICU patients 
may be numerous and complex, the key to constructing an accurate 
model lies in effectively extracting important independent variables and 
avoiding overfitting. We believe that the Least Absolute Shrinkage and 
Selection Operator (LASSO) can address these issues. LASSO, a machine 
learning method proposed by Tibshirani in 1996, controls model 
complexity through its constraint mechanism (18). LASSO selects the 
most relevant features for the final prediction model, which enhances its 
potential to perform well when applied to future patients (19). Therefore, 
this study aims to develop a hypothermia prediction model using LASSO 
and validate its performance. The success of this research can support 
clinical decision-makers in identifying high-risk patients and facilitate 
early interventions through improved clinical management.

Method

Participants

This was a prospective study. Adult ICU patients at the Affiliated 
Hospital of Zunyi Medical University were consecutively recruited 

between November 2022 and June 2023 as the development cohort 
and the internal validation cohort. Patients admitted to the adult ICU 
at the Second Affiliated Hospital of Zunyi Medical University from 
July 2023 to December 2023 were selected as the external validation 
cohort. Finally, patients who met all eligibility criteria and provided 
informed consent were included in the study. The inclusion criteria 
were as follows: (i) patients admitted to the ICU; (ii) age ≥ 18 years; 
(iii) ICU stay ≥ 48 h (to ensure effective data collection); and (iv) 
patients or their families willingly enrolled in the study. The exclusion 
criteria were as follows: (i) ICU readmission patients; (ii) patients with 
a body temperature < 36 °C before transfer to the ICU; and (iii) 
patients receiving targeted temperature management.

Evaluation and measurement of IH

The temperature of the ICU ward was maintained at 22–24 °C, 
and the humidity was controlled at 50–60%. All patients were 
provided with a quilt upon admission, and covers were added or 
removed based on the patients’ needs and specific conditions.

In this study, axillary mercury thermometers were used to measure 
patient body temperature. After excluding cases undergoing targeted 
temperature management, axillary temperatures below 36.0 °C were 
defined as IH. The ICU nursing staff received uniform training in 
IH-related knowledge and temperature measurement procedures before 
the study began. Body temperature was measured and recorded regularly 
by the bedside nurses using axillary mercury thermometers at the time 
of admission, every 4 h thereafter, and immediately if abnormal body 
temperatures were suspected. To avoid false hypothermia readings due 
to issues such as displacement of the mercury thermometer caused by 
patient movement, the bedside nurse re-measured the temperature for 
patients with an initial reading below 36.0 °C and closely monitored the 
measurement process to confirm the accuracy of IH occurrence. 
Simultaneously, the condition of the hypothermic patient was reported 
to the physician for further treatment.

Data acquisition

Through evidence-based research and expert discussions, 
we  selected 36 candidate variables for the predictive model. These 
variables are all readily available in clinical settings, ensuring their 
practical utility for real-time applications. The candidate variables 
encompass general demographic factors, clinically relevant factors, and 
environmental factors. Specifically, they include: (1) data collected at 
admission, such as season, age, Body Mass Index (BMI), primary 
diagnosis, Sequential Organ Failure Assessment (SOFA), Acute 
Physiology and Chronic Health Evaluation (APACHE II), and assessed 
comorbidities (infection, shock, sepsis, hypertension, and chronic 
cardiovascular insufficiency); (2) data collected during ICU stay, 
including treatment status (e.g., surgery, renal replacement therapy 
(RRT), or invasive mechanical ventilation), physiological indicators 
[e.g., heart rate (HR), mean arterial pressure (MAP), and Glasgow 
Coma Score (GCS)], medication usage (e.g., sedatives, muscle relaxants, 
catecholamines, vasodilators, antipyretic analgesics, and glucocorticoids, 
plasma, red blood cells, platelets), the 24-h intravenous fluid intake from 
the previous day, and laboratory markers [e.g., pH, lactate, albumin, 
prealbumin, procalcitonin (PCT), white blood cell count, percentage of 
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neutrophils, percentage of lymphocytes, and C-reactive Protein (CRP)]. 
Through expert evaluation, we  recognized that critical laboratory 
parameters - including white blood cell count, neutrophil percentage, 
lymphocyte percentage, and pH values - exhibit clinically significant 
bidirectional fluctuations in ICU patients. These parameters may 
transition between subnormal ranges (indicating immunosuppressed 
states) and supranormal levels (reflecting inflammatory responses to 
infectious stressors) throughout a patient’s clinical course. Furthermore, 
pH extremes (acidosis or alkalosis) represent distinct pathophysiological 
mechanisms - including lactic acidosis, respiratory failure, or treatment-
related effects  - that may independently influence IH occurrence 
through impacts on tissue oxygenation and cellular metabolism. Given 
this dynamic variability of laboratory markers during critical illness, 
we  systematically documented both peak and nadir values to fully 
characterize their clinical trajectories and potential associations with IH 
development. ECMO patients meeting inclusion criteria were enrolled 
and received standardized blood warming using heat exchanger in 
ECMO circuit. No IH events occurred in this subgroup, therefore 
ECMO treatment was not included as a potential influencing factor in 
the final analysis.

Statistical analysis

Statistical analyses were performed using R language (version 
4.3.2 for Windows) and SPSS 29.0. Normally distributed data were 
expressed as mean ± standard deviation (x̄ ± s) and analyzed using the 
independent samples t-test for comparisons between two groups. 
Non-normally distributed data were expressed as median and 
interquartile range (M (Q1, Q3)) and analyzed using the Mann–
Whitney U test. Categorical variables were expressed as numbers 
(percentages) (n (%)) and analyzed using the chi-square test or Fisher’s 
exact test.

Variables with >20% missing data were excluded, and the 
remaining missing values were imputed using random forest 

imputation. Continuous variables were then standardized to ensure 
uniform scaling for LASSO regression, which is sensitive to variable 
magnitude. This step prevents variables with larger units from 
dominating feature selection and facilitates algorithm convergence 
while enabling direct comparison of variable importance. The penalty 
parameter λ was determined through 10-fold cross-validation. This 
selected λ value was then applied in the LASSO regression equation 
to identify independent predictors with non-zero coefficients, thereby 
ensuring only relevant variables were retained in the final model.

A logistic regression model was constructed using the raw-scale 
(non-standardized) variables selected by LASSO to preserve clinical 
interpretability of odds ratios. Nomograms were developed to visualize 
the predictive model, which was internally validated using 1,000 
bootstrap resamples. Discrimination was evaluated via the area under 
the receiver operating characteristic curve (AUC), while calibration was 
assessed using the Hosmer-Lemeshow test and calibration curves. 
Clinical utility was determined through decision curve analysis (DCA). 
External validation was performed using a spatio-temporal validation 
approach, leveraging data from an independent center collected during 
a different time period to ensure generalizability.

Result

Status of IH and patient characteristics

A final total of 720 study participants were included, comprising 
589 non-IH patients and 131 IH patients, with an IH incidence of 
18.19%. The derivation cohort included 508 cases (90 IH patients, 
17.7%), and the external validation cohort included 212 cases (41 IH 
patients, 19.3%), Figure  1 shows the flow diagram of patient 
enrollment and analysis in the study. Table 1 presents the baseline 
characteristics of IH and non-IH groups in both cohorts.

To evaluate the model’s generalizability and identify potential 
biases, we  compared baseline characteristics between the 

FIGURE 1

Flowchart of the patients included and analyzed in the study.
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TABLE 1  Comparative analysis of IH vs. non-IH groups in derivation and validation cohorts.

Variable Derivation cohort (n = 508) External Validation Cohort (n = 212)

IH group
(n = 90)

Non-IH 
group

(n = 418)

χ2/t/z p IH group
(n = 55)

Non-IH 
group

(n = 157)

χ2/t/z p

Primary Diagnosis, n (%) 18.62 0.017 15.72 0.47

Circulatory System Diseases 7 (7.78) 30 (7.18) 6 (10.91) 11 (7.01)

Respiratory System Diseases 20 (22.22) 97 (23.21) 18 (32.73) 48 (30.57)

Nervous System Diseases 16 (17.78) 59 (14.11) 10 (18.18) 10 (6.37)

Digestive System Diseases 13 (14.44) 93 (22.25) 9 (16.36) 33 (21.02)

Endocrine, Nutritional, and Metabolic 

Diseases
1 (1.11) 15 (3.59) 0 (0.00) 3 (1.91)

Genitourinary System Diseases 8 (8.89) 19 (4.55) 2 (3.64) 8 (5.10)

Injuries, Poisonings, or External Causes 16 (17.78) 42 (10.05) 9 (16.36) 19 (12.10)

Tumors 5 (5.56) 9 (2.15) 0 (0.00) 1 (0.64)

Other System Diseases 4 (4.44) 54 (12.92) 1 (1.82) 24 (15.29)

Sepsis, n (%) 6.79 0.033 2.46 0.292

Sepsis 4 (4.44) 22 (5.26) 1 (1.82) 9 (5.73)

Septic Shock 26 (28.89) 71 (16.99) 15 (27.27) 31 (19.75)

No Sepsis 60 (66.67) 325 (77.75) 39 (70.91) 117 (74.52)

Infection, n (%) 0.04 0.848 0.12 0.730

Yes 44 (48.89) 209 (50.00) 29 (52.73) 87 (55.41)

No 46 (51.11) 209 (50.00) 26 (47.27) 70 (44.59)

Shock, n (%) 10.68 0.001 1.41 0.235

Yes 39 (43.33) 109 (26.08) 22 (40.00) 49 (31.21)

No 51 (56.67) 309 (73.92) 33 (60.00) 108 (68.79)

Chronic Cardiovascular Insufficiency, n (%) 0.41 0.520 0.09 0.761

Yes 16 (17.78) 63 (15.07) 13 (23.64) 34 (21.66)

No 74 (82.22) 355 (84.93) 42 (76.36) 123 (78.34)

Hypertension, n (%) 1.07 0.300 0.24 0.626

Yes 29 (32.22) 159 (38.04) 22 (40.00) 57 (36.31)

No 61 (67.78) 259 (61.96) 33 (60.00) 100 (63.69)

Sedatives, n (%) 2.61 0.106 3.46 0.063

Yes 56 (62.22) 221 (52.87) 40 (72.73) 92 (58.60)

No 34 (37.78) 197 (47.13) 15 (27.27) 65 (41.40)

RRT, n (%) 36.29 <0.001 7.21 0.007

Yes 36 (40.00) 55 (13.16) 19 (34.55) 27 (17.20)

No 54 (60.00) 363 (86.84) 36 (65.45) 130 (82.80)

Invasive Mechanical Ventilation, n (%) 16.30 <0.001 10.98 <0.001

Yes 80 (88.89) 283 (67.70) 50 (90.91) 107 (68.15)

No 10 (11.11) 135 (32.30) 5 (9.09) 50 (31.85)

Surgery, n (%) 3.384 0.496 11.795 0.019

Grade 1 0 (0.00) 3 (0.72) 1 (1.82) 0 (0.00)

Grade 2 7 (7.78) 19 (4.55) 0 (0.00) 9 (5.73)

Grade 3 9 (10.00) 61 (14.59) 3 (5.45) 25 (15.92)

Grade 4 10 (11.11) 42 (10.05) 7 (12.73) 10 (6.37)

(Continued)
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TABLE 1  (Continued)

Variable Derivation cohort (n = 508) External Validation Cohort (n = 212)

IH group
(n = 90)

Non-IH 
group

(n = 418)

χ2/t/z p IH group
(n = 55)

Non-IH 
group

(n = 157)

χ2/t/z p

No Surgery 64 (71.11) 293 (70.10) 44 (80.00) 113 (71.97)

GCS, n (%) 23.22 <0.001 20.32 <0.001

≤8 33 (36.67) 62 (14.83) 22 (40.00) 19 (12.10)

>8 57 (63.33) 356 (85.17) 33 (60.00) 138 (87.90)

Red Blood Cell Transfusion, n (%) 1.45 0.228 1.07 0.300

Yes 30 (33.33) 113 (27.03) 21 (38.18) 48 (30.57)

No 60 (66.67) 305 (72.97) 34 (61.82) 109 (69.43)

Platelet Transfusion, n (%) 2.61 0.106 0.06 0.803

Yes 13 (14.44) 37 (8.85) 7 (12.73) 18 (11.46)

No 77 (85.56) 381 (91.15) 48 (87.27) 139 (88.54)

Plasma Transfusion, n (%) 12.05 <0.001 2.42 0.120

Yes 40 (44.44) 109 (26.08) 22 (40.00) 45 (28.66)

No 50 (55.56) 309 (73.92) 33 (60.00) 112 (71.34)

Muscle Relaxants, n (%) 6.12 0.013 6.66 0.010

Yes 9 (10.00) 14 (3.35) 9 (16.36) 7 (4.46)

No 81 (90.00) 404 (96.65) 46 (83.64) 150 (95.54)

Catecholamines, n (%) 26.29 <0.001 8.34 0.004

Yes 64 (71.11) 173 (41.39) 38 (69.09) 73 (46.50)

No 26 (28.89) 245 (58.61) 17 (30.91) 84 (53.50)

Vasodilators, n (%) 0.71 0.399 1.84 0.175

Yes 15 (16.67) 86 (20.57) 12 (21.82) 22 (14.01)

No 75 (83.33) 332 (79.43) 43 (78.18) 135 (85.99)

Glucocorticoids, n (%) 2.59 0.108 1.80 0.180

Yes 48 (53.33) 184 (44.02) 31 (56.36) 72 (45.86)

No 42 (46.67) 234 (55.98) 24 (43.64) 85 (54.14)

Antipyretic Analgesics, n (%) 29.54 <0.001 16.95 <0.001

Yes 3 (3.33) 130 (31.10) 2 (3.64) 49 (31.21)

No 87 (96.67) 288 (68.90) 53 (96.36) 108 (68.79)

Season, n (%) – – – –

Spring 35 (38.89) 168 (40.19) – –

Summer 14 (15.56) 73 (17.46) 8 (14.55) 31 (19.75)

Autumn 4 (4.44) 25 (5.98) 25 (45.45) 87 (55.41)

Winter 37 (41.11) 152 (36.36) 22 (40.00) 39 (24.84)

Age, mean ± SD 59.02 ± 17.85 57.59 ± 16.15 −0.75 0.454 58.09 ± 19.34 56.47 ± 17.47 −0.57 0.567

HR, mean ± SD 104.00 ± 26.08 102.76 ± 24.35 −0.43 0.666 100.00 ± 34.21 101.34 ± 20.78 0.27 0.785

MAP, mean ± SD 84.17 ± 21.87 90.26 ± 19.29 2.65 0.008 83.43 ± 25.68 88.71 ± 19.13 1.60 0.110

SOFA, mean ± SD 8.33 ± 4.00 5.93 ± 3.25 −5.33 <0.001 7.16 ± 3.59 5.99 ± 3.23 −2.26 0.025

24-h Intravenous Fluid Intake,

mean ± SD

2894.73 ± 1560.75 2129.31 ± 1041.26 −4.44 <0.001 2662.93 ± 1414.78 2093.31 ± 1183.38 −2.92 0.004

Maximum pH,

mean ± SD

7.46 ± 0.07 7.46 ± 0.07 −1.12 0.265 7.45 ± 0.08 7.45 ± 0.06 −0.13 0.894

Minimum pH, mean ± SD 7.30 ± 0.11 7.35 ± 0.08 3.85 <0.001 7.28 ± 0.13 7.33 ± 0.07 2.87 0.005

(Continued)
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derivation and external validation cohorts. Most variables showed 
no statistically significant differences, except for chronic 
cardiovascular insufficiency and minimum pH (Table  2). The 
cohorts were generally comparable.

Variable selection

In the original data, the missing values for PCT accounted for 
6.69%. The random forest method was employed for missing value 
imputation, and the results indicated that the imputed data closely 
approximated the original data. Finally, continuous variables were 
standardized using the Z-score normalization method. The 
occurrence of IH in ICU patients (yes/no) was defined as the 
dependent variable, and the normalized data were incorporated 
into the LASSO regression model. As illustrated in Figure 2, the 
regression coefficients of the independent variables were 
progressively shrunk toward zero with increasing penalty 
coefficient λ. Figure 3 displays 10-fold cross-validation results. 
The left dashed line (λ-min) represents the λ value minimizing 
prediction error (18 variables), while the right line (λ-1se) selects 
the most parsimonious model within 1 SE of minimum error (6 

variables). We selected λ-1se (0.0485) to optimize clinical utility 
through balanced accuracy and simplicity. Ultimately, six 
predictors were identified: catecholamine, RRT, invasive 
mechanical ventilation, lactate, GCS, and antipyretic analgesic.

Model development

The prediction model was constructed by incorporating the 
six selected predictors into a logistic regression model. The 
formula of the model is presented as follows: Risk of IH in ICU 
patients = 1 /(1 + exp. − (− 3.631 + 0.984 × catecholamine − 
3.200 × antipyretic analgesics + 1.611 × RRT + 1.291 × invasive 
mechanical ventilation + 1.160 × GCS + 0.096 × lactate)). Table 3 
presents the results of the logistic regression analysis of factors 
influencing IH in ICU patients.

The constructed prediction model was visualized as a risk 
nomogram. The nomogram projects the original measurements 
or categorical outcomes of the six independent variables in the 
model onto the top point scale line to obtain corresponding 
points. These points are then summed to yield a total score, which 
is projected downward onto the bottom axis to predict the 

TABLE 1  (Continued)

Variable Derivation cohort (n = 508) External Validation Cohort (n = 212)

IH group
(n = 90)

Non-IH 
group

(n = 418)

χ2/t/z p IH group
(n = 55)

Non-IH 
group

(n = 157)

χ2/t/z p

Albumin, mean ± SD 27.16 ± 5.15 28.60 ± 5.16 2.41 0.016 27.16 ± 4.06 28.51 ± 4.64 1.92 0.056

Prealbumin, mean ± SD 112.94 ± 64.26 117.26 ± 62.84 0.59 0.556 118.64 ± 62.09 124.35 ± 60.02 0.60 0.548

BMI, median (Q₁, Q₃) 22.03 (20.01, 

24.00)

22.86 (20.61, 

24.69)

−1.95 0.051 22.77 (20.28, 

25.10)

22.68 (19.98, 

24.80)

−0.46 0.643

APACHE II, median (Q₁, Q₃) 21.00 (14.00, 

26.00)

17.00 (12.00, 

21.00)

−3.70 <0.001 18.00 (14.00, 

23.50)

16.00 (12.00, 

20.00)

−2.49 0.013

Lactate, median (Q₁, Q₃) 2.80 (1.80, 4.38) 1.90 (1.40, 3.00) −4.84 <0.001 3.20 (2.10, 6.25) 1.90 (1.40, 2.80) −5.42 <0.001

PCT, median (Q₁, Q₃) 2.44 (0.58, 11.36) 1.31 (0.33, 6.23) −2.54 0.011 2.01 (0.57, 18.50) 1.39 (0.31, 6.10) −1.97 0.049

CRP, median (Q₁, Q₃) 150.55 (57.11, 

184.25)

130.11 (56.55, 

182.22)

−0.78 0.436 110.66 (56.09, 

178.66)

105.19 (46.89, 

178.38)

−0.52 0.602

Maximum White Blood Cell Count, median 

(Q₁, Q₃)

14.85 (10.53, 

20.52)

13.63 (9.50, 17.94) −1.92 0.054 15.14 (13.16, 

21.48)

12.97 (9.81, 15.91) −3.91 <0.001

Minimum White Blood Cell Count, median 

(Q₁, Q₃)

7.39 (5.84, 11.15) 7.72 (5.54, 10.33) −0.39 0.695 7.41 (5.97, 11.54) 8.47 (5.75, 10.23) −0.45 0.656

Maximum Neutrophil Percentage, median 

(Q₁, Q₃)

0.92 (0.88, 0.94) 0.88 (0.83, 0.93) −4.42 <0.001 0.92 (0.86, 0.95) 0.89 (0.83, 0.92) −3.37 <0.001

Minimum Neutrophil Percentage, median 

(Q₁, Q₃)

0.81 (0.74, 0.88) 0.78 (0.72, 0.84) −2.89 0.004 0.84 (0.78, 0.89) 0.79 (0.74, 0.84) −3.08 0.002

Maximum Lymphocyte Percentage, median 

(Q₁, Q₃)

0.04 (0.02, 0.06) 0.06 (0.03, 0.08) −4.19 <0.001 0.04 (0.02, 0.06) 0.06 (0.04, 0.09) −3.55 <0.001

Minimum Lymphocyte Percentage, median 

(Q₁, Q₃)

0.10 (0.06, 0.15) 0.12 (0.08, 0.17) −2.39 0.017 0.09 (0.06, 0.12) 0.12 (0.08, 0.16) −2.79 0.005

t, t-test; Z, Mann–Whitney test; χ2, Chi-square test; SD, standard deviation; M, Median; Q₁, 1st Quartile; Q₃, 3st Quartile.
Due to the influence of data collection timing, only a descriptive analysis of the seasons was conducted. 
Values in bold represent statistically significant results (p < 0.05).
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TABLE 2  Baseline characteristics of the derivation cohort and external validation cohort.

Variable Derivation cohort
(n = 508)

External validation cohort
(n = 212)

χ2/t/z p

Primary Diagnosis, n (%) 13.25 0.104

Circulatory System Diseases 37 (7.28) 17 (8.02)

Respiratory System Diseases 117 (23.03) 66 (31.13)

Nervous System Diseases 75 (14.76) 20 (9.43)

Digestive System Diseases 106 (20.87) 42 (19.81)

Endocrine, Nutritional, and Metabolic Diseases 16 (3.15) 3 (1.42)

Genitourinary System Diseases 27 (5.31) 10 (4.72)

Injuries, Poisonings, or External Causes 58 (11.42) 28 (13.21)

Tumors 14 (2.76) 1 (0.47)

Other System Diseases 58 (11.42) 25 (11.79)

Sepsis, n (%) 0.66 0.721

Sepsis 26 (5.12) 10 (4.72)

Septic Shock 97 (19.09) 46 (21.70)

No Sepsis 385 (75.79) 156 (73.58)

Infection, n (%) 1.45 0.229

Yes 253 (49.80) 116 (54.72)

No 255 (50.20) 96 (45.28)

Shock, n (%) 1.34 0.247

Yes 148 (29.13) 71 (33.49)

No 360 (70.87) 141 (66.51)

Chronic Cardiovascular Insufficiency, n (%) 4.54 0.033

Yes 79 (15.55) 47 (22.17)

No 429 (84.45) 165 (77.83)

Hypertension, n (%) <0.01 0.948

Yes 188 (37.01) 79 (37.26)

No 320 (62.99) 133 (62.74)

Sedatives, n (%) 3.65 0.056

Yes 277 (54.53) 132 (62.26)

No 231 (45.47) 80 (37.74)

RRT, n (%) 1.39 0.238

Yes 91 (17.91) 46 (21.70)

No 417 (82.09) 166 (78.30)

Invasive Mechanical Ventilation, n (%) 0.50 0.478

Yes 363 (71.46) 157 (74.06)

No 145 (28.54) 55 (25.94)

Surgery, n (%) 1.38 0.848

Grade 1 3 (0.59) 1 (0.47)

Grade 2 26 (5.12) 9 (4.25)

Grade 3 70 (13.78) 28 (13.21)

Grade 4 52 (10.24) 17 (8.02)

(Continued)
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TABLE 2  (Continued)

Variable Derivation cohort
(n = 508)

External validation cohort
(n = 212)

χ2/t/z p

No Surgery 357 (70.28) 157 (74.06)

GCS, n (%) <0.01 0.842

≤8 95 (18.70) 41 (19.34)

>8 413 (81.30) 171 (80.66)

Red Blood Cell Transfusion, n (%) 1.39 0.238

Yes 143 (28.15) 69 (32.55)

No 365 (71.85) 143 (67.45)

Platelet Transfusion, n (%) 0.61 0.435

Yes 50 (9.84) 25 (11.79)

No 458 (90.16) 187 (88.21)

Plasma Transfusion, n (%) 0.37 0.544

Yes 149 (29.33) 67 (31.60)

No 359 (70.67) 145 (68.40)

Muscle Relaxants, n (%) 2.66 0.103

Yes 23 (4.53) 16 (7.55)

No 485 (95.47) 196 (92.45)

Catecholamines, n (%) 1.95 0.163

Yes 237 (46.65) 111 (52.36)

No 271 (53.35) 101 (47.64)

Vasodilators, n (%) 1.45 0.228

Yes 101 (19.88) 34 (16.04)

No 407 (80.12) 178 (83.96)

Glucocorticoids, n (%) 0.51 0.475

Yes 232 (45.67) 103 (48.58)

No 276 (54.33) 109 (51.42)

Antipyretic Analgesics, n (%) 0.35 0.551

Yes 133 (26.18) 51 (24.06)

No 375 (73.82) 161 (75.94)

Season, n (%) – –

Spring 203 (39.96) 0 (0.00)

Summer 87 (17.13) 39 (18.40)

Autumn 29 (5.71) 112 (52.83)

Winter 189 (37.20) 61 (28.77)

Age, mean ± SD 57.84 ± 16.46 56.90 ± 17.94 0.68 0.494

HR, mean ± SD 102.98 ± 24.65 101.00 ± 24.89 0.98 0.326

MAP, mean ± SD 89.18 ± 19.89 87.34 ± 21.09 1.11 0.266

SOFA, mean ± SD 6.36 ± 3.51 5.97 ± 3.31 1.21 0.227

24-h Intravenous Fluid Intake, mean ± SD 2264.92 ± 1185.30 2241.08 ± 1268.96 0.24 0.810

Maximum pH, mean ± SD 7.45 ± 0.07 7.45 ± 0.06 1.62 0.106

Minimum pH, mean ± SD 7.33 ± 0.09 7.34 ± 0.09 2.86 0.004

(Continued)
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TABLE 2  (Continued)

Variable Derivation cohort
(n = 508)

External validation cohort
(n = 212)

χ2/t/z p

Albumin, mean ± SD 28.35 ± 5.19 28.16 ± 4.53 0.45 0.655

Prealbumin, mean ± SD 116.50 ± 63.05 122.87 ± 60.47 −1.25 0.212

BMI, median (Q₁, Q₃) 22.70 (20.55, 24.62) 22.72 (20.13, 24.84) −0.10 0.917

APACHE II, median (Q₁, Q₃) 17.50 (12.00, 22.00) 16.00 (12.00, 20.00) −1.50 0.134

Lactate, median (Q₁, Q₃) 2.00 (1.40, 3.22) 2.10 (1.60, 3.40) −1.08 0.280

PCT, median (Q₁, Q₃) 1.46 (0.34, 7.14) 1.50 (0.39, 7.35) −0.50 0.614

CRP, median (Q₁, Q₃) 132.80 (56.63, 182.70) 108.97 (48.02, 178.88) −1.78 0.074

Maximum White Blood Cell Count, median (Q₁, Q₃) 13.89 (9.73, 18.17) 13.49(10.29, 16.81) −0.21 0.834

Minimum White Blood Cell Count, median (Q₁, Q₃) 7.67 (5.59, 10.41) 8.21(5.86, 10.38) −1.03 0.301

Maximum Neutrophil Percentage, median (Q₁, Q₃) 0.89 (0.84, 0.93) 0.90 (0.84, 0.93) −0.61 0.539

Minimum Neutrophil Percentage, median (Q₁, Q₃) 0.79 (0.72, 0.85) 0.80 (0.74, 0.86) −1.36 0.173

Maximum Lymphocyte Percentage, median (Q₁, Q₃) 0.12 (0.08, 0.17) 0.11 (0.07, 0.16) −1.01 0.314

Minimum Lymphocyte Percentage, median (Q₁, Q₃) 0.05 (0.03, 0.08) 0.05 (0.03, 0.08) −0.32 0.747

t, t-test; Z, Mann–Whitney test; χ2, Chi-square test; SD, standard deviation; M, Median; Q₁, 1st Quartile; Q₃, 3st Quartile.
Due to the influence of data collection timing, the number of patients collected in the two centers was not comparable across different seasons. Therefore, only a descriptive analysis of the 
seasons was conducted.

FIGURE 2

Coefficient path of LASSO regression. Each colored line represents the coefficient trajectory of an independent variable as the penalty parameter λ 
changes. The x-axis shows log (λ), indicating the strength of penalization, while the y-axis displays the magnitude of regression coefficients. As λ 
increases, the coefficients shrink toward zero, indicating variable exclusion. As λ decreases, some coefficients grow and stabilize.
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probability of IH occurrence in ICU patients, as shown in 
Figure 4.

Evaluation and internal validation

ROC curve analysis was used to evaluate the predictive ability of 
the model for IH, yielding an AUC of 0.852 (95% CI: 0.805, 0.898). 
The optimal cutoff value on the ROC curve was 0.227, demonstrating 
good specificity and sensitivity of 79.2 and 78.9%, respectively 
(Figure 5). Internal validation using bootstrap resampling with 1,000 

iterations resulted in a C-statistic of 0.851, indicating good 
discriminative ability of the model.

The Hosmer-Lemeshow goodness-of-fit test yielded a χ2 value 
of 7.438 with a p-value of 0.282 (>0.05), indicating good model fit. 
The calibration curve (Figure 6) showed that both the predicted 
curve and the corrected calibration curve were close to the ideal 
curve, demonstrating good agreement between the predicted and 
actual probabilities of IH occurrence in ICU patients.

The clinical utility of the prediction model was evaluated 
using decision curve analysis (DCA). As shown in Figure 7, the 
green horizontal line assumes that no ICU patients developed IH 

FIGURE 3

Selection of the penalty parameter λ using ten fold cross validation. Figure shows two λ selection criteria in LASSO regression. The left dashed line 
(λ-min = 0.0191) represents the value with minimal cross-validation error (optimal predictive accuracy), selecting 18 variables for higher complexity. 
The right line (λ-1se = 0.0485) follows the one-standard-error rule, choosing the simplest model within 1 SE of the minimum error and retaining only 6 
variables.

TABLE 3  Results of logistic regression analysis of factors influencing IH in ICU patients.

Variable β SE p OR 95% CI

Intercept −3.631 0.407 <0.001 0.026 (0.012, 0.059)

Catecholamines 0.984 0.301 0.001 2.674 (1.483, 4.821)

Antipyretic analgesics −3.200 0.623 <0.001 0.041 (0.012, 0.138)

RRT 1.611 0.323 <0.001 5.007 (2.659, 9.429)

Invasive mechanical ventilation 1.291 0.398 0.001 3.636 (1.666, 7.935)

GCS 1.160 0.317 <0.001 3.190 (1.714, 5.939)

Lactate 0.096 0.054 0.075 1.101 (0.990, 1.224)

β, regression coefficient; SE, standard error; OR, odds ratio; CI, confidence interval; RRT, Renal Replacement Therapy; GCS, Glasgow Coma Score.
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and none received intervention, while the red diagonal line 
indicates that all patients developed IH and all received 
intervention. The blue curve represents the net benefit of the IH 

prediction model. A greater distance between the blue curve and 
the two reference lines (green and red) corresponds to higher net 
benefit and clinical value. Within the threshold probability range 

FIGURE 4

Nomogram for predicting the risk of IH in ICU patients. RRT, Renal Replacement Therapy; GCS, Glasgow Coma Score.

FIGURE 5

ROC curve of the IH prediction model in ICU patients.
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of 0.04–0.98, the nomogram model demonstrated good 
clinical utility.

External validation

The external validation data were obtained from the general ICU 
of another center. ROC curve analysis was performed to evaluate the 
predictive ability of the model for IH risk in the external validation 
cohort, yielding an AUC of 0.846 (95% CI: 0.779, 0.913) (Figure 8). 
The IH prediction model for ICU patients demonstrated good 
discriminative ability in the external validation.

The Hosmer-Lemeshow goodness-of-fit test for the external 
validation of the prediction model yielded a χ2 value of 13.041 with a 
p-value of 0.071 (>0.05). The calibration curve demonstrated that the 
predicted probabilities of IH risk in the external validation cohort 
were close to the actual observed probabilities (Figure 9), indicating 
good calibration of the IH prediction model for ICU patients.

Discussion

ICU patients are critically ill with complex and rapidly changing 
conditions, and the occurrence of IH may further exacerbate clinical 
deterioration and complicate treatment (20). In the context of the 
widespread adoption of closed management in ICUs in China, healthcare 
providers, as the core of risk control, urgently need to improve their 
ability to early identify IH risks and implement targeted interventions to 
enhance patient outcomes, improve quality of life, and alleviate the 
burden on families and society. However, the current lack of effective 

tools for early identification of high-risk IH populations in ICUs may, to 
some extent, negatively impact patient clinical outcomes. Therefore, 
based on evidence-based methods and expert consensus, this study 
systematically integrated IH-related influencing factors and utilized the 
advantage of LASSO regression for automatic feature selection to 
construct a risk prediction model for IH in ICU patients, achieving early 
and accurate identification of high-risk IH populations. To improve the 
clinical utility of the model, the complex prediction formula was 
converted into an intuitive nomogram. The nomogram visually presents 
the contribution of each predictor, enabling clinicians to quickly obtain 
relevant indicators through bedside assessment or electronic medical 
records, thereby calculating individualized IH risk probabilities for 
patients (21). Moreover, the predictors incorporated into the nomogram 
in this study are routinely monitored in the intensive care unit setting, 
making them readily accessible and highly applicable in clinical practice.

The model included six predictors: catecholamines, RRT, invasive 
mechanical ventilation, lactate, GCS, and antipyretic analgesics. Among 
these, RRT, invasive mechanical ventilation, lactate, and GCS have been 
widely recognized as independent risk factors for IH in multiple studies 
(1, 22, 23), while the effects of catecholamines and antipyretic analgesics 
on IH have not been extensively studied or reported in previous 
literature. This study revealed that the use of catecholamines was 
significantly associated with an increased risk of IH, potentially due to 
their complex effects on hemodynamics and thermoregulation. While 
catecholamines reduce heat loss by constricting peripheral blood vessels, 
they may simultaneously exacerbate inadequate tissue perfusion and 
diminish heat production (24). Moreover, patients receiving 
catecholamines are typically in more critical conditions, often 
accompanied by metabolic disturbances and organ dysfunction, factors 
that inherently elevate the risk of hypothermia (25). Future studies 

FIGURE 6

Calibration curve of the IH prediction model in ICU patients. The calibration plot includes three reference lines: (1) the Ideal Line, representing perfect 
agreement between predicted and observed probabilities, which serves as the calibration benchmark; (2) the Apparent Line, showing the actual 
relationship between model predictions and observed event rates (closer proximity to the Ideal Line indicates better accuracy); and (3) the Bias-
Corrected Line, derived through bootstrap resampling to adjust for overoptimism and estimate the model’s stable performance in external populations.
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should further explore the impact of the types, dosages, and duration of 
catecholamines use on hypothermia, while accounting for potential 
confounding variables. Interestingly, this study also found that the use of 
antipyretic analgesics was associated with a reduced risk of IH, a finding 
that contradicts initial expectations. Potential explanations include the 
anti-inflammatory effects of antipyretic analgesics mitigating 
inflammatory responses, or the possibility that these drugs are 
preferentially administered to febrile patients (26). Further research is 
warranted to elucidate the underlying mechanisms and address potential 
confounding factors.

Model performance validation is a critical step to ensure reliability 
and generalizability (27). This study comprehensively evaluated the 
model’s performance through both internal and external validation. 
Internal validation, conducted using the Bootstrap method with 1,000 
repetitions, yielded a C-statistic of 0.851, indicating good internal 
consistency and stability while mitigating the risk of overfitting. For 
external validation, a temporal–spatial validation approach was 
employed, testing the model’s performance on new datasets from 
different centers and time points. This resulted in an AUC of 0.846 (95% 
CI: 0.779, 0.913), demonstrating satisfactory discriminative ability. 
Additionally, the Hosmer-Lemeshow goodness-of-fit test produced a 

p-value of 0.071, and the calibration curve closely aligned with the ideal 
curve, further supporting the model’s good calibration and consistency. 
Taken together, the internal and external validation results indicate that 
the model exhibits good discriminative ability, calibration, and 
generalizability, making it suitable for clinical application.

Nevertheless, this study has some limitations. First, this study 
did not assess the impact of massive transfusion on body 
temperature, potentially underestimating its contribution to 
hypothermia development. Second, the mechanisms underlying 
certain predictors (e.g., catecholamines and antipyretics) remain 
incompletely understood and require further investigation. 
Moreover, the model’s real-time dynamic prediction capability has 
not been evaluated. Future studies could explore integrating the 
model with continuous monitoring data to enhance its timeliness 
and clinical utility. Additionally, incorporating advanced intelligent 
technologies to link the model with real-time physiological 
monitoring data may enable dynamic risk prediction and early 
warning of IH, further improving its practical application. Finally, 
our findings may not be generalizable to Patients with abdominal 
compartment and abdomen apertum, as such cases were absent from 
our cohort due to our center’s treatment protocols. Future 

FIGURE 7

DCA of the IH prediction model in ICU patients. The green horizontal line assumes that no ICU patients developed IH and none received intervention, 
while the red diagonal line indicates that all patients developed IH and all received intervention. The blue curve represents the net benefit of the IH 
prediction model.
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multicenter studies should validate the impact on IH in these high-
risk subgroups.

Conclusion

The influencing factors of IH in ICU patients are multifaceted, 
with catecholamines, RRT, invasive mechanical ventilation, lactate 

levels, GCS scores, and antipyretic analgesics identified as 
independent predictors. Therefore, the prevention of IH in ICU 
patients requires a comprehensive and multidisciplinary approach. 
The early warning model for IH developed in this study demonstrates 
good discriminative ability, calibration, clinical utility, and 
generalizability. It can assist healthcare providers in effectively 
identifying high-risk patients at an early stage, facilitating timely 
interventions and ultimately improving patient outcomes.

FIGURE 8

ROC curve for external validation of the IH prediction model in ICU patients.

FIGURE 9

Calibration curve for external validation of the IH prediction model in ICU patients.
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