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Introduction: Cardiovascular diseases (CVDs) are complex and affect a large

part of the world’s population; early accurate and timely prediction is also

complicated. Typically, predicting CVDs involves using statistical models and

other forms of standard machine learning. Although these methods offer some

level of prediction, their black-box nature severely hinders the ability of the

healthcare professional to trust and use the predictions. The following are some

of the challenges that Explainable Artificial Intelligence (XAI) may solve since

it can give an understanding of the decision-making system of AI to build

confidence and increase usability.

Methods: This research introduced an intelligent forecasting system for

cardiovascular events using XAI and addressed the limitations of traditional

methods. This proposed system incorporates advanced machine learning

algorithms integrated with XAI to examine a dataset comprising 308,737 patient

records with features including age, BMI, blood pressure, cholesterol levels,

and lifestyle factors. This dataset was sourced from the Kaggle Cardiovascular

Disease dataset.

Results: Incorporating XAI offers an understandable explanation so that the

healthcare professional can understand and make the AI-driven prediction

trustworthy enough to improve the decision-making of treatment and care

delivery for the patients. The simulation results of the proposed system provide

better results than those of the previously published research works in terms of

91.94% accuracy and 8.06% miss rate.

Discussion: This proposed system makes it clear that XAI has the potential

to significantly improve cardiovascular healthcare by enhancing transparency,

reliability, and the quality of patient care.
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1 Introduction

In the past decade heart disease or cardiovascular has
remained the leading cause of fatalities in the whole world. The
computational prediction of cardiovascular diseases is a critical and
complex health issue in reality. It impacts the functionality of blood
vessels and causes coronary artery infections that incapacitate the
body of the patient, more so the adults and the elderly. According
to the World Health Organization (WHO), cardiovascular diseases
are the leading cause of death with more than 18 million deaths
in the world annually (1). The US spends one billion dollars per
day on the treatment of heart diseases (2). These heart diseases
(stroke, heart attack, hypertension etc.) are the leading cause of
death in America. Consequently, early prognosis of heart disease is
very crucial in nursing cardiac patients before they develop a heart
attack or a stroke (3).

Cardiovascular diseases can be detected via medical tests
and Electronic Medical Records (EMRs) extracted from wearable
sensors .Identifying useful risk factors for heart diseases from
electronic medical tests is challenging as physicians attempt to give
efficiency and accuracy in the diagnosis of the patients (4). These
EMRs are unstructured and have been growing in size day by day
due to the medical tests on the patients. Wearable sensors are also
used to record internal and external body signals as cardiovascular
checks for heart disease. However, wearable sensor data that aids in
predicting heart diseases contains signal artifacts such as missing
values and noise that reduce the system performance and yield
inaccurate outcomes (5, 6). To address these challenges, artificial
intelligence (AI) has become increasingly central to modern
healthcare, offering intelligent systems capable of processing large-
scale unstructured data with high precision. Advanced models such
as fuzzy deep learning architectures, quantum-enhanced networks,
and deep convolutional neural networks have demonstrated
success in detecting plant diseases, early-stage cancers, diabetic
retinopathy, and periodontal conditions (7–11). These innovations
highlight AI’s potential to improve diagnostic accuracy, optimize
data interpretation from EMRs and sensors, and support clinical
decision-making in cardiovascular care and beyond. Recent
studies have demonstrated that exosomal lncRNAs and nanozyme-
enhanced amplification techniques offer promising strategies for
the diagnosis and treatment of viral myocarditis (12, 13).

Immunomodulatory therapies using engineered extracellular
vesicles have also shown potential in targeting multiple pathways
involved in cardiac inflammation (14). First of all, integrating
wearable sensors and EMRs is a challenging and major approach
to managing cardiac patients. Secondly, feature selection of
data plays an important role in heart disease prediction, where
selecting the most important and useful features from the data
is most often difficult. Machine learning models are increasingly
being used for cardiac signal analysis and perioperative cognitive
disorder prediction, offering improved clinical decision-making
tools (15–17). On the molecular level, ALKBH5 and LINC00657
have been identified as key regulators in angiogenesis through
post-transcriptional and miRNA-mediated pathways (18, 19).
Epidemiological analyses employing large datasets and machine
learning approaches have revealed associations between metabolic
indicators—such as the triglyceride-glucose index and GPER
activity and cardiovascular risks in hypertensive populations (20,

21). As such, these diseases are compounded by their multifactorial
nature, hence calling for stringent and timely forecasts to enhance
early management. Even today, a science such as clinical cardiology
using all the modern possibilities in research and technologies
still struggles to predict subsequent cardiovascular events. They
include the constantly increasing volume of heterogeneous data,
variability of patients’ responses, and complex interactions between
genes, behavior, and environment that determine CVD risk (22,
23) .Advances in cardio-oncology have also been highlighted,
particularly in the context of panvascular medicine and its
therapeutic integration (24). Pediatric research points to a growing
concern in early-onset cardiac remodeling and rare syndromic
cases treated with innovative device interventions (25, 26).
Moreover, systemic inflammatory markers and micronutrient
levels, such as neutrophil-lymphocyte ratios and vitamin D, have
been linked to cardiovascular mortality and disease prevalence
(27, 28).

Nowadays, several systems have been proposed in order to
predict and diagnose cardiovascular disease using data mining
techniques and hybrid models as reviewed next in the related
work section (29–32). These traditional forecasting models in
cardiovascular diseases have been developed based on a statistical
approach and other classical machine learning techniques (33–
35). These methods are mostly based on pattern recognition to
make predictions of possible cardiovascular incidents. While they
provide a certain level of predictive capability, they tend to operate
as “black boxes,” offering little to no insight into how predictions
are made (36, 37). This lack of interpretability can cause trust issues
with the health care professionals and patients as clinicians need to
know why the predictions are made to make an appropriate clinical
decision on the patients. Therefore, these conventional models’
inherent opaqueness and non-interpretable nature become a major
drawback of their usage in clinical contexts.

Besides, the data used in the conventional models are
usually constrained to certain factors while the system requires
precise modeling of complicated scenarios. For example, blatant
demographic data, and medical history are significant; however, the
impact of life conditions, surroundings, and genetic factors cannot
be overlooked. The traditional approaches also do not consider the
dynamic nature of patient health, where changes in health status
and behavior significantly contribute to cardiovascular risk. With
this, the traditional models take more of a static position, which
can lead to making decisions and providing predictions that are
partly accurate and may not be characteristic of the current risks
of the patients. Furthermore, many of these models have been
developed using small or imbalanced datasets without adequate
external validation, raising concerns about their generalizability
and robustness across different populations. Such models may
overfit the training data and fail to perform well in real-world
clinical settings. Additionally, these models often lack mechanisms
to incorporate evolving patient data or adapt to changes in patient
health over time, limiting their clinical usefulness.

Explainable Artificial Intelligence (XAI) presents the paradigm
shift to these challenges. It allows explaining AI decision-making
processes to increase their interpretability and transparency (38,
39). This transparency becomes crucial in a clinical context
where the potential for AI-based decision-making may either
enhance the level of trust or reduce the effectiveness of clinical
decisions. By revealing how the AI reaches its conclusions, XAI
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builds trust and offers deeper insights into the potential and
existing factors influencing cardiovascular risk. This aspect of
explaining and justifying these predictions can help fill this gap and
formally integrate these advanced AI technologies into the clinical
environments for better recognition and acceptance.

To enhance the interpretability of the proposed model for
cardiovascular disease prediction, this study uses XAI methods
like SHAP and LIME. SHAP is derived from cooperative game
theory, which provides important values for all features and paints
a global and local picture of how each feature affects the model
outcomes (40). In contrast, LIME is used as an interpreter to explain
individual predictions based on converting a complex model to a
simpler one by showing those features whose change influences
specific results in a more easily understandable manner (41). These
methods improve the credibility and reliability of the discovered
patterns to the predictions made by AI, which makes them more
understandable to doctors.

The diagnosis of CVDs has been an active area of research
interest for several decades. Conventional approaches mainly focus
on statistical models and basic or standard pattern analysis methods
to establish risk factors and forecast occurrences. Former models
still rely on demographic characteristics and medical history,
including the Framingham Risk Score. Other established clinical
risk scores such as SCORE2 and ASCVD are also commonly
used benchmarks in clinical practice. However, these scores often
rely on a limited set of variables and assume linear relationships,
which may not fully capture the complexity of cardiovascular
risk factors. Although useful, these models are often static and
lack adaptability to individual patient variability. Furthermore,
the complexity of CVDs, influenced by genetic, environmental,
and lifestyle factors, requires more advanced methods for accurate
predictions. The research work (42) emphasized the importance
of machine learning in combating CVDs which are considered
significant worldwide challenges. It presented a conceptual AI
system that used algorithms such as Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and Random Forest (RF) to
improve the efficiency of CVD risk prediction using real-life clinical
data. The system’s validity proved its operational employability
and efficiency in dispensing risk evaluations. Further, it provided
preventive care suggestions concerning specific patients, creating
a culture of positive health management. This focused on the
predictive value of early CVD diagnosis using machine learning
that enabled effective individualized treatment to save patient’s
lives and minimize the general costs associated with such diseases.
However, the performance of the proposed AI-driven system
depends on the quality and coverage of the healthcare dataset used
for training and testing, which may be a significant challenge for its
wide applicability to diverse populations.

According to Swain (43), the prediction of cardiovascular
diseases underlined the importance of using machine learning
to enhance healthcare. Logistic Regression (LR), Random Forest,
Gradient Boosting, Support Vector Machine (SVM), and Naive
Bayes have been commonly explored for integrating cardiovascular
health conditions. The research indicated that when Naive Bayes
and Decision Trees are used together, their diagnostic accuracy is
higher than that of other classifiers. Dealing with noise and missing
values is one of the key steps in data pre-processing, and it should
be done carefully to improve the model’s performance. Measures
such as accuracy, sensitivity, and specificity made it possible

to determine whether these models were useful in identifying
at-risk individuals. In addition, data visualization techniques
were appreciated, and the relationships of numerous attributes
that can impact the probability of developing cardiovascular
diseases were explained. The literature highlighted the need
to embrace intelligent machine learning in combination with
sound approaches to handling the data to enhance cardiovascular
disease prediction.

In Nagavelli et al. (44), the study focused on the importance of
machine learning for predicting CVD, highlighting the application
of improved computational tools for better diagnostic capabilities
and patient care. They intended to emphasize the significance of
altering the baseline and the follow-up online datasets on CVD
events. The study also used logistic regression, SVM, naïve Bayes,
random forest, and KNN models that were selected depending on
their performance in accurately diagnosing the disease. A standard
procedure and rigorous validation process were followed, and the
reliability of these models was checked to estimate the likelihood of
CVD based on data input. The study found that CVD predictions
using machine learning techniques reduced classification errors
and increased the diagnostic reliability of the information. This
multifaceted approach underscored the significant applications of
artificial intelligence in clinical decision-making and expanded
the current body of knowledge on computational biology and
predictive modeling. The research (45), provided a thorough
analysis of existing literature on CVD risk prediction models.
The review, which included 212 articles from an initial 9965
references, identified 363 multivariable models, predominantly
from Europe, with 46% focusing on both fatal and non-fatal
coronary heart disease. Most models (58%) predicted risk over 10
years, although 13% lacked a clear prediction horizon. Common
predictors were smoking (90%) and age (88%), with 69% of models
being sex-specific. Significant methodological heterogeneity was
noted, inconsistent definitions of predictors and outcomes were
found, and many models were missing critical clinical and
methodological details. Validation was limited, with only 36%
undergoing external validation and 19% validated by independent
investigators, showing varied performance in discrimination and
calibration metrics. The authors recommend focusing future
research on validating and comparing existing models, adapting
them to local contexts, and incorporating new predictors to
improve predictive accuracy, highlighting the complexity and need
for enhanced methodologies in CVD risk prediction. The research
highlighted significant limitations in CVD risk prediction models,
including methodological heterogeneity and lack of external
validation, undermining their reliability and generalizability in
real-world settings.

The study (40) employs SHAP to explain three different ML
models used for determining critical clearing time in power systems
and to identify the impact of the variables for improved planning
and operations. In Wu et al. (41), a deep learning recommender
model is used for heart disease and diabetes with LIME explanation.
By providing interpretable results involving features CholCheck
and HighBP for heart disease, glucose for diabetes, and BMI and
age for diabetes, the operation is credible and beneficial for patients.

Table 1 includes several studies that address CVD prediction
and diagnosis with the help of different machine-learning
techniques and their performances. For instance, Kuhar et al.
(42) employed a Random Forest algorithm that yielded 90%
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TABLE 1 Comparative analysis of previously published works.

References Method Pre-
processing

layer

Outcome Decision making

Kuhar et al. (42) Random Forest (RF) X AUC 0.902 identified 90% of CVD
cases by screening 43%

Improved CVD risk prediction and
efficient healthcare practices

Nagavelli et al. (44) LR, SVM, Naive Bayes, RF, KNN X Improved diagnostic accuracy and
reduced misclassification

Reliable CVD predictions with
rigorous testing and validation

Damen et al. (45) Various European multivariable
models

× Highlighted heterogeneity and the
need for external validation

Recommended model validation and
adaptation to local contexts

Nguyen et al. (46) Genetic Algorithm (GA) + Fuzzy
Standard Additive Model (SAM),
Genetic SAM (GSAM)

× Superior medical diagnosis
performance at a lower cost

Effective for high-dimensional data,
useful in decision support

Latha et al. (47) Ensemble Classification (Bagging,
Boosting)

X Increased heart disease prediction
accuracy by 7%

Enhanced early-stage disease
prediction through improved weak
classifiers

Long et al. (48) Rough Sets + Interval Type 2
Fuzzy Logic System

× Dominated heart disease diagnosis
with fewer features

Supports decision-making in
high-dimensional data and
uncertainties

Mohan et al. (49) Hybrid RF with a Linear Model
(HRFLM, RF + Decision Tree)

× Achieved 88.7% accuracy in heart
disease prediction

Hybrid models improved
cardiovascular disease prediction
accuracy

Tuli et al. (50) Ensemble Deep Learning, Fog
Computing, IoT

X Efficient real-time heart disease
diagnosis in fog environments

Improved healthcare services through
secure and reliable fog computing

Samuel et al. (51) Artificial neural Network (ANN)
+ Fuzzy Analytic Hierarchy
Process (AHP)

X Achieved 91.10% accuracy,
outperforming conventional methods

Enhanced HF risk prediction with
attribute weight consideration

accuracy in identifying ASCVD with the optimal utilization of
healthcare resources. Nagavelli et al. (44) employed methods such
as Logistic Regression and Support Vector Machine and got
enhanced diagnostic efficacy. In these works, diagnostic accuracy
was improved, but the problem was that XAI did not receive
enough attention, and it is essential to improve the trust in these
models in the clinical field (47–51).

This research addresses the critical limitations of current
computational models for predicting cardiovascular diseases,
particularly their “black box” nature and lack of explainable
features, which hinder their widespread adoption in clinical
practice. Based on the state of the art presented, there is a clear need
for a study that bridges the gap between AI-driven predictions and
their reliable application in healthcare. By integrating Explainable
AI (XAI) techniques such as SHAP and LIME, this study aims to
develop an intelligent forecasting system that improves prediction
accuracy and offers transparent and interpretable insights. These
explainable features will empower clinicians to make more
informed decisions, enhancing the trustworthiness and utility of AI
predictions in real-life healthcare settings

2 Materials and methods

Cardiovascular disease risk assessment and healthcare
management have made significant strides toward a sophisticated
predictive capability; however, this field is plagued by several major
issues that hinder the development and application of accurate
prediction models. One major challenge is the complexity of CVD,
which includes one or several risk factors and comorbidity factors

that differ in different population groups. This complexity makes
it difficult to develop models that balance realism with specificity.
Additionally, the variability and quality of patient data present
another hurdle, as data often come from diverse sources with
different levels of accuracy and completeness, leading to potential
biases and inconsistencies in model predictions. Furthermore,
implementing artificial intelligence into clinical practice can
threaten the interpretability of AI decision-making. Clinicians
must be confident in the outputs produced by these models,
especially when it comes to cardiovascular risk assessments. The
absence of proper explainability architectures in many AI models is
another problem that hampers their adoption and implementation
in various contexts.

To address these challenges, explainable AI (XAI) must be
integrated, which can act as a solution. XAI helps make the
AI models better understandable by providing ways to interpret
how the AI model predicts. It lifts clinicians’ comfort because
they are able to know why a model has made a certain decision
while preventing the use of unsuitable models in practice. In
this research work, a model is proposed to make AI models
more transparent and understandable, where XAI facilitates their
integration into healthcare settings, enabling the development of
intelligent forecasting systems that are not only accurate but also
reliable, ethical, and widely accepted.

2.1 Proposed model components

Figure 1 illustrates the abstraction of the proposed model for
CVD prediction, which consists of five key components: input
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FIGURE 1

Abstraction of the proposed model.

layer, pre-processing layer, training layer integrated with XAI,
performance layer, and validation step.

• The input layer: Enables devices used in healthcare to
become more efficient by communicating sensory data
(wirelessly), potentially negating cellular communication
costs for those same products. The service-oriented layer
provides data collection and transmission, crucial for full-scale
healthcare management.
• Pre-processing layer: This layer is employed to manipulate the

data from input layers with the help of averaging smoothing,
normalization and cleaning techniques to make it more factual
before modeling. Processed data is saved on the cloud for
future reference.
• Training layer with XAI: Train data is again split into the 80%

for training and 20% of testing. This is data used to train
machine learning models on it. It combines XAI methods
like SHAP & LIME to generate human-friendly explanations
about the model predictions and make them transparent
andd interpretable.
• Performance layer: After training, evaluate the model

performance and store results in cloud-based data storage.
• Validation step: The model will get the learned data from

cloud storage to predict how heart disease will progress now.
It is a constantly learning and evolving system that learns
from previous predictions to make better decisions over
time.

2.2 Prediction model using XAI

Figure 2 shows the model to predict cardiovascular disease
using XAI. Data from various sensors and healthcare devices in a
dataset (52) are acquired by this model and passed through the pre-
processing layer for averaging smoothing, normalization, and data
cleaning to make the data accurate and relevant. Missing numerical
values were handled using mean imputation, and categorical
features were imputed using mode imputation where needed.

Feature selection was based on feature importance scores from tree-
based models. The pre-processed data is divided into two subsets:
Training Data Set: 80% and Testing Data Set: 20%. The training
data is then used to develop predictive models based on several
machine learning methodologies; on the other hand, the testing
dataset is kept safely in the cloud storage.

2.2.1 Explain ability using SHAP and LIME
The predictions generated by the machine learning models are

then subjected to XAI methods, which provide human-friendly
explanations, enhancing transparency and interpretability of the
outcomes. The primary goal of XAI in this context is to build
trust using SHAP and LIME in machine learning models (often
considered “black boxes”) by highlighting the importance of local
and global variables through post hoc explanations. XAI not only
helps clarify the black-box nature of these models but also advocates
for accountable AI by promoting the development of transparent
models. Making the decision process of Machine Learning models
more interpretable to the end-users and other stakeholders is a
central goal of explainable AI.

LIME and SHAP are the model-agnostic interpretation
approaches that keep high prediction performance and the
distinction between the model and the explanation. LIME offers
local explanations that explain the model’s behavior in the
proximity of a certain example, while SHAP provides global
explanations showing the impact of features in general on the
predictions. These methods enhance the contribution of local and
global variables in the decision-making process of the machine
learning models to be in a format that users and other stakeholders
will easily understand.

LIME: It is a well-known approach for local explanation that
builds local surrogate models that can explain complex machine
learning models. It does so by initially reprocessing the data into
a new dataset, using this newly generated data set to train the
interpretable model. To attain this aim, the loss function L is used
to minimize the optimality between the predictions of the original
model f as well as the interpretable surrogate model g. The function
is expressed as:

γ (x) = argmin
gεG(L(f , g,πx)+�(g)) (1)
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FIGURE 2

Proposed model.
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In Equation 1, the loss function L(f,gπx) involves the original model
f , the interpretable surrogate model g, and πx, which represents
the input features corresponding to instance x. This function
aims to minimize the difference between the predictions of the
two models while incorporating a regularization term �(g). This
local explanation model can also be used to explain individual
predictions, which could help explain why this specific decision was
made in this instance.

SHAP: SHAP is a global explanation technique that helps the
user quantify any feature’s contribution to the formation of the
model’s decision. This is based on the theory of Shapley values
used in cooperative game theory, here the worth of every feature is
computed for all possible scenarios of feature values. The formula
for calculating the Shapley value φj(x) is as follows:

ϕj(x) =
∑

s
⊆{x1, x2, . . . , xm} \{xj}

|s|!(m−|s|−1)!
m!

(val(s∪
{

xj
}
−val(s)) (2)

In Equation 2, the Shapley value ϕj(x) Incorporates parameters
such as s, which represents subsets of features excluding xj, and
m, the total number of features. The term val(s ∪ {xj} − val(s)
quantifies the contribution of feature xj to the prediction for the
subset s. SHAP values can be calculated to give an overall global

explanation of how each feature impacts the prediction and other
scalable models as well.

Partial dependence plots: It exhibits a single feature and how it
affects predictions, as PDP does. The partial dependence function
f̂(xs) is defined as:

f̂(xs)
1
n

∑
n
i = 1 f (xs, xc

i ) (3)

In Equation 3, the partial dependence function f̂(xs) is defined over
n instances of the dataset, where xs represents the specific feature of
interest and xc

i Denotes the complementary features. This function
computes the average prediction by fixing the value of xs while
varying xc

i . It offers a graphical view that makes it possible to
comprehend the global relationship between the features and the
outcomes predicted by PDP.

Subsequently, the predetermined criteria are checked in order
to ascertain if all the learning objectives have been met after
which the trained explanation patterns are tested for validity. If the
criteria are met, the trained model is saved on the cloud; otherwise,
the machine learning algorithm is recursively retrained until the
criteria are met. In the validation phase, the testing dataset and the
learned explanation patterns are imported from the cloud to predict
cardiovascular disease. These predictions are then re-evaluated, and
if the model is able to detect possible cardiovascular risks, the

FIGURE 3

Distribution of height by target variable.

FIGURE 4

Distribution of weight by target variable.
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system will send out an alert signifying the existence of the disease.
If no risks are identified, the process is discarded.

3 Results

Integrating XAI into intelligent forecasting systems presents
a transformative approach in the rapidly evolving field of
cardiovascular disease prediction. This research aims to model an
intelligent forecasting system that predicts cardiovascular risks
with better performance and provides clear, interpretable insights
into the decision-making process. By leveraging advanced machine
learning techniques combined with XAI, this proposed system
enhances the transparency and trustworthiness of predictions,
enabling healthcare professionals to understand better the
underlying factors driving each prediction. This approach aims
to bridge the gap between complex AI models and their clinical
applicability by applying XAI on a dataset, where 80% is used
for training and 20% for testing. This ensures that predictions
are accurate and explainable, making them reliable for critical
healthcare decisions.

Figure 3 provides a distribution of the “Height” feature
concerning a target variable through two key plots. The left plot
shows the density distribution of “Height” for both target variable

classes, using distinct colors to facilitate easy comparison between
the two groups. The second plot on the right focuses exclusively on
the positive class (where the target = 1), offering a more granular
view of its distribution. This plot includes a filled density curve
and a rug plot along the x-axis, highlighting individual data points,
giving insight into the concentration and spread of “Height” within
the positive class.

Figure 4 visualizes the distribution of the “Weight” feature
through two key plots. One plot shows the density distribution of
“Weight” for both classes of a binary target variable, while the other
focuses specifically on the distribution of “Weight” within one class,
like the positive class. The plots use distinct colors to differentiate
between classes, which helps understand the relationship between
“Weight” and the target variable within the dataset.

Figure 5 presents the distribution of Body Mass Index (BMI)
in relation to a binary target variable, likely representing the
presence or absence of heart disease. The left plot compares the BMI
distribution for both target classes, with distinct colors highlighting
the differences between those with and without heart disease. The
right plot zooms in on the BMI distribution specifically for the
positive class (where the target variable = 1, possibly indicating
heart disease), offering a more detailed view with a filled density
curve and a rug plot showing individual data points.

FIGURE 5

Distribution of BMI by target variable.

FIGURE 6

Distribution of alcohol-consumption by target variable.
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FIGURE 7

Pearson correlation.

Figure 6 shows the distribution of alcohol consumption in
relation to a binary target variable, likely indicating the presence
or absence of heart disease. The left plot compares the alcohol
consumption distribution between both target classes, using
different colors to distinguish between those with and without heart
disease. The right plot focuses solely on the positive class (where
the target variable = 1, possibly indicating heart disease), providing
a detailed view of alcohol consumption within this group with a
density curve and individual data points highlighted by a rug plot.

Figure 7 shows a Pearson correlation matrix, illustrating the
linear relationships between different features in the dataset. Each
cell represents the correlation coefficient between two variables,
with values ranging from −1 (strong negative correlation) to 1
(strong positive correlation). The color gradient highlights the
strength and direction of these correlations, with warmer colors
indicating stronger correlations and cooler colors indicating weaker
ones. This matrix helps quickly identify significant relationships
between variables.

Table 2 provides the confusion matrix for six machine learning
models (Decision Tree, Random Forest, Multi-Layer Perceptron,
XGBoost, LightGBM, and Catboost) across training (246,989
samples) and testing (61,748 samples) datasets. The True Positive
(TP) counts are consistently high, ranging from 226,307 to 226,679

for training and 56,532 to 56,667 for testing, indicating strong
performance in correctly identifying positive cases. However, the
True Negative (TN) counts are significantly lower, with values
ranging from 514 to 1,028 for training and only 103 to 191 for
testing, suggesting that the models are less effective at identifying
negative cases. The False Positive (FP) counts range from 18,942
to 19,548 for training and 4,802 to 4,890 for testing, while the False
Negative (FN) counts are relatively low, ranging from 340 to 712 for
training and 88 to 223 for testing. These facts highlight the models’
strengths in predicting positives and reveal challenges in accurately
identifying negatives.

Table 2 and Figure 8 also compare the performance of these
machine learning models across several key metrics, including
Accuracy (ACC), True Positive Rate (TPR), True Negative Rate
(TNR), False Negative Rate (FNR), False Positive Rate (FPR)
predictive values (PPV and NPV), Likelihood Positive Ratio (LR+),
and Likelihood Negative Ratio (LR-). All models show high
accuracy and TPR, indicating strong performance in identifying
positive cases. Among all models, LightGBM achieves the highest
accuracy on the testing set at 91.94%, making it the recommended
algorithm for this task.

The SHAP and LIME plots in Figures 9–12 were generated for
the LightGBM model to visualize the impact of each feature on
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TABLE 2 Confusion matrix and the performance matrices of the proposed system.

Confusion Matrix

Decision Tree Random Forest Multi-Layer Perceptron XGBoost LightGBM Catboost

Train
(246989)

Test (61748) Train
(246989)

Test
(61748)

Train
(246989)

Test
(61748)

Train
(246989)

Test
(61748)

Train
(246989)

Test
(61748)

Train
(246989)

Test
(61748)

TP 226443 56555 226307 56532 226563 56637 226642 56651 226679 56667 226631 56640

TN 892 171 1028 191 514 130 522 113 422 103 606 118

FP 19078 4822 18942 4802 19456 4863 19448 4880 19548 4890 19364 4875

FN 576 200 712 223 456 118 377 104 340 88 388 115

Performance Matrices

ACC 92.04 91.87 92.04 91.86 91.94 91.93 91.97 91.93 91.95 91.94 92.00 91.92

TPR 99.75 99.65 99.69 99.61 99.80 99.79 99.83 99.82 99.85 99.84 99.83 99.80

TNR 4.47 3.42 5.15 3.83 2.57 2.60 2.61 2.26 2.11 2.06 3.03 2.36

FNR 7.96 8.13 7.96 8.14 8.06 8.07 8.03 8.07 8.05 8.06 8 8.08

FPR 95.53 96.58 94.85 96.17 97.43 97.40 97.39 97.74 97.89 97.94 96.97 97.64

LR+ 1.044 1.031 1.051 1.035 1.024 1.024 1.025 1.021 1.020 1.019 1.029 1.022

LR- 1.780 2.377 1.545 2.125 3.136 3.103 3.076 3.570 3.815 3.912 2.640 3.423

PPV 92.23 92.14 92.28 92.17 92.09 92.09 92.10 92.07 92.06 92.06 92.13 92.08

NPV 60.76 46.09 59.08 46.14 52.99 52.42 58.06 52.07 55.38 53.93 60.97 50.64
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FIGURE 8

Performance matrices of the proposed system.

FIGURE 9

SHAP summary plot value impact on model output magnitude.

cardiovascular disease prediction. Figure 9 is a SHAP summary plot
for the testing set, showing the average impact of each feature on
the model’s output. The length of each bar represents the mean
absolute SHAP value, indicating the importance of each feature.
“Age_Category” has the highest impact on the model’s predictions,
followed by “General_Health” and “Smoking_History.” This plot
helps to understand the most influential features in the model’s
decision-making process.

Figure 10 is the SHAP beeswarm plot illustrating the impact
of various features on the model’s predictions for cardiovascular
disease. Age_Category, General_Health, and Smoking_History are
the most influential factors, with higher values (shown in red)

generally increasing the likelihood of a positive prediction for
cardiovascular disease. The plot highlights how individual features
contribute to the model’s output, with age being the most significant
predictor.

Figure 11 illustrates the SHAP waterfall plot, showing the
feature contributions to a specific individual’s cardiovascular
disease risk prediction. The true outcome—absence of
cardiovascular disease—is included to provide context for the
model’s prediction. The model predicts a final score of −5.23,
indicating a low risk of cardiovascular disease for this individual.
Smoking_History = 1.0 increases the risk, pushing the score higher,
while Age_Category = 1.0, General_Health = 4.0, and the absence
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FIGURE 10

SHAP beeswarm plot value impact on model output.

FIGURE 11

Feature contributions to cardiovascular disease risk prediction: a SHAP waterfall analysis.

FIGURE 12

LIME explanation of the proposed system.

of Arthritis and Diabetes lower the risk, pushing the score further
down. This clearly shows how each feature contributes to the final
prediction score, moving it toward a lower-risk outcome.

Figure 12 is a Local Interpretable Model-Agnostic Explanations
(LIME) explanation showing different features contributing to
the model’s prediction for cardiovascular disease risk. The figure
reveals that the model predicts a 99% probability that the individual
does not have the disease (class 0) and only a 1% probability
that they do (class 1). Key features such as Age_Category = 1.00,
General_Health = 4.00, the absence of Diabetes and Arthritis,
and a good health_status = 5.00 strongly influence the prediction
toward class 0, significantly lowering the perceived risk. Although

Smoking_History = 1.00 slightly increases the likelihood of class
1, its impact is not enough to outweigh the other features.
This LIME explanation effectively demonstrates how each feature
influences the model’s prediction, making the decision-making
process transparent.<H1>4 Discussion

The performance of machine learning models in identifying
cardiovascular diseases (CVDs) is crucial for their practical
utility. Previous models have shown potential, but their non-
interpretability can often nullify any benefit as they are too hard
to implement. This research gap is addressed by incorporating
Explainable AI (XAI) in the proposed system, which connects
advanced machine learning practices with their hands-on
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usage within healthcare. The proposed model achieves accurate
predictions and produces disentangled, explanatory factors
influencing decision-making. This transparency builds trust
between healthcare professionals and AI systems by clarifying
the rationale behind each prediction. The system is designed to
integrate with Electronic Medical Records (EMRs) and dashboards,
enabling clinicians to access real-time predictions during both
routine visits and emergencies. Furthermore, the interpretable
outputs help clinicians focus on modifiable risk factors like
smoking and BMI, enabling personalized prevention strategies
and potentially reducing unnecessary diagnostic tests, thereby
enhancing patient care quality.

Although the dataset used in this study (52) includes
features like height, weight, and lifestyle factors, it does not
provide detailed demographic or genetic profiles. We acknowledge
this limitation and applied standard pre-processing techniques,
including stratified sampling and cross-validation, to balance
representation. Future work will focus on incorporating more
diverse datasets to enhance model generalizability and address
potential biases. We also acknowledge that model performance
may vary across different healthcare systems and populations with
varying access to technology.

As shown in Table 3, the proposed XAI-based system
outperforms other models. Although previous methods, i.e.,
Ensemble Classification (47), Hybrid Models (49), and Artificial
Neural Networks (ANN), have accuracy rates between 85 and 91%,
the proposed system was able to perform at an overall rate of
pp more accurately than that with rate of The following section
presents a detailed discussion on model performance compared not
only with baseline random level but also associated works. This
shows how well the model works. While their Likelihood Ratios
(LRs) for true positives and negatives are quite similar to the other
models, using XAI techniques gives a significant advantage as it
makes it transparent whether these animals can be sacrificed or
should never be discharged.

By using SHAP and LIME together, we can see how the model
decides on much deeper layers rather than just pointing to its
accuracy. Even if the LRs result in minor improvements, they
more than make up that difference; however, explaining what each
feature represents for classification is excellent. We can determine
that the SHAP summary plot and beeswarm plot demonstrate
in plain sight the importance of features such as Age_Category,
General_Health, or Smoking_History on the model predictions.
This will allow healthcare providers to identify and focus on the
factors with real impact, significantly improving the model’s utility
for making critical clinical decisions.

Furthermore, these explanations are brought to life with local
insights through LIME visualization that apply on individual
predictions. In this case, Figure 12 demonstrates how LIME
opens the “black box” regarding model behavior on example
people to explain its rationale for these predictions. This level of
interpretability is significant for clinical use, where the reasoning
behind a prediction can guide decision-making and ultimately
impact individual care.

Table 3 shows that the model not only performed well
but could also be a strong tool for clinical use when coupled
with its interpretability. Although the Randomized Decision Tree
Ensemble (53) and SMOTE-based approaches (54) are within
this accuracy range, they lack an explanation for decision-making

TABLE 3 Comparison of the proposed system performance with
previously published approaches.

References Model Accuracy
(%)

Miss-
rate
(%)

Nguyen et al. (23) GA + Fuzzy SAM
(GSAM)

78.7 21.3

Latha et al. (47) Ensemble
Classification
(Bagging,
Boosting)

85.4 14.6

Long et al. (48) Rough Sets +
Interval Type 2
Fuzzy Logic
System

86 14

Mohan et al. (49) Hybrid Models
(HRFLM, RF +
Decision Tree)

88.4 11.6

Tuli. et al. (50) Ensemble Deep
Learning, Fog
Computing, IoT

89 11

Samuel et al. (51) ANN + Fuzzy
AHP

91 9

Otoom et al. (55) Naïve Bayes 84.5 15.5

SVM 84.5 15.5

Functional trees 84.5 15.5

Vembandasamy
et al. (56)

Naïve Bayes 86.4 13.6

Chaurasia e al. (57) J48 84.35 15.65

Bagging 85.03 14.97

Parthiban et al. (58) Naïve Bayes 74 26

Dwivedi et al. (59) Naïve Bayes 83 17

Classification tree 77 23

K-NN 80 20

Logistic regression 85 15

SVM 82 18

ANN 84 16

Mienye et al. (53) Randomized
decision tree
ensemble

93 7

Dritsas et al. (54) Synthetic minority
oversampling
technique
(SMOTE)

87.7 12.3

Proposed XAI model 91.94 8.06

besides the input value sent in the index cases. What makes the
proposed model different from traditional black-box methods is
its high predictive power while being simultaneously humanly
interpretable. Additionally, while the Framingham Risk Score and
echocardiography remain valuable clinical tools, the proposed
XAI system can complement these by providing transparent,
patient-specific risk explanations that integrate with existing
risk assessments. This synergy empowers clinicians to combine
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AI-driven insights with established clinical protocols for more
informed, personalized care.

The proposed system is an essential leap in CVD prediction due
to the real-time nature of predictions and explanations for these
predictions. This gives the model an accuracy of 91.94%. Because
it uses XAI techniques, besides being very effective in identifying
patients at risk, any clinician can trust that this is occurring
assertTrue. The addition of interpretability through SHAP and
LIME enables healthcare providers to visualize the factors driving
each decision, turning your model into a working instrument
for daily clinical practice. The model may be further refined by
improving data inputs (Lifestyle Risk factors) or generalizability
of the input using a larger dataset. Still, this method predicts
CARDIoGRAMplusC4D future CVD risk better than all standard
published models across diverse populations.

The proposed model competes with and even outperforms.
Table 3 shows that the proposed system is a competitive
achievement and has a greater interpretability ability than
many existing models. With the integration of XAI, this
system becomes an explainable and trustworthy high-performing
healthcare tool for real-world applications with imperviousness to
transparency & reliability. Its capability to provide transparency
and prescriptiveness for the prediction process distinguishes it as
a significant advancement in CVD prediction.

5 Conclusion

The major issues in cardiovascular disease detection include
difficulties in model interpretability, model applicability across
different populations, and high accuracy requirements. These
factors hamper the adoption of proper healthcare intervention
strategies; hence, to solve these problems, it is necessary to
contribute to early diagnosis, lower mortality rates, and universal
availability of healthcare services worldwide. To overcome these
challenges, this study proposes an XAI-based model that is
highly accurate but also explainable and interpretable, allowing
healthcare workers to understand why the model makes specific
predictions. With the implementation of XAI, the proposed system
is designed to perform effectively across different populations,
ensuring its applicability on a global scale. By addressing the
limitations of previous models, this system improves cardiovascular
disease detection and makes cutting-edge healthcare technologies
more accessible and dependable worldwide. The proposed system
achieves better results than previously published approaches,
regarding 91.94% accuracy and 8.06% miss rate.
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