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Background: Managing chronic viral infections like Hepatitis C virus (HCV)
often requires expensive healthcare resources and highly qualified personnel,
making e�cient diagnostic methods essential. Despite remarkable therapeutic
advancements for the treatment of HCV, several challenges remain, such as
improved fast diagnostic procedures allowing universal screening.

Objective: We propose a novel approach that combines Near-Infrared
Spectroscopy (NIRS) and clinical data with machine learning (ML) to improve
Hepatitis C Virus (HCV) detection in serum samples.

Methods: NIRS o�ers a fast, non-destructive, and residue-free alternative to
traditional diagnostic methods, while ML models enable feature selection and
predictive analysis. We applied L1-regularized Logistic Regression (L1-LR) to
identify the most informative wavelengths for HCV detection within the 1,000–
2,500 nm range, and then integrated these spectral features with routine clinical
markers using a Random Forest (RF) model. Our dataset comprised 137 serum
samples from 38 patients, each represented by a NIRS spectrum and clinical data
from blood tests.

Results: After preprocessing with Standard Normal Variate (SNV) correction and
downsampling, the best-performing RF model, which combined NIRS features
and clinical data, achieved an accuracy of 72.2% and an AUC-ROC of 0.850,
outperforming models using only clinical or spectral data. Feature importance
analysis highlighted specific wavelengths near 1,150 nm, 1,410 nm, and 1,927
nm, associated with water molecular states and liver function biomarkers (GPT,
GOT, GGT), reinforcing the biological relevance of this approach.
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Conclusions: These findings suggest that integrating NIRS and clinical data
through machine learning enhances HCV diagnostic capabilities, o�ering a
scalable and non-invasive alternative for early detection and risk assessment.
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NIRS, HCV, Hepatitis C, machine learning, permutation feature importance

1 Introduction

The use of rapid diagnostic tools, as demonstrated during the
COVID-19 pandemic, is crucial for preventing the rapid spread
of infectious diseases. These tools must be both cost-effective
and reliable, particularly in large-scale applications. Virus-induced
diseases, such as Hepatitis C virus (HCV) infections, further
underscore their importance. Managing chronic infections like
HCV often requires expensive healthcare resources and highly
qualified personnel, making efficient diagnostic methods essential.
Despite remarkable therapeutic advancements for the treatment of
HCV, several challenges remain, such as improved fast diagnostic
procedures allowing universal screening (1, 2), and the need for
better models to stratify hepatocellular carcinoma (HCC) risk
(3).

Near Infrared Spectroscopy (NIRS) is a promising alternative
to other diagnosis methods, such as gas chromatography, high-
performance liquid chromatography (HPLC) or PCR, as all
these methods are time-consuming, destructive and produce
contaminating residues (4). NIRS analyzes a sample by irradiating
it with light and measuring its absorption spectrum between 780
and 2,500 nm. The resulting spectrum consists of overlapping
absorption responses from various functional groups and
molecules present in the sample. Each of these responses is
characteristic of a specific molecular composition, forming what is
known as the global molecular fingerprint (GMF) (5). This unique
spectral signature, GMF, allows NIRS to differentiate samples with
distinct characteristics.

Biological samples are often found in aqueous solutions,
where water strongly absorbs in the NIRS range, influencing the
absorption patterns of other molecules in the sample. However,
the molecular structure of water itself exhibits specific spectral
patterns that reflect the composition of the surrounding solution.
Aquaphotomics is the study of these water-related spectral patterns,
providing valuable insights into the composition of biological
samples and enhancing the accuracy of NIRS analysis (6).

Machine learning has become an essential tool for analyzing
NIRS data, due to its ability to effectively manage complex, high-
dimensional datasets and enhance predictive accuracy. Over time,
various machine learning algorithms, ranging from traditional
methods to sophisticated deep learning models, have been applied
to advance the analysis of NIRS data (7). In agriculture and
food quality, the combination of NIRS and machine learning
techniques has been instrumental in characterizing products like
rice, mapping properties such as glycemic index and amylose
content to spectral data (8, 9). Similarly, in environmental
monitoring, the combination of machine learning and NIRS aids
in the rapid assessment of water pollution, with machine learning

models like support vector machines improving the prediction of
pollution indicators (10).

The use of machine learning techniques and NIRS offers
significant potential in medical diagnostics. When combined with
machine learning, NIRS enhances the detection and classification of
various medical conditions by analyzing complex spectral data. For
example, it has been employed to rapidly determine hemoglobin
concentration using a novel ensemble extreme learning machine
method, demonstrating its ability to provide quick, non-invasive
diagnostics (11). In oncology, NIRS, along with machine learning
algorithms, like support vector machines (SVMs), has been applied
to detect neutropenia, potentially reducing the need for invasive
tests (12). In the pharmaceutical industry, NIRS combined with
machine learning algorithms such as deep belief networks and
extreme learning machines is used to classify and identify drugs,
ensuring patient safety and improving drug quality control (13).
Moreover, NIRS combined with machine learning has been tested
in the early diagnosis of Type 2 diabetes, as demonstrated in
studies where aquaphotomics aids in identifying biomarkers for
the disease (14). A preclinical proof of concept demonstrated the
effectiveness of this tandem in fast viral detection, showcasing its
potential for early diagnosis and quick clinical decision-making.
Specifically, in the case of Hepatitis C, NIRS, coupled with L1-
penalized classification algorithms, has been successfully employed
to predict HCV positivity from serum microsamples (15, 16).

In this study, we present a proof of concept to explore the
integration of NIRS, machine learning, and clinical features from
routine blood tests for HCV detection. Our primary objective is to
assess whether this multimodal approach can provide meaningful
insights and serve as a foundation for more advanced applications,
such as predicting HCC risk. By leveraging the rapid, non-
destructive nature of NIRS alongside machine learning-driven
analysis of spectral and clinical data, we aim to address key
challenges in HCV diagnostics, including the need for faster, cost-
effective screeningmethods and improved risk stratificationmodels
for HCC. Our approach seeks to evaluate whether integrating these
diverse data sources can enhance diagnostic capabilities, ultimately
contributing to more accessible and scalable screening strategies,
trying to address the remaining challenges in the management of
HCV. To our knowledge, this is the first attempt to combine NIRS,
machine learning, and clinical features for HCV detection, offering
a novel perspective on their synergy. If successful, this methodology
could serve as a stepping stone for broader applications in
predictive medicine, particularly in early disease detection and
prognosis.

To achieve this, wemust effectively extract relevant information
from the complex spectral data. The spectrum obtained from
a sample using NIRS contains a vast amount of information,
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presenting a high-dimensionality challenge from a machine
learning perspective. In such cases, dimensionality-reduction and
feature selection techniques play a crucial role in identifying
the most relevant features for classification while enhancing
model interpretability and generalization. We propose to use L1-
regularized Logistic Regression (LR) as an initial step to reduce the
number of variables and identify the most informative wavelengths
for HCV detection. Additionally, we will implement multiple
feature selection techniques, including permutation importance
combined with ensemble-based methods, to further refine the
feature set, ensuring that the final model remains parsimonious
while retaining predictive power.

The remainder of the manuscript is organized as follows.
Section 2 describes the dataset used in this study, including its
sources and characteristics. Section 3 introduces the machine
learning models employed, detailing their architectures and
relevance to the problem at hand. Section 4 outlines the feature
importance methods used to interpret the models and identify
key features. Section 5 presents the experimental setup, including
evaluation metrics, training procedures, and validation strategies.
Section 6 discusses the results, highlighting the performance of the
models and the insights gained from feature importance analysis.
Section 7 provides a discussion of the findings, their implications,
and potential limitations, and a summary of the key contributions
and suggesting directions for future research.

2 Dataset

A total of 137 serum samples from 38 HCV patients were
randomly selected from theHCV biobank collection at the Hospital
Universitario Fundación de Alcorcón (HUFA) Biobank. These
samples were obtained between years 2000 and 2010. All patients
were initially treated with peginterferon plus ribavirin, as serum
samples were collected prior to the approval of direct-acting
antivirals (DAAs) in Spain in 2014. All non-responders were
subsequently rescued with DAAs. HCV infection was confirmed
using polymerase chain reaction (PCR) for HCV-RNA detection,
which is considered the gold standard for confirming active
HCV infection. Quantification of HCV RNA was performed
using the real-time PCR assay Roche COBAS 4800, following the
manufacturer’s protocol. The assay has a lower limit of detection
(LOD) of 7.6 IU/ml and a quantification range of 15 to 108 IU/ml
(1.2–8.0 Log IU/ml), and the lower limit of quantification (LLOQ)
is 15 IU/ml (17).

In addition to the serum samples, patient-associated clinical
and biochemical features were also available, including sex,
albumin levels (g/dl), international normalized ratio (INR), platelet
count (103/mcL), creatinine (mg/dl), bilirubin (mg/dl), alanine
transaminase (GPT, U/L), aspartate transaminase (GOT, U/L),
alkaline phosphatase (FAL, U/L), gamma-glutamyl transferase
(GGT, U/L), and age. Serum aliquots from the biobank were thawed
at room temperature, and 70µl were carefully transferred to sterile,
hermetic borosilicate glass vials under a biosafety hood by qualified
biobank personnel. The aliquots were then preserved on ice or
refrigerated at temperatures below 4◦C until spectral acquisition.
After this, they were ultrafrozen at −80◦C to ensure sample
integrity for long-term storage (18).

2.1 Ethical considerations

The study was approved by the HUFA Ethics Committee
for Research with Medicines (CEIm), Approval Number 20-208
22/12/2020, which authorized the project and granted a waiver of
informed consent for the use of biobank samples. This exemption
complied with national regulations and international ethical
standards, including the World Medical Association’s Declaration
of Helsinki.

Informed consent was waived because all serum samples had
been collected prior to the implementation of national legislation
requiring explicit consent for secondary use of biological materials.
At the time, sample collection followed the clinical and institutional
protocols in place, which did not mandate individual consent for
future anonymized research. All samples were fully anonymized
before analysis, and no clinical or identifying data were accessible
to the investigators. The ethics committee considered the historical
context and the absence of foreseeable risk to participants in
granting this approval, ensuring compliance with all applicable
legislation.

2.2 Acquisition of FT-NIRS spectra

Fourier Transform Near-Infrared Spectroscopy (FT-NIRS)
spectra were acquired using a Spectrum 100 N spectrophotometer
(PerkinElmer, Beaconsfield, UK) with Spectrum software (version
6.3.4). Samples were maintained at 37◦C using an AccublockTM

thermoblock, with temperature cross-checked regularly by
an independent thermometer to ensure accuracy. Spectral
measurements were performed in reflectance mode, capturing
data between 1,000 and 2,500 nm at a resolution of 0.5 nm. Each
spectrum represented an average of 64 consecutive measurements.
An empty vial served as the reference for baseline correction.

Table 1 summarizes the dataset, presenting the average and
standard deviation for each clinical feature, total and disaggregated
for HCV positive (detectable) and negative (undetectable) serum
samples. Last column shows univariate t-test using the presence of
the virus in the sample as independent variable.

3 Machine learning models

This section provides an overview of the machine learning
models used to analyze the NIRS data for detecting HCV in
serum samples. It begins with preprocessing techniques to correct
scattering effects and to reduce dimensionality in the NIRS data,
followed by the description of the machine learning used to predict
the presence of HCV, in particular, simple LR for initial model
selection, the use of l1-penalized LR for feature selection and
concludes with the integration of selected features and clinical data
using Random Forest (RF) to enhance prediction accuracy.

In this work, each sample is represented as the pair
(

xi, yi
)

,
where xi is a feature vector containing the 3,001 features
(wavelengths), and yi indicates the presence (yi = 1) or absence
(yi = 0) of HCV in the serum. In the final model, we integrate
the clinical data, so each sample would be represented as the pair
(

x
∗
i , yi

)

, where x∗i is an extended vector with NIRS data and clinical
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TABLE 1 Summary of clinical features.

Feature Total (n = 106) Undetectable HCV (n = 62) Detectable HCV (n = 44) p-Value

Sex F (33), M (73) F (16), M (46) F (17), M (27) –

Albumin (g/dl) 4.25± 0.29 4.25± 0.28 4.25± 0.31 0.99

INR 1.03± 0.09 1.02± 0.09 1.04± 0.08 0.17

Platelet (103/mcl) 162.24± 60.15 168.05± 62.62 154.05± 56.17 0.23

Creatinine (mg/dl) 1.02± 0.10 1.02± 0.10 1.02± 0.10 0.91

Bilirubin (mg/dl) 0.77± 0.35 0.78± 0.38 0.75± 0.31 0.71

GPT (U/L) 42.35± 33.87 28.31± 22.29 62.14± 37.57 <0.001*

GOT (U/L) 33.70± 21.06 25.71± 16.33 45.21± 21.93 <0.001*

FAL (U/L) 92.03± 51.54 93.08± 52.88 90.55± 50.15 0.80

GGT (U/L) 34.20± 31.38 26.02± 26.69 46.00± 34.08 0.002

Age 61.16± 10.35 59.13± 7.90 64.02± 12.60 0.03

Data are shown as mean ± standard deviation. Last column shows univariate t-test using the presence of the virus in the sample as independent variable. Sex (F: Female, M: Male). ∗ indicates

statistical significancy (p <= 0.05).

features, with a dimensionality (without any feature selection)
of 3012.

3.1 Preprocessing

Preprocessing of NIRS data is an important step, aimed
at minimizing the influence of physical phenomena that can
obscure the true chemical information within spectra. These
interferences, arising from instrumental noise, light scattering,
temperature fluctuations, variations in particle size, and path length
inconsistencies, can compromise the assumptions underlying the
classification models. To enhance model robustness and improve
data reliability, preprocessing techniques are typically categorized
into scatter-correction methods and spectral derivatives. In this
study, we are going to test two widely adopted scatter-correction
methods: Multiplicative Scatter Correction (MSC) and Standard
Normal Variate (SNV). Both approaches are designed to mitigate
the effects of light scattering and baseline shifts, ensuring that the
spectral data accurately represent the chemical composition of the
samples. By applying these methods, we aim to improve the signal-
to-noise ratio and enable the development of more accurate and
reliable models (19–21).

Assuming that an observed NIRS spectrum, x, as a function of
the wavelength, can be represented as:

x(λ) = αA0(λ)+ β + n(λ)

where, λ represents the wavelength, A0(λ) is the real spectrum,
α is a multiplicative scatter factor, β is an additive scatter factor,
and n(λ) is additive noise function of λ. Then, the MSC and SNV
preprocessing methods can be described as follows:

• MSC: Is a method that tries to estimate the multiplicative
and additive scatter factors (α, β) using a linear regression
model. This technique requires a reference spectrum, i.e.
an estimation of the real spectrum Â0(λ), ideally free of

scattering effects. The maximum likelihood estimator (the
average spectrum) is used as reference, assuming the scattering
effects for each realization are approximately white additive,
Â0(λ) = 1/N

∑

i xi(λ). So, for each NIRS data spectrum, the
scattering factors, α and β , are estimated using least squares
and then the spectrum is corrected:

xi(λ) ≈ α̂i + β̂iÂ0(λ)

xMSC
i (λ) =

xi(λ)− α̂i

β̂i

• SNV: It is a method that allows to correct vertical baseline
drift. It centers and standardizes each spectrum with respect
to its mean and standard deviation, so intensities after SNV
has zero mean and 1 standard deviation.

xSNVi =
xi(λ)− x̄i

σi

where, x̄i, and σi are the mean and standard deviation of the
spectrum, respectively.

NIRS equipment has a high resolution (0.5 nm), meaning
each spectrum has information from 3,001 wavelengths (from
1,000 to 2,500 nm), which could be highly redundant. While
this redundancy ensures that all relevant spectral information is
captured, it can pose challenges when using machine learning
models. First, it results in input features that are highly correlated,
which can lead to multicollinearity issues. Additionally, the high
dimensionality of the feature space can increase computational
complexity and the risk of overfitting, making dimensionality
reduction techniques necessary for efficient modeling. We propose
to explore, first, whether using downsampling techniques will
allow us to reduce the dimensionality while keeping the prediction
capabilities of machine learningmethods.We need to choose which
sample rate we will use to reduce the dimension of the problem
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while keeping all the information needed to produce adequate
results. We will explore several downsampling rates: 2, 4, 8, 16,
and 25; based on information from the average mutual information
from the NIRS spectra.

In order to deal withmissing values when incorporating clinical
data in the machine learning model, we propose to use the median
to impute the data.

3.2 Machine learning models

We propose a multi-stage machine learning pipeline to
optimize data preprocessing, feature selection, and predictive
model performance. Initially, we assessed various preprocessing
techniques using a baseline machine learning model, in particular a
LR model to determine their feasibility and impact on downstream
analysis. Next, we employed an L1-regularized LR to perform
feature selection on NIRS by promoting sparsity in model
coefficients, thereby identifying the most informative wavelengths.
Finally, we integrated these selected spectral features with available
clinical data and using a RF model to exploit both spectral
and clinical information for enhanced predictive accuracy. This
approach enabled a systematic refinement of the input feature space
while leveraging complementary data modalities to improve model
robustness and interpretability.

3.2.1 Logistic regression
LR is a binary classifier that models the probability of a given

input x, (in our problem the NIRS values) belonging to a class y = 1
against class y = 0. It is based on the logistic, or sigmoid, function,
which transforms a linear input (linear combination of the input
features, x) into a value between 0 and 1, interpreted as a probability
of belonging to class y = 1:

P(y = 1 | x) = σ (xTβ) =
1

1+ e−(xTβ)
, (1)

where σ is the sigmoid function, β is the vector of coefficients
associated with the vector of features x. These β coefficients are
estimated by minimizing a cost function (usually cross-entropy)
that measures the mismatch between the predicted class ŷi and the
real class yi:

J (β) = −
1

m

m
∑

i=1

[

yi log
(

ŷi
)

+
(

1− yi
)

log
(

1− ŷi
)]

,

wherem is the number of training samples.

3.2.2 L1-regularized logistic regression
To improve the generalization of LR models and prevent

overfitting, regularization techniques are introduced to penalize
overly complex models and encourage simpler, more robust
solutions. This is achieved by incorporating the norm of the model
coefficients into the objective function J(β), thereby discouraging
excessively large coefficient values (22, 23).

We propose to use L1-regularized LR, which adds a penalty
equal to the sum of the absolute values (L1 norm) of the coefficients.
The cost function is then:

JL1 (β) = J (β) + λ

n
∑

j=1

∣

∣βj

∣

∣ ,

The regularization strength is controlled by the parameter λ,
which determines the extent to which penalty terms influence
the model. L1-regularization, in particular, promotes sparsity by
driving certain coefficients to exactly zero, effectively performing
feature selection. In context of our problem, it identifies the most
relevant wavelengths (features in the vector x) that contribute
to predicting the presence of HCV, ensuring that only the most
informative wavelengths are retained in the model.

3.2.3 Random forest
RF is an ensemble learning algorithm that build a “forest”

(an ensemble) of uncorrelated decision trees and aggregates their
predictions to improve accuracy and robustness. For classification
tasks, it determines the final output using majority voting, while for
regression, it averages the predictions of individual trees (24, 25).

To build the RF model, the algorithm generates multiple
decision trees using bootstrapped samples from the training set.
At each node within a tree, a randomly selected subset of features
is considered when determining the optimal split. This approach
helps to reduce correlation among trees, enhancing the model’s
generalization ability.

The construction of each decision tree is guided by a
criterion that measures the quality of a split. In the case of
classification, the algorithm commonly uses the Gini Impurity
Index (although alternatives such as Information Entropy exist) to
evaluate candidate splits. The Gini Index quantifies the probability
of misclassifying a randomly chosen sample at a given node and is
defined for binary classification as:

G = 2p(1− p),

where p represents the proportion of samples belonging to one
of the classes. A pure node, where all samples belong to the same
class, has G = 0. To determine the optimal split at a given node,
the algorithm evaluates all possible feature splits and selects the one
that minimizes the weighted Gini Index of the child nodes, given
by:

Gsplit = pleft · Gleft + pright · Gright,

where pleft =
Nleft

N and pright =
Nright

N represent the proportion
of samples assigned to the left and right child nodes, respectively
(N is the total number of samples in the parent node), and Gleft and
Gright denote the Gini Indices of the child nodes.

RF is widely used for its robustness, ability to handle high-
dimensional data, and capability to provide reliable feature
importance estimates, making it a powerful tool for various
classification and regression tasks.
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4 Feature importance methods

To enhance the predictive performance of our model
combining NIRS and clinical data, we employ two statistical
methods to perform feature selection based on feature importance
derived from RF. Feature selection is crucial in high-dimensional
datasets to reduce redundancy, improve model interpretability, and
mitigate overfitting. By leveraging feature importance scores, we
systematically identify the most relevant predictors that contribute
to the model’s performance predicting HCV presence in the serum
samples. In this section, first, we describe an agnostic method to
estimate the importance: permutation feature importance (PFI),
and then, two statistical approaches to select features that are
relevant based on PFI to refine the feature set, ensuring a robust
and efficient predictive framework.

4.1 Permutation feature importance

PFI is a model-agnostic technique for quantifying the
contribution of individual features to a predictive model’s
performance. In the context of our RF-based feature selection
framework, this method provides an intuitive measure of feature
relevance by assessing the impact of randomly shuffling each
feature on model accuracy. PFI shuffles the values of a certain
feature and see how it affects the performance of the model, then
a feature is considered “important” if the performance decreases
after shuffling its values (26, 27).

Consider a trained model f̂ , a feature matrix X,a response
variable y and a performance measure M(y, f̂ ), the PFI algorithm
can be described as follows:

1. Compute the performance of the orginal model Morig =

M(y, f̂ (X)) (e.g., mean squared error).
2. For each feature j ∈ {1, . . . , p}:

Repeat n times:

(a) Generate feature matrix Xn
perm by permuting feature j in the

data X. This breaks the association between feature j and the
true outcome y.

(b) Estimate performanceMn
perm = M(y, f̂ (Xn

perm)) based on the
predictions of the permuted data.

(c) Calculate permutation feature importance as:

FIjn = Mn
orig −Mn

perm

The result is a matrix of permutation importance score FI ∈

R
p×n.

4.2 Feature selection using confidence
interval based on PFI

To assess the statistical significance of feature importance
scores obtained usign PFI, we estimate empirical confidence

intervals (CIs) from the resulting distribution. The PFI method
generates a matrix FI ∈ R

p×n, where p is the number of features,
n is the number of permutations (shufflings). Each entry of this

matrix, FIij, represents the importance score of feature i in the j-th
permutation.

4.2.1 Computing empirical confidence intervals
For each feature i, we obtain an empirical distribution of

importance scores:

FIi = {FIi1, FIi2, . . . , FIin}.

Using this distribution, we compute the empirical (1 − α)
confidence interval based on the percentiles of the observed values:

CIi =
[

Q α
2
(FIi),Q1− α

2
(FIi)

]

,

where Qp(FIi) denotes the p-th percentile of the empirical
distribution of FIi.

4.2.2 Feature selection criterion
A feature i is considered non-informative (i.e., unimportant) if

its confidence interval contains zero:

0 ∈ CIi.

This indicates that the feature’s importance is not statistically
different from 0, and thus, it is discarded from the predictive model.

4.3 Permutation importance feature
selection

We also consider a modified version the Permutation
Importance (PIMP) method proposed by Altmann et al. (28). In
this method, to preserve the relation between features, the response
variable y is permuted. This approach determines the importance
of a feature by testing if its importance score is significantly greater
than what would be expected by chance. We compare the observed
importance of a feature (the Gini importance) with a distribution
of importances obtained by randomly permuting y. This is a way of
creating a null distribution of feature importances, since under the
null hypothesis we assume no relation between the features and the
response variable.

RF provides a built-in feature importance method based on
the contribution of each feature in the trees that form the forest.
At each split of a tree, the improvement in the criterion (in our
case the Gini Index) is recorded as the split importance for the
feature used in that split. For every feature, the split importance
from all the nodes are summed up. This gives a measure of how
much a feature contributes to the model. These importances are
normalized by dividing by the total importance (sum of all the split
importances) to ensure they are scaled between 0 and 1. This is the
Gini importance (GI) for each feature.

The PIMP algorithm can be described as follows. Consider a
trained model f̂ , a feature matrix X and a response y.

1. Store the GI for all p features using f̂ . These are the baseline
importances. GIb,i is the GI for the feature i estimated by the
baseline model, i.e. the model trained with the original X feature
matrix, and the original y response variable.
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FIGURE 1

Overview of the multi-stage machine learning pipeline for HCV detection using FT-NIRS data. Serum samples are analyzed generating spectral data.
Various preprocessing techniques are evaluated, and the best approach is selected. An L1-penalized LR model is then applied to identify the most
relevant wavelengths for HCV detection. These selected wavelengths are combined with clinical data to construct RF classifier. PFI is employed to
refine the model by selecting the most critical features. Finally, the optimized RF model is used for classification, and final performance metrics and
key features are reported.

2. Repeat n times:

(a) Permute the response variable y to obtain y∗j , which the
permuted version of y for the j-th permutation.

(b) Retrain the model using the original feature matrix X and the
permuted response y∗j .

(c) Store the GI of the features for the retrained model. These
GIs are estimated under the null hypothesis. GIH0 ,ij is the GI
importance for feature i, in the j-th permutation, under the
null hypothesis, i.e., using the permuted response variable y∗j .

3. For each feature:

(a) Estimate the empirical cumulative distribution function
(ECDF), F̂(x), of the feature’s GI, using GIH0 ,ij which consists
of n GI values (number of permutations j = 1, . . . , n) for the
feature i, obtained under the null hypothesis H0.

(b) Compute the p-value as the proportion of permutation-based
GI greater or equal to the baseline importance:

p− valuei = 1− F̂(x = GIb,i)

The p-value is used to assess whether a feature is independent of
the response variable. By comparing it to a significance level (α), we
determine whether to reject the null hypothesis. If the p-value < α,
there is evidence that the feature is associated with the response
variable, suggesting its importance in the analysis.

5 Experimental setup

Our experimental setup follows a multi-stage machine learning
approach to preprocess and analyze the data effectively. The
experiment consists of four key steps. The four stages are:

1. Preprocessing. We identify the optimal preprocessing
technique for NIRS data by evaluating different combinations
of methods. To determine the best approach for HCV serum

detection, we use a simple LR model. Specifically, we consider
two scattering correction methods, MSC and SNV, along with
eight different downsampling rates (2,4,8,16, and 25), we also
include the option of no preprocessing at all, resulting in a total
of 18 NIRS preprocessing combinations.

2. NIRS wavelength feature selection. After selecting the optimal
preprocessing technique, we apply a feature selection method
to identify the most relevant wavelengths for HCV detection.
Specifically, we use a L1-penalized LR model, which encourages
sparsity by assigning zero coefficients to less important
wavelengths, effectively selecting only the most informative
features.

3. RF model and integration with clinical data. In the third
stage, we integrate the selected wavelengths and preprocessing
technique with clinical patient data (Table 1) to build a RF
model, aiming to enhance the predictive power for HCV
detection. Clinical features that are corroboration of the
presence of the HCV were discarded (results from biopsy,
presence of cyrrhosis, etc). Features with more than 20% of
missing values were also discarded. Table 1 shows the clinical
features finally used in the model. Missing values for the
remaining features were impute using the median value.

4. Permutation importance statistical feature selection. In the
fourth stage, we use PFI methods to refine the RF model by
identifying the most critical features for classification, ensuring
that only the most relevant variables contribute to the final
prediction.

Figure 1 illustrates the complete experimental setup.
We split data set keeping 75% of the samples for training set and

25% for test set. In every stage of the experimental setup, we used
four-fold cross-validation to tune hyperparameters, preprocessing
schemes or model selection. Since multiple serum samples were
collected from the same patient at different treatment time points,
we adopted a patient-wise approach for both the training-test split
and cross-validation. This ensured that all samples from a given
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TABLE 2 Preprocessing NIRS results for the two best schemes.

Dataset Accuracy f1 score ROC AUC Sensitivity Specificity

LR sr = 2.0 + SNV 0.5556 0.3333 0.575 0.250 0.800

LR SNV 0.5556 0.3333 0.587 0.250 0.800

LR, logistic regression; sr, downsampling rate; SNV, standard normal variate.

patient were assigned to the same subset or fold. Notably, because
these samples were taken at different stages of treatment, they could
have different target values (i.e., HCV detectable or undetectable).

We used several performance metrics to evaluate the machine
learning models. The chosen metrics are accuracy, F1-score,
sensitivity, specificity, and area under the curve ROC (AUC-ROC)
(29). Accuracy is the proportion of correct predictions. F1-score is
the harmonic mean of precision and recall and is particularly useful
in addressing class imbalance. Sensitivity (also known as recall
or the true positive rate) measures the proportion of actual HCV-
positive cases that are correctly identified by the model. Specificity
(also known as the true negative rate) assesses the proportion
of non-HCV cases that are correctly identified by the model.
AUC-ROC evaluates the model’s ability to distinguish between
HCV-positive and HCV-negative cases across various decision
thresholds. By plotting the true positive rate (sensitivity) against
the false positive rate (1-specificity), the AUC-ROC provides a
summary measure of the model’s discriminatory power, where a
higher value indicates better performance. To assess the variability
in performance metrics, we employed bootstrap resampling on the
test set. Specifically, we generated multiple resampled datasets by
sampling with replacement from the original test set, and evaluated
the performance of the model on each of these bootstrapped
resamples. This approach allowed us to estimate the standard
deviation of the performance metrics, providing a measure of their
reliability.

6 Results

In this section, we present the results of our approach, following
the same structure and order as outlined in the Section 5.
Each subsection corresponds directly to a specific stage in the
experimental process, allowing for a clear and logical progression of
the results. This alignment ensures that the reader can easily trace
the methodology and understand how the results relate to the steps
we followed during the experiment.

6.1 Preprocessing

The results demonstrated comparable performance across
various preprocessing schemes. To ensure a fair comparison, we
selected the two most effective approaches for further stages.
Table 2 presents the performance metrics, including AUC, F1-
score, accuracy, sensitivity and specificity for these two optimal
preprocessing methods.

We identified two optimal preprocessing strategies: (1)
applying scattering correction using SNV with a downsampling
rate of 2.0 and (2) performing SNV correction without any
downsampling.

For subsequent analysis, we used two distinct NIRS data
representations, each corresponding to one of these preprocessing
methods. The first data representation, consisted of input vectors
x2.0+SNV of 1,500 absorbance values corresponding to 1,500 different
wavelengths, obtained using SNV correction with a downsampling
rate of 2.0. The second data representation consisted of vectors xSNV
with 3,001 absorbance values corresponding to 3,001 wavelengths,
generated using SNV correction without downsampling.

6.2 NIRS wavelength feature selection

In this section, we present the results of the feature selection
process applied to the NIRS data. To identify the most informative
wavelengths for predicting HCV presence, we employed an L1-LR
model. Figure 2 illustrates the selected wavelengths, marked by dots
along the NIRS curve, for both preprocessing techniques: standard
normal variate (SNV) and its extended version (2.0+SNV).

The identified key wavelengths are consistent across both
preprocessing methods, with clusters centered around 1,100, 1,420,
1,935, 2,230, and 2,485 nm. Notably, the clusters at ∼1,100, 1,420,
and 1,935 nm align closely with the main absorption peaks of
water (30), suggesting a strong relationship between these spectral
features and water molecular structure variation in the samples.

After this feature selection stage, the final input
vectors representing NIRS data will have the following
dimensionality:x2.0+SVN ∈ R

55,xSVN ∈ R
168.

In both cases, the feature selection procedure created a drastic
dimensionality reduction from 1,500 to 55 and from 3,000 to 168
features.

6.3 RF model and integration with clinical
data

In this subsection, we present the results for building a RF
model to predict the presence of HCV in serum samples combining
NIRS data and clinicla data. The data from NIRS was the result of
applying feature selection using L1-regularized LR, and keeping the
two preprocessing schemes that provided better results, i.e., we are
going to use x2.0+SVN ∈ R

55, xSVN ∈ R
168 and concatenate these

vectors with clinical data vector, xCD ∈ R
11. So the final input vector

that combines both sources of information (NIRS and clinical data)
would be:

x
∗
2.0+SNV =

[

x2.0+SNV

xCD

]

∈ R
66, x

∗
SNV =

[

xSNV

xCD

]

∈ R
179

Table 3 presents the performance of the RF models . In order
to compare if combining NIRS and clinical data improved the
prediction capabilities of the model, we also compared with a RF
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FIGURE 2

Spectrum preprocessed by SNV (green) and 2.0+SNV (blue). Relevant wavelengths according to L1-regularized LR are highlighted in the figure using
a for SNV and N for 2.0+SNV. The NIRS curves are shifted for visualization purposes.

TABLE 3 Performance results, mean ± standard deviation (accuracy, F1-score, ROC-AUC, Sensitivity and Specificity), for RF models combining NIRS and

clinical data (RFNIRS+CD) for the two preprocessing schemes (SNV and 2.0+SNV).

Dataset Accuracy f1 score ROC AUC Sensitivity Specificity

RFCD 0.67±0.12 0.62±0.12 0.74±0.12 0.62±0.18 0.70±0.15

RFNIRS
2.0+SNV 0.67±0.11 0.57±0.12 0.65±0.13 0.50±0.18 0.80±0.14

RFNIRS
SNV 0.61±0.11 0.53±0.12 0.64±0.15 0.50±0.18 0.70±0.15

RFNIRS+CD

2.0+SNV
0.72±0.11 0.67±0.12 0.85±0.11 0.63±0.18 0.80±0.12

RFNIRS+CD
SNV 0.67±0.11 0.57±0.11 0.74±0.10 0.50±0.16 0.80±0.15

For comparison we include the results of RF model using only clinical data (RFCD, first row) and RF model using only NIRS data (RFNIRS). Best results are highlighted in bold font.

model trained only using clinical data (xCD), denoted as RFCD, and
also two RF model trained only using NIRS data (after feature

selection and for both preprocessing schemes), denoted as RFNIRS
2.0+SNV

and RFNIRS
SNV . When using only clinical data in the model (RFCD),

we observed solid classification performance (Accuracy = 0.667, F1
score = 0.625, ROC AUC = 0.738). NIRS data alone, preprocessed
either with SNV or 2.0+SNV (RFNIRS

2.0+SNV , RFNIRS
SNV ), yields lower

performance across all metrics. However, combining clinical data
with NIRS features improved model performance.

The highest accuracy (0.722) and ROC AUC (0.850) were
achieved when integrating clinical data with NIRS preprocessed
using SNV and a downsampling rate of 2.0 (RFNIRS+CD

2.0+SNV ). This
combination also improved sensitivity while maintaining high
specificity. This combination seemed to maintain the good
specificity performance obtained using NIRS data and good
sensitivity performance obtained using the clinical data.

These results highlighted the advantage of integrating clinical
and NIRS data in RF models, demonstrating that multimodal
approaches outperformed models relying on a single data source.

6.4 Permutation importance statistical
feature selection

In the final stage of the proposed approach, we evaluated
the relevance of performing feature selection on the RF models
that combined NIRS and clinical data (RFNIRS+CD

2.0+SNV , RFNIRS+CD
SNV ). We

compared two permutation importance methods, the first one
based on PFI and using confidence intervals (PFI-CI) described
in Section 4.2, and the second one based on PIMP and using
hypothesis test described in Section 4.3.

Table 4 shows the performance of models after applying feature
selection to the best-performing model from the previous stage
(RFNIRS+CD

2.0+SNV ). The first row shows the results from the model with
all the features for sake of comparison.

After feature selection, models using PFI-CI exhibited a drop
in accuracy (0.556) and ROC AUC (0.65), suggesting that some
important predictive features were removed. However, models
using PIMP retained better performance, with accuracy remaining
at 0.667 and sensitivity improving to 0.75. They obtained same
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TABLE 4 Performance results, mean ± standard deviation (accuracy, F1-score, ROC-AUC, Sensitivity and Specificity), for feature selection using the RF

models combining NIRS and clinical data (RFNIRS+CD) for the two permutation methods, PCI-CI and PIMP.

Dataset Accuracy f1 score ROC AUC Sensitivity Specificity

RFNIRS+CD
2.0+SNV 0.72±0.11 0.67±0.12 0.85±0.11 0.63±0.18 0.80±0.12

RFNIRS+CD
2.0+SNV PFI-CI 0.56±0.11 0.56±0.11 0.65±0.14 0.63±0.18 0.50±0.16

RFNIRS+CD
2.0+SNV PIMP 0.67±0.11 0.67±0.11 0.76±0.11 0.75±0.17 0.60±0.16

RFNIRS+CD
SNV PFI-CI 0.56±0.11 0.56±0.12 0.71±0.14 0.63±0.16 0.50±0.16

RFNIRS+CD
SNV PIMP 0.67±0.11 0.67±0.11 0.73±0.13 0.75±0.15 0.60±0.16

For comparison we include the results of the best RF model using all the features (RFNIRS+CD2.0+SNV , first row). Best results are highlighted in bold font.

F1-score as the best model and moderate good results in ROC-
AUC. This trend is observed both with and without downsampling,
where PIMP consistently outperformed PFI-CI.

Feature selection resulted in models with fewer variables
and higher sensitivity, which can be crucial in certain clinical
applications. Additionally, this reduction in feature complexity
facilitated interpretability, and potentially created a more
parsimonious model.

Both RFNIRS+CD
SNV , RFNIRS+CD

2.0+SNV after performing feature selection
using PIMP selected the following clinical data GPT, GOT and
GGT biomarkers associated with liver function and metabolic
processes, suggesting their potential relevance in the prediction of
the presence of HCV in the serum sample above the other clinical
variables considered.

Table 5 shows the wavelengths selected after performing PIMP
for both models. These selected wavelengths correspond to
molecular vibrational modes primarily associated with different
states of water, including free water, protein-boundwater, andwater
confined in biological matrices. The presence of these water-related
bands aligns with findings in aquaphotomics, a field that explores
the role of water as a molecular mirror reflecting physiological and
biochemical changes.

In particular, the wavelengths around 1,150–1,160 nm are

linked to free and bulk water, as well as water states associated
with biological processes, such as microalgal hydration and liver
function. Similarly, the bands near 1,410–1,417 nm correspond

to free water in human blood and quasi-free water molecules
interacting with ions, which have been positively associated with
HCV presence in prior studies. The selection of these wavelengths

suggests that water structure alterations in blood could serve as key
indicators in the classification task.

Additionally, the wavelengths at 1,927–1,928 nm point to
protein-bound water, which has been observed in muscle tissues
and keratin hydration processes, further emphasizing the biological
relevance of water interactions. Lastly, the bands near 2,252–2,270
nm correspond to lactate and other metabolites, which are known

to be involved in metabolic responses, particularly in liver-related

conditions.
These findings reinforce the potential of NIRS-based

aquaphotomics for capturing subtle biochemical signatures
in clinical data. The fact that PIMP consistently selected

wavelengths linked to water and metabolite interactions suggests
that these spectral features play a crucial role in distinguishing

between clinical conditions, possibly reflecting underlying
pathophysiological mechanisms.

TABLE 5 Metabolomic assignment of the most significant wavelengths (λ)

identified using permutation feature selection approach PIMP from the RF

models (RFNIRS+CD

SNV
and RFNIRS+CD

2.0+SNV
).

RF model and λ Related molecular group

RFNIRS+CD
SNV PIMP

1,136.5, 1,413.5, 1,927.0,
2,235.0

1,150 water without active H-bonds (34)

1,150 free water. Plant, canopy (35)

1,153 water. Microalga A. erici (39)

1,160 liquid water near boiling point (36)

1,160 bulk water (36)

1,155 free water related with HCV presence (15)

1,416 free water in human blood (14)

1,417 C6 (1,413–1,418) free water (S0), quazi-free
water molecules. Water molecules confined in the
local field of ions. Water with free OH− . Positively
related with HCV presence (15)

1,927 protein-bound water in porcine muscle (37)

1,928 water molecules with one H-bond, S1 (36)

1,928 primary keratin hydration water in animal
stratum corneum of skin (38)

RFNIRS+CD
2.0+SNV PIMP

1,407.0, 1,410.0, 1,417.0 1,408, 1,416 free water human blood (14)

1406, 1,417 free water (S0), quazi-free water
molecules. Water molecules Confined in the local
field of ions. Water with free OH− . Positively
related with HCV presence (15)

7 Discussion and conclusions

In this study, we explored the integration of NIRS with clinical
data and machine learning techniques to improve the detection
of HCV in serum samples. Our approach leveraged the non-
destructive and rapid diagnostic capabilities of NIRS, combined
with the predictive power of machine learning, to create a robust
framework for HCV classification.We identified that preprocessing
NIRS data using SNV with a downsampling rate of 2.0 provided
the best balance between dimensionality reduction and predictive
accuracy. This preprocessing step significantly reduced the number
of wavelengths from 3,001 to 1,500, while maintaining the integrity
of the spectral information. Using L1-regularized LR, we were able

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2025.1596476
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Pérez-Gómez et al. 10.3389/fmed.2025.1596476

to further reduce the dimensionality of the NIRS data, selecting
only the most informative wavelengths for HCV detection pointing
to potential biomarkers related to disease biochemical mechanisms.
This step was crucial in improving model interpretability and
reducing overfitting. By combining the selected NIRS wavelengths
with clinical data, we observed a significant improvement in model
performance. The RF model that integrated both NIRS and clinical
data achieved the highest accuracy (0.722) and ROC AUC (0.850),
outperforming models that used either NIRS or clinical data alone.
We employed PFI methods to refine the feature set, ensuring that
only the most relevant features contributed to the final model. The
PIMP method, in particular, demonstrated superior performance
in maintaining predictive accuracy while reducing the number of
features. The selected wavelengths were found to be associated with
watermolecular structures, such as free water, protein-boundwater,
and water confined in biological matrices. These findings align with
previous studies in aquaphotomics, suggesting that water structure
alterations in blood and tissues could serve as key indicators in the
classification task.

Beyond classification performance, an important aspect of
our approach is the potential for biological insight gained
through the relationship between selected wavelengths and specific
molecular groups present in serum samples. By linking spectral
features to different biochemical components, we can deepen
our understanding of the molecular alterations associated with
HCV infection, potentially uncovering patterns relevant to disease
progression and host response. By emphasizing feature selection
and model simplicity, we aimed to enhance generalization
capabilities, reducing the risk of overfitting and increasing the
potential for real-world applicability.

These findings align with previous studies in NIRS, suggesting
that water structure alterations in blood and tissues could serve
as key indicators in the classification task (15, 16). We can
extract information regarding the overtones of the spectral pattern
of water, which mirrors the rest of the components of the
solution. This process can be achieved by means of aquaphotomics.
Aquaphotomics is the study of this spectral pattern and it provides
information regarding the composition of the sample when its
solvent is water, increasing the accuracy of the results (6). However,
our study extends these findings by integrating clinical data, which
significantly enhances the predictive power of the model. This
multimodal approach aligns with the growing trend in biomedical
research, where combining multiple data sources (e.g., imaging,
genomics, and clinical data) has been shown to improve diagnostic
accuracy and provide deeper insights into disease mechanisms.

The biological rationale behindNIRS is that it detectsmolecular
overtones and combination bands related to O–H, N–H, and C–
H bonds, which are abundant in biological samples due to the
presence of water, proteins, lipids, and small molecules. Water
constitutes 92%–94% of serum, and the O–H bonds established
dominate NIR spectrum (31). From a clinical standpoint, HCV
infection leads to well-characterized biochemical alterations in
the serum, including changes in hepatic protein synthesis, lipid
metabolism, and immune activation. These alterations influence
serum composition, which in turn can affect how water molecules
interact with surrounding solutes. Even subtle changes in the serum
elements can affect the water O–H bonding network provoking
shifts in NIR absorption. In this context, the hydrogen bonding

environment of water, reflected in specific NIRS absorption regions,
may be sensitive to the presence of inflammation-related proteins
(TNF-alpha, IL 6 and others), viral RNA, or metabolic by-
products. While we do not claim direct spectral detection of HCV
particles, the infection-associated serum milieu likely generates a
distinguishable NIRS fingerprint. Similar applications of NIRS have
been reported in diabetes and oncology, where complex systemic
changes alter serum spectra measurably (14, 15, 32).

The potential influence of treatment regimen on observed
spectral differences was carefully considered. All patients included
in the study, both those who cleared HCV and those who
did not, received the same treatment regimen consisting of
peginterferon plus ribavirin. Therefore, the treatment exposure was
uniform across both groups, eliminating ribavirin as a differential
factor in the spectral analysis. Given this uniform exposure,
any discrimination achieved by our NIRS-based model reflects
biological differences associated with HCV positivity rather than
treatment-induced spectral changes. While ribavirin cannot be
ruled out as a background signal it is not likely to be a confounding
factor in the classification task.

NIRS offers a non-invasive, safe, and rapid diagnostic method,
which is particularly advantageous in clinical settings where time
and sample preservation are critical, and cost-efficient. FT-NIRS
equipment typically involves a one-time investment ranging from
e20,000–e40,000, which is comparable to PCR systems. However,
NIRS testing requires no reagents or consumables, leading to a
much lower per-sample cost, estimated at <e1, compared to e15–
e40 for PCR or ELISA (19, 33). Additionally, NIRS enables rapid
analysis (under 1 min per sample), reducing labor and operational
costs. These characteristics suggest that NIRS could serve as a cost-
effective, high-throughput screening tool, especially in settings with
limited laboratory infrastructure.

Our approach effectively reduces the high dimensionality of
NIRS data, making it more manageable for machine learning
algorithms while retaining the most informative features. By
combining NIRS with clinical data, we leverage complementary
information, leading to improved diagnostic accuracy. This
approach is particularly valuable in complex diseases like HCV,
wheremultiple biomarkers and clinical factors contribute to disease
progression. The use of feature selection techniques, such as
L1-regularized LR and permutation importance, enhances the
interpretability of themodel. This is crucial for clinical applications,
where understanding the underlying biological mechanisms is as
important as achieving high predictive accuracy.

As clinicians entering a technology-driven diagnostic space, we
recognize the importance of reproducibility and bias mitigation.
Accordingly, all serum samples were processed under standardized
conditions: uniform sample volume, temperature, and cuvette type
were used for all acquisitions. The NIRS device was calibrated
routinely using internal standards, and the acquisition software
was automated, minimizing inter-operator variability. Importantly,
our machine learning pipeline included data normalization, cross-
validation, and outlier detection steps to enhance robustness and
reduce susceptibility to noise or batch effects. Nonetheless, we
acknowledge that device-specific calibration protocols and sample
handling consistency are essential for future clinical translation,
and we outline these as limitations and areas for standardization
in future studies.
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One of the major limitations of our study is the relatively small
sample size, consisting of 137 serum samples from 38 patients. This
constrained cohort reduces the statistical power of our findings and
limits generalizability. The limited sample size reflects the complex
logistics and strict biosafety protocols involved in acquiring and
analyzing NIRS data from HCV-infected serum samples, which
adds significant challenges to expanding the dataset. However, we
carefully designed the validation process to construct appropriate
validation datasets and experimental setup to provide unbiased
performance estimates and mitigate the risk of overfitting. This
work should be viewed as a proof of concept, demonstrating
demonstrate the feasibility of leveraging NIRS data in combination
with clinical or biochemical information for diagnostic modeling.
While our preliminary results are encouraging, especially in terms
of specificity, they require validation in larger and more diverse
populations. Future studies should be prospectively designed with
adequate power and expanded data inputs (including imaging,
genetic, or longitudinal clinical data) to fully realize the potential
of this integrative diagnostic framework. In the current state,
the sensitivity of the presented approach (75%) remains below
the threshold typically required for a clinical diagnostic tool (e.g.
compared to PCR), where higher sensitivity is essential to minimize
the risk of missed diagnoses. As a next step, we aim to investigate
cost-sensitive learning approaches, which assign higher penalties
to misclassifying minority or high-risk classes (e.g., false negatives
in disease detection), thereby shifting the model’s focus toward
improved sensitivity. Combined with advanced ensemble methods,
this strategy may help achieve performance levels more suitable for
clinical applications.

Future research should focus on validating our approach
on larger and more diverse datasets, including samples from
different populations and disease stages. This will help ensure
the generalizability and robustness of the model. Based on our
preliminary power calculations, ∼200 samples per group would
be required to detect a 10% difference in sensitivity (from 80 to
90%) with 80% power and a significance level of 0.05 Exploring
more advanced machine learning techniques, such as deep learning
or ensemble methods, could further improve model performance,
particularly in terms of sensitivity and specificity. Future studies
should aim to translate this approach into real-world clinical
settings, where rapid and accurate HCV diagnostics are urgently
needed. This will require collaboration with healthcare providers
and regulatory bodies to ensure the practical applicability of the
model. Further exploration of aquaphotomics and its role in
biomarker discovery could uncover new insights into the molecular
mechanisms underlying HCV infection. This could lead to the
identification of novel therapeutic targets and diagnostic markers.

To move this proof-of-concept toward clinical application, a
structured translational pathway is essential. The next phase should
involve validation in larger, prospectively collected, and ideally
multi-center cohorts to ensure that the diagnostic model is robust.
Standardization of key steps–such as serum collection, storage,
NIRS acquisition, and spectral preprocessing–will be necessary
to ensure reproducibility and alignment with clinical laboratory
standards (e.g., CLIA, CAP). Performance benchmarks for clinical
readiness should target sensitivity and specificity above 90%,
particularly in screening contexts where avoiding false negatives is
critical. Beyond technical performance, successful implementation

will require seamless integration into clinical workflows. This
includes developing decision support tools compatible with
electronic health record systems, and ensuring minimal disruption
to clinician routines. Health economic evaluations will also be
necessary to assess cost-effectiveness compared to conventional
diagnostics (e.g., PCR, HPLC), accounting for equipment costs,
throughput, and potential downstream savings from earlier
intervention, together with the reduction of biological and chemical
hazards and operators safety risk. Importantly, this work also
highlights the novel integration of aquaphotomics principles–
focused on water absorbance features as biomarkers of systemic
change–into a machine learning framework for serum-based
diagnostics. We see this as a foundational step toward a broader
platform that leverages NIRS and aquaphotomics not only for
detecting infectious diseases, but also for addressing more complex
clinical challenges such as risk stratification in HCC using our
data available right now. Future research will focus on expanding
the spectral and clinical data dimensions and validating this
integrative approach in prospective studies designed to evaluate
both diagnostic performance and clinical impact.

In conclusion, our study demonstrates the potential of
combining NIRS with clinical data and machine learning for
the rapid and non-invasive detection of HCV in serum samples.
By leveraging the strengths of NIRS and machine learning, we
significantly reduced data dimensionality while maintaining high
predictive accuracy. While our method is designed for qualitative
classification of HCV status, the NIRS technique is inherently
sensitive to the concentration of numerous serum constituents,
including those affected by treatment and individual metabolic
variability. This underscores the need for further studies to
standardize sample collection and consider potential confounders
due to differing analyte concentrations. The integration of clinical
data further enhanced model performance, highlighting the
value of multimodal approaches in medical diagnostics. While
limitations such as sample size and suboptimal sensitivity (75%)
must be addressed, this work lays a strong foundation for future
research. Importantly, it serves as a proof of concept for applying
NIRS-derived spectral fingerprints as biochemical phenotypes,
which could support more complex tasks–such as predicting
progression to HCC in future translational studies. With further
validation and refinement, this approach could evolve into a
cost-effective and scalable diagnostic tool, particularly valuable in
resource-limited settings.
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