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Tuberculosis (TB) remains one of the leading causes of infectious disease
mortality worldwide, increasingly complicated by the emergence of
drug-resistant strains and limitations in existing diagnostic and therapeutic
strategies. Despite decades of global efforts, the disease continues to impose
a significant burden, particularly in low- and middle-income countries (LMICs)
where health system weaknesses hinder progress. This comprehensive review
explores recent advancements in TB diagnostics, antimicrobial resistance
(AMR surveillance), treatment strategies, and vaccine development. It critically
evaluates cutting-edge technologies including CRISPR-based diagnostics,
whole-genome sequencing, and digital adherence tools, alongside therapeutic
innovations such as shorter multidrug-resistant TB regimens and host-directed
therapies. Special emphasis is placed on the translational gap—highlighting
barriers to real-world implementation such as cost, infrastructure, and policy
fragmentation. While innovations like the Xpert MTB/RIF Ultra, BPaLM regimen,
and next-generation vaccines such as M72/AS01E represent pivotal progress,
their deployment remains uneven. Implementation science, cost-effectiveness
analyses, and health equity considerations are vital to scaling up these tools.
Moreover, the expansion of the TB vaccine pipeline and integration of AI in
diagnostics signal a transformative period in TB control. Eliminating TB demands
more than biomedical breakthroughs—it requires a unified strategy that aligns
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innovation with access, equity, and sustainability. By bridging science with
implementation, and integrating diagnostics, treatment, and prevention within
robust health systems, the global community can accelerate the path toward
ending TB.

KEYWORDS

tuberculosis, diagnostic innovation, therapeutic strategies, vaccine development, public
health

1 Introduction

Tuberculosis (TB) is a bacterial disease primarily caused by
Mycobacterium tuberculosis (M. tuberculosis) and related species
(1). It remains a major global health concern due to its high
morbidity and mortality rates (2). In 2022, TB was responsible for
an estimated 1.3 million deaths, and projections suggest it could
cause up to 31 million deaths in the coming years (3). Although
TB primarily affects the lungs, it can also involve other organs,
resulting in extrapulmonary manifestations (4, 5). Approximately
15–20% of TB cases present as extrapulmonary TB, especially
among individuals co-infected with HIV (6). Furthermore, M.
tuberculosis has been associated with tumor-like formations,
with some studies linking pulmonary TB to lung neoplasms,
emphasizing the importance of effective management to reduce this
risk (7–12).

Transmission occurs through airborne particles expelled when
an infected individual coughs or sneezes, making air a crucial
vector for the spread of TB (13). Delayed treatment of active TB
significantly increases the risk of transmission (14). Diagnosing TB
can be particularly challenging due to misdiagnosis, non-specific
symptoms, and limited laboratory capacity in many settings (15).
The COVID-19 pandemic has exacerbated these challenges by
overwhelming healthcare systems, interrupting TB services, and
diverting essential resources. This disruption has led to delays in
diagnosis and treatment, contributing to increased transmission
and worsened clinical outcomes. Although the Global TB Report
highlights partial recovery of TB services, the pandemic’s residual
impact continues to impede progress (16).

Additionally, the growing incidence of non-tuberculous
mycobacterial infections, especially in elderly and
immunocompromised individuals, complicates differential
diagnosis and clinical management (17). Globally, ∼23% of the
population (95% CI: 20.4–26.4%), corresponding to 1.7–1.9 billion
people, are estimated to harbor latent M. tuberculosis infection
(LTBI), rather than active disease (18). In 2022, an estimated 7.5
million new TB cases and 1.5 million deaths were reported (16).
Early detection remains vital for initiating timely treatment and
curbing disease transmission (7, 19). According to the WHO
Global Tuberculosis Report 2024, an estimated 10.8 million people
(95% uncertainty interval [UI]: 10.1–11.7 million) developed active
TB in 2023, corresponding to 134 new cases per 100,000 population
(95% UI: 125–145) (20).

Since 2000, global efforts to combat TB have led to measurable
progress. However, these gains were significantly undermined by
the COVID-19 pandemic, which disrupted TB services worldwide.
The reallocation of healthcare resources to COVID-19, combined

with lockdowns and mobility restrictions, caused widespread delays
in diagnosis and treatment. Furthermore, ongoing armed conflicts
and deteriorating socioeconomic conditions—particularly in high-
burden regions—have compounded these difficulties (21, 22).
Economic instability, rising living costs, and declining public
health funding have disproportionately affected impoverished
communities already at heightened risk for TB (23).

According to WHO data, global TB case notifications dropped
by 18% in 2020 due to limited access to health services.
Although a partial rebound occurred in 2021, it failed to fully
address the backlog of missed cases. Countries such as India,
Indonesia, and the Philippines recorded the largest declines in
notifications, resulting in a significant number of untreated cases
and sustained community-level transmission. Between 2019 and
2021, TB-related deaths rose, with 1.6 million deaths reported
in 2021 alone-−1.4 million among HIV-negative individuals and
187,000 among those living with HIV. These figures highlight
the heightened vulnerability of HIV-positive individuals and the
critical importance of uninterrupted TB services.

The pandemic also intensified pre-existing disparities in access
to diagnostic and treatment tools. LMICs, which account for
nearly 80% of TB cases globally, continue to face substantial
challenges in adopting WHO-endorsed technologies (23). In
2022, TB incidence climbed to an estimated 10.6 million new
cases—a 4.5% increase from 2020—sustaining the trend sparked
by the pandemic. Simultaneously, drug-resistant TB remained
a significant challenge, with ∼410,000 new cases of rifampicin-
resistant or multidrug-resistant TB reported (24). Studies indicate
that MDR-TB disproportionately affects regions with low socio-
demographic indices, adding complexity to control strategies (25).

Although molecular diagnostics such as GeneXpert MTB/RIF
and line probe assays have transformed TB detection, their
widespread implementation remains limited in many resource-
constrained settings. Key obstacles include underdeveloped
laboratory infrastructure, inefficient specimen transport systems,
and shortages of trained personnel (26, 27). In contrast, high-
income countries benefit from advanced diagnostic networks,
enabling timely detection and robust drug resistance profiling that
support effective patient care. Despite diagnostic advancements,
only about 7.5 million of the estimated 10.6 million TB cases in
2022 were reported, reflecting a diagnostic gap of ∼3.1 million
cases. This persistent shortfall, worsened by pandemic-related
disruptions, continues to delay treatment, perpetuate transmission,
and increase mortality.

Effective TB control requires a multipronged approach
that integrates conventional methods—such as microscopy and
culture—with cutting-edge molecular diagnostics (28, 29). Clinical
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microbiology laboratories play a central role in diagnosis, and
recent genetic technologies now allow for rapid identification of
both the pathogen and its resistance profile. In countries where
TB testing is predominantly conducted by general health or
private sectors, it is essential to assess whether service expansion
improves health outcomes or merely increases capacity. Evidence
suggests that the quality of TB laboratory services, rather than their
independence, is what determines their public health value (29).

Furthermore, distinguishing latent from active TB and ensuring
equitable access to diagnostic services remain urgent priorities
(30). Reliable drug susceptibility testing and a better understanding
of the molecular mechanisms of resistance in M. tuberculosis
are also critical. As multidrug-resistant and extensively drug-
resistant TB pose growing threats, the need for improved detection
and treatment strategies is more pressing than ever. Recent
genetic innovations have accelerated the diagnosis of TB and its
resistance traits. However, low-resource countries still urgently
need affordable, rapid, and accurate diagnostic solutions (31). This
review aims to provide a comprehensive overview of both standard
and advanced diagnostic methods, while also exploring emerging
therapeutic strategies to combat TB, with special emphasis on
multidrug-resistant forms of the disease.

2 History and pathogenesis of TB

TB, caused by M. tuberculosis, remains one of the most lethal
infectious diseases globally. First identified by Robert Koch in
1882 (32), the bacillus is transmitted via aerosols and primarily
infects the lungs (pulmonary TB), although extrapulmonary forms
also occur (33, 34). TB’s ability to establish latent infection in
an estimated two billion people worldwide contributes to its
persistence (33). Latent TB infection can reactivate, particularly in
immunocompromised individuals, including those with HIV, who
have an 18-fold increased risk of disease progression (35, 36).

The infection begins when inhaled bacilli reach the alveoli and
are phagocytosed by resident macrophages (37). Instead of being
destroyed, M. tuberculosis manipulates the host immune system
using the ESX-1 secretion system to release ESAT-6, facilitating
escape from the phagosome into the cytoplasm (38, 39). The bacilli
avoid degradation, inhibit phagosome maturation, and modulate
cytokine responses, thereby creating an environment conducive to
survival (40). This early evasion strategy is central to the pathogen’s
persistence and underlies the challenges in early TB diagnosis.

The host’s immune response typically culminates in granuloma
formation—a hallmark of TB pathogenesis—where bacilli are
sequestered but not eradicated (41). Within these structures,
M. tuberculosis can enter a dormant state, resisting immune
clearance and pharmacological treatment (42). In individuals with
compromised immunity, granulomas can break down, leading to
bacterial reactivation, tissue necrosis, and contagious active TB
(43, 44). Recent studies highlight that lipid metabolism, particularly
the formation of foamy macrophages and caseous necrosis, plays a
crucial role in long-term bacterial survival and disease progression
(43, 45).

Understanding TB pathogenesis is no longer solely of
academic interest—it informs the development of new diagnostic
tools and therapeutic strategies. For instance, insights into

the ESX-1 system and granuloma biology have prompted the
exploration of immunomodulatory therapies and biomarkers for
early detection (46). Moreover, caseum-resident bacilli represent
a significant challenge to drug penetration, guiding the design
of new drug regimens with improved tissue distribution. In
summary, TB pathogenesis illustrates a complex interplay between
bacterial virulence and host immunity. A deeper mechanistic
understanding is essential not only for accurate diagnosis—
particularly distinguishing active from latent infection—but also
for innovating treatment strategies that can overcome the barriers
posed by immune evasion and granuloma-mediated bacterial
persistence. The progression and immune interactions in TB
pathogenesis are illustrated in Figure 1.

3 Innovations in tuberculosis
diagnostics

Effective TB control hinges on accurate, rapid diagnosis, yet
the disease continues to be underdiagnosed, especially in resource-
limited settings. While conventional methods such as smear
microscopy and culture remain important, they lack sensitivity or
are too slow for timely intervention. In recent years, molecular
and next-generation diagnostic tools have dramatically enhanced
the landscape of TB diagnostics, offering improved sensitivity,
specificity, and speed. The main diagnostic platforms for TB,
including conventional and modern approaches, are summarized
in Figure 2.

3.1 Culturing-based mycobacterial
detection

Culture remains the definitive standard for diagnosing M.
tuberculosis infection and assessing drug susceptibility (47).
Although M. tuberculosis exhibits a slow growth rate, dividing every
18–20 h, culture remains vital for confirming active disease and
resistance patterns (48). Despite limitations in rapid detection (49),
culture-based techniques are WHO-endorsed due to their high
specificity and utility in confirming TB and its resistance profile
(50). Culture-based methods outperform traditional microscopy,
which detects only 10–100 bacteria per milliliter (51). Solid
media such as Lowenstein-Jensen (LJ), Ogawa, and Middlebrook
7H10/7H11 are routinely employed for isolating M. tuberculosis
(52). Middlebrook agars promote faster colony development,
whereas LJ slopes allow reliable assessment of growth dynamics
(53). However, the protracted growth period on solid media—
typically up to 6 weeks—limits their practicality in urgent
clinical scenarios.

To address this, automated liquid culture systems like the
BACTEC MGIT 960 have been increasingly adopted. These
systems improve time to detection—often reducing it to 10–
15 days—and demonstrate enhanced sensitivity and specificity
compared to solid culture (54–56). Liquid media such as 7H9
broth facilitate optimal bacterial proliferation and long-term strain
preservation (57). Nonetheless, differentiating M. tuberculosis from
non-tuberculous species, especially in HIV co-infected patients,
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FIGURE 1

Pathogenesis of M. tuberculosis: from initial infection to reactivation. Following inhalation, M. tuberculosis is phagocytosed by alveolar macrophages,
where it employs the ESX-1 secretion system to escape phagosomal destruction. This triggers granuloma formation as the host attempts to contain
the infection. Control may be established, leading to latent infection, or the host may progress to active disease. Impaired immune responses or
external stressors can disrupt granuloma integrity, leading to reactivation. Necrotic granulomas facilitate bacillary dissemination and renewed
transmission.

requires supplemental biochemical or molecular confirmation
(58). Although both media types differ in contamination rates
and detection speed, the WHO recommends employing both
in tandem where feasible (59). In resource-limited settings, this
dual approach is often hindered by financial and logistical
constraints (60). Despite these challenges, culture retains its
importance in detecting persistent infections and evaluating
recurrence risk (61). Recent innovations such as Thin-Layer
Agar (TLA) culture offer promising alternatives. A 1-year
study by Battaglioli et al. (62) in Indonesia demonstrated that
TLA outperformed LJ media in both sensitivity and detection
time, making it a potential tool for faster TB confirmation in
high-burden areas.

The BACTEC MGIT 960 system supports rapid detection
by culturing mycobacteria in a closed liquid environment with
oxygen-sensitive fluorescent sensors (63, 64). A positive MGIT
result, however, requires subsequent identification of the M.
tuberculosis complex. Immunochromatographic tests detecting
MPT-64 antigens are WHO-recommended tools that deliver
rapid species-level identification with high sensitivity (98.1–98.6%)
and specificity (99.2–100%) (65–67). While liquid culture offers
reduced turnaround times (∼2 weeks), it carries a higher risk
of contamination (68). Drug susceptibility testing using MGIT
960 has shown high accuracy-−90% for isoniazid and 99.4%
for rifampicin—with excellent specificity, outperforming nitrate
reductase assays (69). Nonetheless, false negatives remain a

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2025.1596579
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Elbehiry et al. 10.3389/fmed.2025.1596579

FIGURE 2

Overview of diagnostic methods for TB. This schematic illustrates the major diagnostic approaches for TB, including culture-based methods (solid
and liquid media), microscopy (Ziehl-Neelsen and fluorescence staining), molecular diagnostics—such as nucleic acid amplification tests (NAATs),
whole genome sequencing (WGS), CRISPR-based assays, and mass spectrometry—as well as immunological tools (e.g., interferon-gamma release
assays, lipoarabinomannan (LAM) detection, and gold nanoparticles (GNPs)-based tests). These platforms enable early detection, resistance profiling,
and improved disease management, especially in high-burden settings.

concern in low-bacterial-load samples, especially during treatment
monitoring. Cultures must therefore be conducted in well-
equipped reference laboratories with trained personnel and
biosafety precautions.

3.2 Microscopy

Microscopy remains a foundational tool in TB diagnosis,
particularly in low-resource settings. For over a century, sputum
smear microscopy has been the principal method for detecting M.
tuberculosis, providing rapid, low-cost diagnostic support (29, 70).
Despite being superseded in some regions by molecular assays,
it remains essential for frontline diagnosis and infectiousness
assessment in high-burden, low-income countries (71, 72). Two
main staining approaches are widely used: the Ziehl-Neelsen (ZN)
stain, which highlights acid-fast bacilli (AFB) in red against a
blue background (73), and fluorescence microscopy (FM) using
auramine dyes, which offers improved sensitivity but requires
more specialized equipment (74). ZN microscopy is especially
valuable in resource-limited environments where culture facilities
are lacking (68, 75). It allows for the detection of high bacillary loads
(>104 bacilli/mL), correlating with greater transmission risk (76).

However, the technique suffers from low sensitivity, a high false-
negative rate, and an inability to differentiate between viable/non-
viable or tuberculous/non-tuberculous mycobacteria (29, 30).

A recent implementation of the ZEISS Axio Scan platform
demonstrated a sensitivity of 97.06% and specificity of 86.44%
for detecting and enumerating acid-fast bacilli, offering a
valuable enhancement in diagnostic accuracy and operational
efficiency for laboratory personnel (77). In pulmonary tissue
specimens, the combination of fluorescent antibody labeling
and laser confocal microscopy has proven especially effective
in identifying M. tuberculosis, particularly when traditional ZN
staining produces suboptimal results (78). Additionally, the
integration of digital pathology systems, such as the Pat-Scan
platform, with paraffin-embedded ZN-stained tissues, enables rapid
and reliable identification and quantification of microorganisms,
thereby reducing turnaround time for TB diagnosis (79).

While solid-state microscopy cannot reliably distinguish
between viable and non-viable bacilli or differentiate M.
tuberculosis from non-tuberculous mycobacteria, ZN staining
continues to provide valuable morphological insight, especially
in previously treated patients with AFB (80). The use of FM not
only improves diagnostic sensitivity but also increases throughput
and reduces labor demands (81). However, it is associated with
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limitations, including transient staining effects and the risk of
false positives due to non-specific binding of fluorochrome dyes
(82, 83).

To overcome these drawbacks, Light-Emitting Diode (LED)
microscopy has emerged as a sustainable and practical alternative,
particularly in resource-limited settings. Its extended battery life
and low maintenance requirements make it suitable for peripheral
laboratories where conventional light sources may be unreliable.
In parallel, the fluorescein diacetate (FDA) staining method has
gained attention for its ability to detect viable M. tuberculosis
bacilli. This metabolic staining technique converts non-fluorescent
FDA into green fluorescence within live cells, allowing for rapid
assessment of bacterial viability and potentially predicting culture
positivity within 1 h (84, 85). Fully automated imaging systems can
now insert, focus, and scan smears, classifying them as positive or
negative using algorithm-driven analysis (86).

Supporting these technical advances, Dzodanu et al. (87)
compared ZN staining and FM in 100 suspected pulmonary TB
patients at Kade Government Hospital. Of 200 sputum samples,
35.5% tested positive via FM, 23.2% via ZN staining, and 42%
via the Xpert MTB/RIF assay. FM outperformed ZN in sensitivity
(84.5% vs. 54.8%) with similar specificity (100%). Masali et al.
(88) also reported superior performance for FM, detecting 42.3%
positive cases vs. 18.2% by ZN, with FM achieving 98% sensitivity
and a negative predictive value of 99%. These findings support FM
as a more sensitive alternative to conventional staining techniques
in TB diagnostics.

3.3 Molecular diagnostics for tuberculosis

Molecular diagnostics have significantly advanced TB detection
by enabling rapid, sensitive, and specific identification of M.
tuberculosis and associated drug resistance mutations. Unlike
microscopy or culture—which are limited by either low sensitivity
or long processing times—molecular tools offer results within
hours, playing a vital role in early diagnosis and treatment
decisions. This section outlines key molecular platforms used in
TB diagnostics, including NAATs, real-time PCR (RT-PCR), WGS,
mass spectrometry, and CRISPR-based diagnostics.

3.3.1 Nucleic acid amplification tests (NAATs)
Over recent decades, various NAATs have been developed to

improve the detection of M. tuberculosis complex (89–92). These
tests show high specificity (74–99.3%) and variable sensitivity
(64–100%), which can decrease to 40–84% in smear-negative
samples or those with low bacillary loads (93). While many NAATs
perform well in acid-fast smear-positive cases (∼95% sensitivity),
their sensitivity drops significantly in paucibacillary samples
(94). Additionally, the presence of other microbes (e.g., non-
tuberculous mycobacteria or fungal pathogens) may interfere with
amplification, potentially leading to false-positive or false-negative
outcomes (95, 96). Thus, enhancing diagnostic performance in
smear-negative and extrapulmonary TB remains a key priority.

Insertion sequences (ISs) are widely used in NAATs to
improve sensitivity (93). Targets such as IS986, IS987, IS1081, and

particularly IS6110, are highly repetitive in the M. tuberculosis
genome, allowing for effective amplification in multiplex PCR
assays (97–99). However, certain strains (e.g., M. bovis BCG) may
harbor few or no IS6110 copies, which may reduce test sensitivity.
The Xpert MTB/RIF Ultra assay, endorsed by WHO, incorporates
IS6110 and IS1081 as targets and is now widely used in clinical
practice. This cartridge-based test detects TB DNA and rifampicin
resistance with a sensitivity of 87.5% and a detection limit of
15.6 CFU/mL (100, 101). In lung specimens, it achieves 88%
sensitivity and 96% specificity; in extrapulmonary TB, it yields
98.5% sensitivity and 97% specificity (100, 102). However, its
sensitivity decreases to 78.9% in smear-negative samples. Despite
its clinical utility, its cost (∼$9.98/cartridge) poses challenges in
low-resource settings (103), prompting a shift toward in-house
real-time PCR protocols that are more affordable and adaptable.

Nested PCR, a subtype of NAAT, improves analytical sensitivity
by using two rounds of amplification. Although effective for
extrapulmonary TB (sensitivity: 72.2% for blood/urine vs. 33.3%
for pleural fluid) (104–106), it is labor-intensive, prone to
contamination, and costly. To overcome these drawbacks, single-
tube nested PCR was developed, incorporating outer primers with
higher annealing temperatures than inner primers. This method
offers a simplified workflow and enhanced accuracy—achieving up
to 89% sensitivity in pulmonary TB and 42% in extrapulmonary
forms. Notably, single-tube nested RT-PCR has demonstrated
even higher performance, with 97.2% sensitivity and 99.7%
specificity (107). In a comparative analysis, Choi et al. reported
94.6% sensitivity for IS6110 RT-PCR and 100% for single-tube
nested RT-PCR in sputum samples (108). Despite these advances,
diagnostic performance for smear-negative and extrapulmonary TB
remains suboptimal, reinforcing the urgent need for more robust,
accessible, and affordable molecular platforms. Figure 3 illustrates
the standard NAATs currently employed in TB diagnostics and
their role in expediting accurate clinical decision-making.

3.3.1.1 Loop-mediated isothermal amplification (LAMP)
LAMP, developed by Eiken Chemical Co., Ltd. (Tokyo, Japan),

is an innovative nucleic acid amplification technique for TB
detection that has been endorsed by the WHO (109). LAMP offers a
cost-effective alternative to the Xpert MTB/RIF assay, with studies
in China reporting diagnostic cost savings of 50–70% (110, 111).
One of its major advantages is the visual readout of results,
eliminating the need for sophisticated equipment and enabling
deployment in decentralized, resource-limited settings. Multiple
studies in China have evaluated LAMP’s diagnostic performance
for pulmonary TB, though reported accuracy has varied (112–
114). Lin et al. (109) conducted a multicenter evaluation using
respiratory samples from suspected TB patients across six sites in
China between June 2018 and December 2019. LAMP showed good
concordance with Xpert MTB/RIF, fluorescent smear microscopy,
and BACTEC MGIT 960, with a sensitivity of 78.6% and specificity
of 88.7%. The study concluded that LAMP is a rapid, user-friendly,
and affordable alternative for TB detection in clinical practice.

Further validation came from Zaber et al. (115), who assessed
a multiplex LAMP assay in 130 sputum samples in Bangladesh.
Compared to qPCR, which detected M. tuberculosis in 56.92% of
cases, LAMP identified 53.85%. LAMP demonstrated a sensitivity
of 95% and specificity of 81.4% vs. culture, outperforming ZN
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FIGURE 3

NAATs for tuberculosis diagnosis. This schematic illustrates the major nucleic acid amplification platforms used for TB detection, including
Loop-mediated isothermal amplification (LAMP), Xpert MTB/RIF, digital PCR, Hain GenoType Line Probe Assay, Anyplex MTB/NTM assay, and RAPD.
These assays improve diagnostic accuracy, speed, and resistance profiling, and are central to early TB case detection and treatment guidance.

staining by 16.93% and FM by 13.08%. Importantly, LAMP failed to
detect non-tuberculous mycobacteria that were identified by qPCR
in 7.69% of cases, suggesting high specificity for M. tuberculosis.
These findings support LAMP as a WHO-recommended, low-cost,
and effective diagnostic tool for TB control, especially in LMICs
aiming to meet End TB Strategy targets by 2035 (115).

3.3.1.2 Xpert MTB/RIF assay
The emergence of multidrug-resistant (MDR) M. tuberculosis

strains has underscored the urgency for rapid diagnostic tools. In
response, the Centers for Disease Control and Prevention (CDC)
recommends integrating molecular diagnostics with traditional
testing to overcome the limitations of conventional culture-based
methods. The Xpert MTB/RIF assay (Cepheid, Sunnyvale, CA,
USA) represents a transformative advancement, enabling direct
detection of M. tuberculosis and rifampicin resistance from clinical
specimens in under 2 h (116). In Brazil, the National Tuberculosis
Control Program introduced the Xpert platform in 92 high-burden
municipalities between 2014 and 2015. Subsequently, the Clinics
Hospital of the University of São Paulo adopted the Xpert MTB/RIF
assay for diagnosing both pulmonary and extrapulmonary TB.

In a study by Feliciano et al. (117), 2,148 respiratory samples
collected between 2015 and 2018 were analyzed. The assay
demonstrated a sensitivity of 94%, specificity of 98%, positive
predictive value (PPV) of 89%, and negative predictive value (NPV)
of 99%. Agreement with phenotypic drug susceptibility testing was
94.1%, while concordance with WGS was 78.9%. More recently,
Terzi et al. (118) evaluated the performance of Xpert MTB/RIF
in 2,082 specimens (1,526 respiratory and 556 non-respiratory).
M. tuberculosis was cultured in 153 samples (7.3%), while 203
(9.7%) were Xpert-positive. The assay achieved 89.5% sensitivity,
96.6% specificity, 67.5% PPV, and 99.1% NPV. Its speed, simplicity,
and ability to detect resistance in a single step make it a vital

tool in TB diagnostics, especially in high-burden and resource-
constrained settings.

3.3.1.3 Line probe assay (LPA)
Line Probe Assays (LPAs), endorsed by the WHO in 2008,

enable rapid molecular detection of M. tuberculosis and assessment
of resistance to rifampicin and isoniazid—the two cornerstone
drugs in TB treatment (119). A widely used commercial version was
originally developed by Hain Lifescience (now acquired by Bruker).
Based on DNA-STRIP technology, LPA improves diagnostic speed
and precision compared to conventional phenotypic methods,
though it requires greater technical expertise than the Xpert
MTB/RIF assay (120, 121). The second-generation LPA (version
2) accommodates a wider variety of sample types and provides
detailed resistance profiles, including detection of both low- and
high-level resistance mutations (122).

In a 2024 study, Nandwani et al. (123) tested 196 sputum
samples from suspected pulmonary TB patients using LPA. TB
was confirmed in 104 positive cases. Sensitivity for smear-negative
samples varied by target: 47.36% for TB detection, 72.72% for
rifampicin resistance, and 88.88% for isoniazid resistance, with
specificities ranging from 86.96% to 95.65%. In smear-positive
cases, LPA achieved high sensitivity-−89.09% for TB, 95.83% for
rifampicin resistance, and 98.07% for isoniazid resistance—with
specificities exceeding 98% for all targets. These results support the
use of LPA as a reliable and efficient tool for first- and second-line
drug resistance detection, particularly in smear-positive patients,
and as a complement to other rapid molecular tests in TB
diagnostic algorithms.

3.3.1.4 Anyplex MTB/NTM real-time detection assay
The AnyplexTM MTB/NTM assay (Seegene Inc., South Korea)

utilizes real-time PCR with dual priming oligonucleotide (DPOTM)
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technology to simultaneously detect M. tuberculosis complex
and differentiate it from nontuberculous mycobacteria, offering
enhanced specificity and multiplexing capabilities. It targets highly
specific genetic markers, including the insertion sequence IS6110
(99) and the MPB64 gene (124), allowing for precise identification
of clinically relevant mycobacterial species. In a large-scale
evaluation by Sawatpanich et al. (125), the assay was applied to
9,575 clinical specimens. The test demonstrated a sensitivity of
79.7% and specificity of 94.5% for detecting MTBC, while for NTM,
sensitivity was lower at 44.9% but specificity remained high at
97.7%. Among AFB smear-positive samples, the assay achieved
significantly improved sensitivity-−97.7% for MTBC and 80% for
NTM. These results support the utility of Anyplex MTB/NTM as a
rapid and accurate tool, particularly valuable in high-throughput
laboratory settings where distinguishing MTBC from NTM is
crucial for patient management.

In parallel, Random Amplified Polymorphic DNA (RAPD)—
also known as Arbitrary Primed PCR (AP-PCR)—is a molecular
fingerprinting method that requires no prior sequence information.
By employing randomly selected primers ranging from 5 to 50
base pairs, RAPD generates DNA profiles that can reveal
inter-strain polymorphisms (126). Although some variability
in results is attributed to technical reproducibility concerns
(127), RAPD remains a valuable tool for analyzing strain
diversity among NTM species. For instance, RAPD has been
successfully used to genotype M. abscessus and M. chelonae, two
species prone to DNA fragmentation during electrophoresis
and difficult to analyze via pulsed-field gel electrophoresis
(PFGE) (128). Furthermore, RAPD has proven effective in
characterizing genetic diversity within other clinically significant
NTMs such as M. phocaicum, M. gordonae, M. szulgai, and
M. malmoense (129–132). The method’s affordability and
simplicity make it particularly appealing for resource-constrained
laboratories aiming to monitor mycobacterial diversity and trace
epidemiological patterns.

3.3.1.5 Droplet digital polymerase chain reaction (ddPCR)
Droplet digital polymerase chain reaction (ddPCR) is an

advanced molecular technique that enables absolute quantification
of nucleic acids without requiring a standard curve (133). This
method partitions the sample into thousands of nanoliter-sized
droplets, where amplification occurs independently, improving
detection sensitivity and reducing variability. ddPCR has emerged
as a powerful tool for detecting low-abundance genetic targets,
making it particularly suitable for infectious diseases such as
tuberculosis (134). Recent studies have demonstrated the utility
of ddPCR in TB diagnostics. Devonshire et al. (135) assessed
ddPCR performance using M. tuberculosis DNA templates and
confirmed its robustness and accuracy in quantifying bacterial
DNA. In follow-up research, ddPCR successfully identified M.
tuberculosis in artificially prepared sputum specimens, supporting
its applicability in clinical settings (136). The method showed
strong reproducibility and precision, even in samples with low
bacterial loads.

Due to its superior sensitivity, ddPCR holds promise for various
TB-related applications, including early diagnosis, quantification
of drug resistance mutations, and monitoring of bacterial burden
during treatment (137). Future innovations are expected to yield

minimally invasive, rapid, and highly accurate ddPCR-based
platforms for the detection of M. tuberculosis-specific genetic
sequences, which could substantially improve disease surveillance
and management strategies.

3.3.2 Whole genome sequencing (WGS)
WGS has emerged as a transformative tool for tuberculosis

diagnostics, offering unparalleled resolution in identifying
M. tuberculosis complex strains and their resistance profiles.
Thanks to reduced costs and rapid technological advances, WGS
is now transitioning from research laboratories into clinical
workflows for TB detection, drug resistance prediction, and
epidemiological surveillance (138). WGS surpasses traditional
genotyping techniques such as PCR and microarrays by enabling
comprehensive analysis of nearly all genomic mutations associated
with drug resistance, as well as differentiating closely related
Mycobacterium subspecies (139). It offers significant value
in tracking transmission chains and understanding pathogen
evolution (140). Advances in sequencing platforms, including
Illumina MiSeqTM and HiSeq 4000, have greatly increased
throughput—generating between 15 and 1,500 gigabytes of
sequence data—making WGS increasingly cost-effective in
diagnostic settings (141).

The utility of WGS has been underscored by several key studies
(142–144). The WHO issued a practical guide in 2018 promoting
WGS to characterize treatment-resistant TB strains, highlighting
platforms such as Ion Personal Genome Machine R©, Nanopore
MinION R©, and GeneReader. In a large-scale study, Campbell
et al. (145) sequenced nine drug-resistance loci in 314 clinical
isolates, reporting a sensitivity of 90.8% and specificity of 94.7%
for multidrug resistance, but only 40% sensitivity for extensively
drug-resistant (XDR) strains. These findings highlight the promise
and current limitations of WGS, especially for detecting rare
resistance mutations (63). Emerging research illustrates that
WGS can uncover low-level resistance mutations often missed
by conventional phenotypic drug susceptibility tests (DST). For
example, genome analysis has identified ethambutol resistance-
associated mutations that remain undetected in phenotypic assays
(146). Similarly, certain isoniazid-resistant isolates may yield
negative WGS results, reflecting challenges in correlating genotype
and phenotype (147).

In a study by Sun et al. (148), WGS was evaluated in
newly diagnosed multidrug-resistant TB cases in China. The
method showed high concordance with phenotypic DST for
amikacin/kanamycin and rifampicin (97.7%) but lower agreement
for rifabutin and ethambutol (67.2% and 79.1%, respectively).
Pyrazinamide resistance-associated mutations were detected in
27.9% of isolates. No resistance mutations were found for
newer drugs such as linezolid, bedaquiline, or clofazimine,
affirming WGS’s role in guiding individualized therapy in high-
burden settings.

Recognizing the diagnostic potential of next-generation
sequencing, the WHO issued guidelines in October 2023 to support
its integration into national TB programs, particularly for tracking
drug-resistant strains. However, real-world implementation faces
numerous barriers. Vogel et al. (149) reported logistical and
financial challenges in Kyrgyzstan, while Ness et al. (150) and others
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have emphasized the need for robust infrastructure, expert training,
and standardized quality control measures (151, 152). Recent
innovations, such as direct sputum WGS (bypassing culture),
show promise for reducing turnaround times (153, 154). Yet,
obstacles such as low DNA yield, high costs, limited database
access, and technical complexity continue to hinder widespread
clinical adoption (155). Despite these constraints, WGS remains
a powerful tool in the global fight against TB, with future
applications likely to enhance precision diagnostics and public
health interventions.

3.4 Immunological approaches

3.4.1 Gold nanoparticles (GNPs)
GNPs have emerged as promising tools in TB diagnostics

due to their nanoscale size, ease of synthesis, high stability,
and biocompatibility (156, 157). Their unique optical behavior—
particularly localized surface plasmon resonance—is influenced by
particle size, shape, and interparticle spacing, allowing colorimetric
detection without the need for complex instrumentation (158).
In point-of-care (POC) platforms, GNPs function as optical tags
for antigen–antibody detection, offering a rapid, visual signal
for TB diagnosis (159, 160). GNPs possess the unique ability to
change color via a mechanism known as localized surface plasmon
resonance, which is influenced by the particle’s shape, size, and local
refractive index (161, 162). To date, only one GNP-based diagnostic
platform—the TB-LAMP assay developed by Eiken Chemical Co.—
has received endorsement by the WHO. This approval was issued
in 2016, recommending its use as a molecular alternative to sputum
smear microscopy in resource-limited settings for the detection of
M. tuberculosis (163).

Several studies have demonstrated the diagnostic efficacy of
GNPs in TB. Becerra et al. (164) developed a plasmonic system
using GNPs coated with mycobacterial lipid glycans to detect anti-
lipid antibodies in patient sera. The system showed measurable
shifts in LSPR (up to 2 nm), enabling sensitive antigen–antibody
detection confirmed across multiple clinical samples (165). Other
biosensor platforms targeting the M. tuberculosis IS6110 gene
reported sensitivities ranging from 84.7% to 100% and specificities
approaching 100%, with detection limits from 5 pg to 81 ng per 25
μL reaction (166–170).

Dahiya et al. (171) developed a magnetic bead-coupled
GNP immuno-PCR (MB-GNP-I-PCR) assay for detecting TB
antigens in clinical fluids, demonstrating 89.3% sensitivity for
pulmonary TB and 78.1% for extrapulmonary TB, with specificity
exceeding 97.9%. This approach outperformed conventional assays
such as Magneto-ELISA and GeneXpert. Similarly, Kooti et al.
(158) validated a GNP biosensor assay that reliably detected M.
tuberculosis in sputum samples, underscoring its utility as a simple
and scalable method adaptable to various diagnostic settings. In
summary, GNP-based diagnostics represent a powerful and cost-
effective tool for rapid TB detection. While further standardization
is needed, their sensitivity, adaptability, and compatibility with low-
resource environments support their future integration into global
TB control programs.

3.4.2 Interferon gamma release assay (IGRA)
Interferon-gamma release assays (IGRAs) have emerged as

valuable tools in the diagnosis of LTBI, offering improved specificity
over the traditional tuberculin skin test (TST). The TST is prone
to false-positive results, particularly in individuals vaccinated with
Bacille Calmette-Guérin (BCG) or exposed to non-tuberculous
mycobacteria (172). IGRAs circumvent this issue by utilizing
M. tuberculosis-specific antigens, such as ESAT-6 and CFP-10,
which are absent from BCG strains and most environmental
mycobacteria. Two widely used IGRAs are the QuantiFERON-
TB Gold Plus (QFT-Plus) and T-SPOT.TB, developed by Qiagen
and Oxford Immunotec, respectively (173, 174). QFT-Plus, a
fourth-generation IGRA, detects IFN-γ released by T cells in
response to M. tuberculosis complex-specific antigens, including
M. tuberculosis, M. bovis, and M. africanum (175). It serves as a
more specific alternative to the traditional TST for identifying latent
TB infection. Compared to earlier versions like QuantiFERON-TB
Gold In-Tube (QFT-GIT), QFT-Plus incorporates both CD4+ and
CD8+ T-cell responses, potentially enhancing sensitivity.

Although IGRA results can indicate M. tuberculosis infection,
they do not distinguish between latent and active TB (176).
Furthermore, variables such as overnight incubation and
host immune status may affect test reliability, especially in
immunocompromised individuals (177, 178). In a 2019 study
by Hong et al. comparing 33 active TB patients and 57 controls
with LTBI, QFT-Plus demonstrated a sensitivity of 93.9% and a
specificity of 92.6%, while QFT-GIT showed identical sensitivity
but slightly higher specificity at 100%. Notably, IFN-γ levels
were lower in latent TB cases using QFT-Plus, although the
distinction between active and latent TB remained inconclusive
(179). Similarly, Venkatappa et al. (180) evaluated the concordance
between QFT-Plus, QFT-GIT, T-SPOT.TB, and TST across 506
high-risk individuals in a multicenter study. QFT-Plus and QFT-
GIT exhibited 94% overall agreement, with 19% positivity and
75% negativity, reinforcing their equivalence in clinical utility.
Despite their diagnostic strengths, IGRAs face limitations in
differentiating disease stages and in implementation across low-
resource settings. Nonetheless, they remain a vital component of
TB screening protocols, especially in BCG-vaccinated populations
and high-risk groups.

3.4.3 Urine lipoarabinomannan assay (LAM)
Urine-based antigen detection offers a noninvasive diagnostic

option for TB, eliminating the need for aerosol-generating
procedures during specimen collection (181). One promising
biomarker in this approach is LAM, a glycolipid component
of the M. tuberculosis cell wall that can be excreted in urine.
Although the exact mechanism of LAM excretion remains unclear,
it is hypothesized to result from bacterial degradation during
infection (182–184). The DetermineTM TB LAM Ag assay (formerly
AlereLAM), developed by Alere Inc. and now marketed by
Abbott Laboratories, is a lateral flow immunochromatographic
test designed for point-of-care use, particularly in resource-limited
settings. It provides rapid, bedside detection of urinary LAM,
with utility in diagnosing extrapulmonary TB cases that may
yield negative sputum results by conventional methods such as
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GeneXpert (181). The performance of the DetermineTM TB LAM
test varies significantly based on patient characteristics, including
the presence of TB symptoms, hospitalization status, and CD4+
T-cell count (185).

Since 2015, the WHO has recommended AlereLAM for
TB screening in HIV-positive patients, particularly those with
advanced immunosuppression (186). Meta-analyses report a
pooled sensitivity of 42%, increasing to 54% among individuals
with CD4+ counts below 100 cells/mm3, but falling to just
17% in those with higher counts (185). Despite its relatively
modest sensitivity, AlereLAM remains a cost-effective diagnostic
option in low-resource settings and contributes valuable clinical
information, especially in advanced HIV infection (187, 188). The
Fujifilm SILVAMP TB LAM assay (FujiLAM) represents a second-
generation test that addresses several limitations of AlereLAM.
FujiLAM incorporates high-affinity monoclonal antibodies and
a silver amplification step to improve signal detection, thereby
enhancing sensitivity and lowering the detection threshold for
LAM in urine (189–192).

Clinical studies have reported that FujiLAM can achieve
diagnostic sensitivities of up to 85% in HIV-positive adults,
with significantly higher specificity than AlereLAM (193–195).
In a 2022 study conducted in Indonesia involving 62 patients,
FujiLAM demonstrated a sensitivity of 61% and specificity of
92.31%, outperforming AlereLAM and other diagnostic methods in
identifying extrapulmonary TB cases (196). In the same cohort, the
general urine LAM test showed a sensitivity of 75% and specificity
of 73.91%. Despite being three to four times more affordable
than nucleic acid amplification tests (NAATs), AlereLAM’s low
sensitivity, particularly in patients with CD4+ T-cell counts above
200 cells/mm3, limits its broader clinical use (197). Additionally,
ambiguities in the interpretation of AlereLAM results, as noted in
the WHO 2019 guidelines, further complicate its clinical utility due
to variability in host immune status and bacillary burden (185). A
generalized schematic of the urine LAM assay principle is presented
in Figure 4, illustrating the noninvasive detection of LAM antigens
through a lateral flow immunoassay format. This process involves
urine sample application, antigen-antibody binding, and visual
interpretation of results via colored test and control lines.

3.5 Mass spectrometry technology

Matrix-assisted laser desorption ionization time-of-flight mass
spectrometry (MALDI-TOF MS) has become an essential tool for
microbial identification through protein profiling (198–200). While
highly effective for many bacteria, its application to mycobacterial
species has been more limited due to challenges in protein
extraction from their lipid-rich, rigid cell walls (201, 202). These
barriers complicate cell lysis and cytoplasmic protein release, both
of which are critical for reliable MALDI-TOF MS analysis (203).
Moreover, the slow growth rate and lower ribosomal content
of MTBC, along with the need for biosafety level 3 (BSL-3)
inactivation protocols, further hinder protein detection (204–206).

Recent advances in sample preparation have enhanced
MALDI-TOF MS performance in mycobacterial diagnostics.
Mechanical and chemical lysis techniques—particularly those

employing silica/zirconia beads—have improved protein extraction
efficiency (207), Bruker Daltonics’ MycoEx protocol incorporates
bead beating and acetonitrile extraction, showing improved
performance in identifying mycobacteria, including M. bovis and
M. tuberculosis strains (201, 205, 208, 209). Bacanelli et al. (210)
demonstrated that high-powered homogenization (MycoLyser
method), compared to vortexing (MycoEx), produced significantly
higher Biotyper log scores (1.800 vs. lower scores), indicating
enhanced identification accuracy.

Beyond species identification, MALDI-TOF MS is now applied
for antimicrobial resistance profiling. The MassARRAY platform
enables detection of hundreds of single nucleotide polymorphisms
(SNPs) from 15 drug resistance-associated genes, generating
comprehensive drug susceptibility profiles (211). In a clinical study
of 201 pulmonary TB patients, Shi et al. (212) reported that
MALDI-TOF MS had a detection rate of 94.3%, outperforming
smear microscopy (43.2%), LAMP, 68.2% and Xpert MTB/RIF
(85.2%). Notably, in culture-negative samples, MALDI-TOF MS
still achieved a sensitivity of 78.8%, far exceeding other methods.
Among rifampicin-resistant cases, MALDI-TOF MS identified
96.72%, compared to 81.97% with Xpert. These findings support
MALDI-TOF MS as a robust and scalable platform for both rapid
TB detection and drug resistance analysis. Continued refinement of
sample processing protocols and broader clinical validation could
solidify its role in frontline TB diagnostics, especially in settings
requiring high-throughput, accurate, and rapid testing.

3.6 CRISPR-based diagnostics

The application of CRISPR (Clustered Regularly Interspaced
Short Palindromic Repeats) and CRISPR-associated protein (Cas)
systems in TB diagnostics represents a novel and promising
molecular approach. CRISPR/Cas systems utilize sequence-specific
cleavage activity, guided by short RNA molecules, to recognize and
cleave complementary DNA sequences (213). In addition to their
cis-cleavage capabilities at the target site, many Cas enzymes exhibit
trans-cleavage activity—wherein abundant, non-target reporter
oligonucleotides are repeatedly cleaved in proportion to target
presence—allowing intrinsic signal amplification (214, 215).

This dual-cleavage mechanism enables ultra-sensitive detection
of nucleic acids, including targets at low copy numbers or
those differentiated by single nucleotide polymorphisms (SNPs)
(216–219). Furthermore, CRISPR systems have demonstrated
utility in detecting SNPs associated with drug resistance in M.
tuberculosis, making them highly applicable for both diagnosis and
antimicrobial resistance profiling (220). Their compatibility with
portable, point-of-care platforms further enhances their diagnostic
appeal (221–223).

Most CRISPR-based TB assays incorporate nucleic
acid amplification (NAA), such as recombinase polymerase
amplification (RPA) or LAMP, to enhance sensitivity (215, 224).
These platforms can detect trace quantities of M. tuberculosis
DNA with high accuracy in under an hour (225–227). However,
total assay time often exceeds 60 min due to multi-step workflows
(226, 228–232), which may also increase the risk of cross-
contamination. Additionally, fluorescent signal detection in
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FIGURE 4

Schematic illustration of the LAM Assay principle. This diagram outlines the core steps of the LAM-based lateral flow immunoassay used for TB
diagnosis. Following urine collection, LAM antigens bind to anti-LAM antibodies conjugated with a detection label. As the sample migrates along the
test strip, the presence of LAM is indicated by a colored test line, while a control line ensures assay validity. The interpretation panel distinguishes
between positive (both lines visible) and negative (only control line visible) results. This generic schematic avoids proprietary device branding and
reflects the underlying principle applicable across LAM assay platforms.

many CRISPR systems requires external devices, limiting field
applicability in resource-limited settings until simpler readout
systems become available. Lateral flow strips, however, offer
promising visual alternatives for qualitative interpretation
(227, 232, 233).

Most CRISPR-based TB diagnostics target multicopy genomic
sequences such as IS6110 and IS1081, which are highly conserved
and present in multiple copies across M. tuberculosis complex
strains, thereby improving diagnostic sensitivity (225–227, 229,
232–234). Some systems have also been designed to detect
mutations in the rifampicin resistance-determining region of the
rpoB gene—mutated in over 95% of rifampicin-resistant and
more than 78% of multidrug-resistant TB strains (228, 235, 236).
Additional targets, such as 16S rRNA, rpsL, and gyrB, may
also indicate TB presence or drug resistance. While genomic
conservation across M. tuberculosis complex species exceeds 99%
(237), IS6110 remains a universal and highly specific target for
CRISPR-based detection platforms (238).

In 2023, Zhang et al. introduced a CRISPR/Cas12a-based
system combined with recombinase-aided amplification for
detecting M. tuberculosis, achieving rapid, equipment-free
molecular identification (239). The entire workflow—from
DNA extraction to signal detection—was completed within 2 h,
including 20 min for extraction, 30 min for amplification, and
30 min for CRISPR-based readout. Compared to Xpert MTB/RIF
(120 min) and conventional culture (up to 30 days) (240), the
CRISPR approach offers significant time and cost advantages, with
expenses estimated to be nearly 50% lower than standard PCR
methods (241).

Despite its potential, several challenges remain. The variability
in repeatability and the amplification duration may affect
detection sensitivity and complicate quantification of bacterial

load. Furthermore, the limitations of traditional culture-based
reference standards (e.g., low positivity in older samples) suggest
that aligning CRISPR results with clinical diagnoses may improve
diagnostic accuracy (239). Nonetheless, CRISPR-based diagnostics
represent a powerful emerging tool in the early and precise
detection of TB and drug resistance mutations, particularly in
resource-limited and high-burden settings.

3.7 The emerging role of artificial
intelligence in TB diagnosis and resistance
prediction

The integration of artificial intelligence (AI) and machine
learning (ML) in TB diagnostics represents a transformative
frontier in clinical microbiology and global health (242). These
technologies are increasingly being used to optimize image
interpretation, predict drug resistance, and integrate diverse
diagnostic data streams for improved clinical decision-making.
In microscopy, AI algorithms have demonstrated strong potential
in automating the detection of AFB in stained sputum smears.
For instance, convolutional neural network (CNN)-based models
have been trained to identify AFB with high accuracy, thereby
minimizing manual effort and inter-observer variability. Hwang
et al. (243) developed a deep learning model that achieved over 96%
sensitivity and 98% specificity for detecting TB-positive smears,
enabling rapid, high-throughput analysis suitable for decentralized
laboratories where trained personnel are limited.

In the domain of chest radiography, AI-driven computer-
aided detection (CAD) systems such as CAD4TB, Lunit INSIGHT
CXR, and qXR have become integral to TB screening programs
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in community and clinical settings. These systems analyze digital
chest X-rays in real time and assign TB likelihood scores to
assist in triaging suspected cases. Qin et al. (244) conducted
a multicenter study demonstrating that CAD4TB version 6
performed comparably to expert radiologists in identifying TB,
especially in asymptomatic and HIV-positive individuals. Similarly,
the WHO evaluated multiple AI-based CAD tools and reported
that Lunit and qXR achieved sensitivities exceeding 90% and met
or surpassed the WHO’s target product profile for TB triage tests
(245). The latest versions of these systems have shown area under
the curve (AUC) values nearing 0.90, supporting their deployment
in mobile clinics and high-volume screening programs.

Beyond imaging, AI is playing a transformative role in the
prediction of drug resistance using WGS data. ML models,
including ensemble techniques like XGBoost, have been applied
to genomic datasets to forecast resistance to first-line anti-TB
drugs. Walker et al. (246) demonstrated that such models could
predict resistance to rifampicin and isoniazid with over 90%
accuracy, offering a rapid alternative to conventional phenotypic
susceptibility testing. This innovation is particularly critical for
timely management of multidrug-resistant TB. Furthermore, AI
is being incorporated into clinical decision support systems that
integrate diverse data inputs—including patient history, lab results,
radiographic findings, and genetic profiles—to guide diagnosis
and therapy in real time. These systems represent a move toward
precision medicine in TB care.

Nonetheless, several barriers remain. These include the
requirement for large annotated datasets, variability in model
performance across populations, concerns over algorithm
transparency, and data privacy regulations that complicate
implementation. Additionally, infrastructure limitations and
regulatory uncertainty pose challenges to the large-scale adoption
of AI tools in TB programs. Despite these limitations, the
expanding evidence base supports the transformative potential of
AI in TB diagnostics. By improving detection speed, enhancing
diagnostic precision, and enabling personalized treatment
approaches, AI is poised to become a cornerstone of global TB
control strategies. Figure 5 provides a visual summary of the
integration of AI across key TB diagnostic platforms, including
microscopy, chest radiography, and WGS.

3.8 Influence of host genetics and
microbiome composition on TB
susceptibility and treatment outcomes

Emerging research has highlighted the critical role of host
genetic variation and microbiome composition in modulating
susceptibility to TB, response to treatment, and risk of disease
progression. These host-specific factors represent promising
frontiers for the development of precision medicine approaches in
TB management. Host genetics play a pivotal role in determining
individual risk of TB infection, latency, and treatment response.
Genome-wide association studies have identified multiple
susceptibility loci, such as variants in the TLR1, VDR, IFNGR1,
and IL12B genes, which affect immune recognition and cytokine
signaling during M. tuberculosis infection. For instance, Curtis

FIGURE 5

Artificial intelligence applications in tuberculosis diagnostics. This
infographic illustrates the integration of AI across three major TB
diagnostic platforms. Left: AI-assisted microscopy uses deep
learning to detect AFB in smear samples. Center: AI-driven
radiographic systems, such as CAD4TB, analyze chest X-rays for
automated TB screening. Right: AI algorithms applied to WGS data
enable rapid prediction of drug resistance mutations in M.
tuberculosis. At the center, an AI microchip symbolizes the
convergence of machine intelligence in advancing TB diagnostics
across modalities.

et al. (247) found that polymorphisms in HLA class II genes were
significantly associated with progression from latent to active TB
in diverse populations. Similarly, Quistrebert et al. (248) identified
rare monogenic variants in TYK2 and STAT1 pathways linked to
early-onset extrapulmonary TB, particularly in children.

Genetic differences also influence treatment outcomes.
Polymorphisms in NAT2, which encodes N-acetyltransferase 2,
affect isoniazid metabolism, leading to variations in drug efficacy
and hepatotoxicity risk. In a meta-analysis by Huang et al. (249),
slow acetylators had significantly higher risks of isoniazid-induced
liver injury, suggesting the potential utility of pharmacogenomic-
guided dosing. Beyond host DNA, the gut and lung microbiomes
have emerged as important modulators of host immunity
during TB infection and treatment. Dysbiosis—characterized by
reduced microbial diversity and loss of commensal species—is
commonly observed in TB patients, potentially impairing immune
homeostasis. Naidoo et al. (250) demonstrated that anti-TB therapy
induces long-term gut microbiome alterations, including depletion
of Clostridiales and Bifidobacterium spp., which correlated with
systemic inflammation and altered immune profiles.

Alterations in the lung microbiota have been increasingly
linked to TB severity. Studies show that patients with active TB
exhibit reduced microbial diversity and a shift from commensal
genera like Streptococcus and Prevotella to potentially pathogenic
taxa such as Rothia and Veillonella, reflecting a dysbiotic state
that may worsen inflammation and lung damage (251). These
findings suggest that the lung microbiome not only influences host
immunity but may also serve as a biomarker or therapeutic target in
TB management. Figure 6 illustrates how host genetic factors and
microbiome composition interact to influence TB susceptibility,
progression, and treatment outcomes.
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FIGURE 6

Host genetics and microbiome interactions shaping TB outcomes.
The schematic highlights how host genetic variants (e.g., TLR1, VDR,
NAT2) and the composition of the gut and lung microbiomes
modulate the immune response to M. tuberculosis. These
host-specific factors influence infection risk, disease severity, and
the success of pharmacologic therapy, underscoring the potential
of precision-guided TB management that integrates genomics and
microbiome profiling.

4 Treatment options of TB

Accurate diagnosis of TB is crucial for guiding treatment
strategies, determining drug selection, and defining therapy
duration. Techniques such as sputum smear microscopy, molecular
assays, and immunological tests are essential for distinguishing
between drug-sensitive and drug-resistant strains of M. tuberculosis
(252). Effective diagnostics improve therapeutic outcomes, reduce
transmission, and enhance public health interventions. While 85%
of patients with drug-sensitive TB benefit from current treatment
regimens, only 57% of those with drug-resistant TB achieve
successful outcomes (253), highlighting the need for optimized,
cost-effective oral therapies (254).

4.1 Therapy for drug-susceptible TB

The standard 6-month regimen for drug-susceptible
tuberculosis, established through decades of clinical trials
by the British Medical Research Council, remains the global
benchmark (255). It comprises a 2-month intensive phase using
rifampicin, isoniazid, and pyrazinamide, followed by a 4-month
continuation phase with rifampicin and isoniazid. The inclusion of
pyrazinamide significantly reduced the treatment duration from 9
to 6 months, enhancing global treatment adherence (255). While
this short-course chemotherapy has saved millions of lives, its
6-month duration presents logistical and adherence challenges for
both patients and TB programs (256). To address this, efforts have
focused on shortening therapy without compromising efficacy.
Fluoroquinolones such as moxifloxacin and gatifloxacin have
demonstrated accelerated sputum sterilization (257, 258), but

three pivotal phase III trials in 2014 failed to prove non-inferiority
compared to the standard regimen (259, 260). Nonetheless,
subgroup analyses suggest that certain patient populations may
benefit from abbreviated regimens (261, 262).

Rifamycin optimization is another approach to treatment
shortening. High-dose rifampicin (up to 40 mg/kg/day) is well
tolerated and may improve sterilizing activity (263), particularly
for TB meningitis. A recent phase III trial demonstrated that a
4-month regimen containing rifapentine, isoniazid, pyrazinamide,
and moxifloxacin was non-inferior to the standard 6-month
protocol, prompting provisional WHO endorsement in 2022 for
drug-susceptible pulmonary TB (264, 265). Newer agents such
as pretomanid, a nitroimidazole compound, have also shown
promise. A phase II trial reported faster sputum culture conversion
compared to standard therapy, though its use was associated with a
higher incidence of hepatotoxicity, especially when combined with
pyrazinamide (266).

In pediatric cases, shorter therapy may also be effective (267).
The SHINE trial, a phase III open-label study, revealed that
16-week regimens were non-inferior to 6-month protocols in
children with non-severe, smear-negative TB (268). Similarly, the
2023 TRUNCATE-TB trial evaluated 2-month regimens in adults.
Among 674 participants, the 8-week bedaquiline-linezolid group
achieved non-inferiority with no significant safety concerns, while
the rifampin-linezolid group did not meet the non-inferiority
margin (269). These findings highlight a growing opportunity for
individualized, shorter-course therapy in selected cases of drug-
susceptible TB.

4.2 Isoniazid-resistant,
rifampicin-susceptible TB treatment

Isoniazid has served as a cornerstone for both active and latent
TB treatment for over five decades (270). However, increasing
rates of isoniazid resistance have become a major clinical concern.
According to the WHO, ∼7.4% of newly diagnosed TB patients and
11.4% of previously treated individuals are resistant to isoniazid
while remaining susceptible to rifampicin—a condition classified as
isoniazid-resistant, rifampicin-susceptible TB (Hr-TB) (271). This
form of resistance is more common than multidrug-resistant TB
(MDR-TB), highlighting the urgency of appropriate therapeutic
strategies. Failure to manage isoniazid resistance according to
guidelines significantly elevates the risk of acquiring additional
resistance, particularly to rifampicin and other first-line agents
(272, 273). Recognizing this, the WHO currently recommends a 6-
month regimen comprising rifampicin, ethambutol, pyrazinamide,
and levofloxacin for the treatment of Hr-TB. However, this
recommendation remains conditional due to the limited strength
of supporting evidence and the absence of randomized controlled
trials validating its efficacy (272, 274, 275).

Alternative international guidelines, such as those from
European and American expert panels, suggest using pyrazinamide
only during the initial 2 months of therapy in selected
cases to minimize hepatotoxicity (276). In scenarios where
fluoroquinolone resistance is confirmed or suspected, a 6-
month combination of rifampicin, ethambutol, and pyrazinamide
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is typically administered. However, such recommendations are
largely based on expert consensus rather than high-quality
clinical data. Additionally, the WHO has not yet addressed the
potential role of high-dose isoniazid in managing Hr-TB, despite
emerging evidence suggesting that its effectiveness may depend on
specific resistance-conferring mutations and individual acetylator
status (277). Most existing data on Hr-TB treatment stem from
observational studies rather than randomized trials, underscoring
the critical need for rigorously designed clinical research to inform
optimal therapeutic regimens (278).

In a comprehensive analysis involving WHO surveillance data
from 156 countries between 2003 and 2017, Dean et al. (271)
estimated that Hr-TB prevalence was 7.4% in newly diagnosed
cases and 11.4% in previously treated patients. Resistance to
pyrazinamide and levofloxacin was comparatively rare, being
reported in only 1.8% and 5.3% of the assessed countries,
respectively. Whole-genome sequencing (WGS) data from 4,563
clinical samples showed that 78.6% of isoniazid-resistant strains
harbored mutations in the katG gene, particularly the Ser315Thr
substitution, which is known to confer high-level resistance.
A recent 2023 study by Liu et al. (279) explored the genetic
mechanisms of isoniazid resistance in M. tuberculosis isolates
from China. Out of 4,922 clinical isolates analyzed using WGS,
384 (7.8%) exhibited resistance to isoniazid while remaining
rifampicin-sensitive. The katG Ser315Thr mutation was observed
in 63.0% of cases, and fabG1 mutations were found in 29.9%.
Importantly, resistance rates for pyrazinamide (0.8%), ethambutol,
fluoroquinolones (2.3%), and amikacin (0.5%) were low, whereas
resistance to streptomycin was significantly higher at 39.6%. These
findings support the use of rifampicin, ethambutol, pyrazinamide,
and levofloxacin as an effective combination regimen in managing
Hr-TB, provided resistance to companion drugs is excluded.

4.3 Multidrug-resistant and
rifampicin-resistant TB treatment

Multidrug-resistant tuberculosis (MDR-TB) and rifampicin-
resistant TB (RR-TB) continue to pose significant public health
challenges globally, with an estimated 450,000 new cases of RR-
TB expected in 2021 (280). The global treatment success rate for
patients treated for MDR/RR-TB improved from ∼50 % in 2012
to 60 % in 2019, rising further to 63 % in 2020 (281). However,
it is concerning that 15% of patients diagnosed with MDR/RR-
TB do not survive. In December 2022, the WHO released the
WHO Consolidated Guidelines on TB, Module 4: Treatment—
Drug-Resistant TB Treatment, which replaces the 2020 edition and
expands on previous recommendations (265). The 2022 update
outlines seven critical areas relevant to the treatment of MDR-TB
(282). These areas include strategies for managing MDR/RR-TB,
handling isoniazid-resistant TB, monitoring patient responses to
therapy, determining the optimal timing for initiating antiretroviral
therapy in patients co-infected with HIV, and considering surgical
interventions for patients with MDR/RR-TB (265).

The 2022 guidelines recommend two new treatments for
MDR/RR-TB (283). First, a 6-month regimen of bedaquiline,
pretomanid, linezolid (600 mg), and moxifloxacin is proposed

as an alternative to longer regimens (284). Second, an all-oral
regimen for 9 months is advised if fluoroquinolone resistance is
eliminated, though extended regimens may still be an option (285).
In 2018, more than 12,000 patients with MDR/RR-TB (286, 287)
experienced a reduction in treatment duration from 18–20 months
to 9–12 months. The STREAM Stage 2 trial revealed that 71% of
patients on injectable regimens and 83% in the all-oral group had
positive outcomes (288), with lower rates of grade 3/4 hearing loss
in the all-oral group (2% vs. 9%).

The WHO recommended a 9–12 month bedaquiline regimen
for TB cases without fluoroquinolone resistance (265). The TB-
PRACTECAL study (289) demonstrated that the BPaLM regimen
(bedaquiline, linezolid, pretomanid, moxifloxacin) achieved 89%
positive outcomes with fewer side effects than standard treatment,
leading to the study’s early termination. The NExT trial further
reduced treatment duration to 6 months with bedaquiline,
linezolid, and fluoroquinolones (290). An interim analysis of the
BEAT Tuberculosis trial reported 87% effectiveness with a 6-
month regimen (291). The MDR-END trial accomplished 75%
success with a non-bedaquiline regimen, showing non-inferiority
to the previous 20–24-month treatment duration recommended
by the WHO in 2014 (292). Progress in managing MDR/RR-
TB is hindered by inadequate drug resistance testing (293). The
lack of standardized testing limits diagnostics and undermines
clinician trust, while high drug costs restrict availability in many
countries (294).

4.4 Treatment of
multidrug-resistant/rifampicin-resistant
and fluoroquinolone-resistant TB

The treatment of pre-extensively drug-resistant tuberculosis
(pre-XDR-TB)—which includes multidrug-resistant (MDR) and
rifampicin-resistant (RR) TB with additional fluoroquinolone (FQ)
resistance—remains a major clinical challenge. This is largely due
to limited therapeutic options, high drug costs, frequent adverse
effects, and historically poor outcomes (256). The BEAT-India
trial demonstrated promising results, achieving a 91% treatment
success rate among 153 patients treated with a 6–9-month regimen
containing bedaquiline, linezolid (600 mg daily), clofazimine, and
delamanid. Despite the high efficacy, linezolid-related toxicities
were significant, though some patients tolerated a reduced dose
of 300 mg (295). The NiX-TB trial evaluated a three-drug BPaL
regimen (bedaquiline, pretomanid, and linezolid 1,200 mg daily)
for 6 months, reporting a 90% success rate but with high rates of
adverse effects-−81% developed peripheral neuropathy, and 48%
experienced myelosuppression. The subsequent ZeNix trial tested
lower linezolid doses (600 or 1200 mg for 2 or 6 months) and
showed success rates between 84% and 93%, with improved safety
at the 600 mg dose (296, 297).

Based on these findings, the WHO recommends the BPaL
regimen for the treatment of fluoroquinolone-resistant TB (298).
However, evidence supporting the 600 mg dose recommendation
is still evolving, and the optimal duration and dosage of linezolid
remain subjects of ongoing investigation (299, 300). A retrospective
cohort study conducted by Lee et al. in South Korea between
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2005 and 2017 included 129 MDR-TB patients, of whom 30.2%
were FQ-resistant and 69.8% were FQ-sensitive. Linezolid was the
most frequently prescribed drug in the FQ-resistant group (51.3%),
followed by bedaquiline (20.5%) and delamanid (10.3%). Although
no significant difference in treatment success was observed between
FQ-sensitive and FQ-resistant patients, the study emphasized that
individualized regimens incorporating new drugs can improve
treatment outcomes for difficult-to-treat TB cases (301).

In support of this approach, Nehru et al. conducted a genomic
epidemiological study using the WHO-endorsed GenoType
MTBDRsl Ver 2.0 assay to evaluate fluoroquinolone resistance in
various TB subtypes. The study found FQ resistance in 33% of
MDR-TB cases, 16.5% of RR-TB cases, and 5.4% of non-MDR-TB
isolates. The most prevalent mutation was D94G in the gyrA gene,
accounting for 49.5% of resistance-related mutations. Alarmingly,
5.12% of isoniazid mono-resistant isolates also exhibited FQ
resistance, and isolates harboring the S450L mutation in the rpoB
gene were associated with increased risk. These findings underscore
the critical need for routine resistance testing before initiating
treatment, especially in high-burden regions (302).

4.5 Host-directed therapies

In the ongoing pursuit of more effective TB treatments,
two parallel strategies have gained prominence: the development
of antimycobacterial drugs and host-directed therapies (HDTs),
which aim to enhance the host’s immune response (303,
304). HDTs reduce disease burden and potentially counteract
antibiotic resistance by minimizing reliance on antimicrobials and
enhancing the efficacy of existing drugs (305). These therapies
often involve the repurposing of immune-modulating agents that
improve pathogen clearance, suppress harmful inflammation, and
limit tissue destruction (304, 305). HDT targets key aspects
of TB immunopathogenesis, including excessive inflammation
(306), host metabolic processes (307), and the immune evasion
mechanisms employed by M. tuberculosis (308). By modulating
these host factors, HDTs offer an adjunctive approach to
conventional anti-TB treatment. As illustrated in Figure 7, HDTs
exert their effects via four primary pathways: reducing lung
inflammation and tissue damage; enhancing antimicrobial immune
responses; promoting direct bactericidal activity; and disrupting
granulomas to expose intracellular bacteria to host defenses
and antibiotics.

The overarching objective of HDT is to amplify protective
host responses while limiting detrimental ones that contribute
to bacterial persistence and lung pathology (309). If successfully
implemented, HDT may improve treatment adherence, reduce
treatment duration, lower the risk of resistance development, and
ultimately improve cure rates with fewer long-term complications
(310). Many HDTs currently under investigation are repurposed
drugs being tested in preclinical or clinical trials as adjuncts
to standard therapy. Notably, agents such as acetylsalicylic acid
and statins offer potential advantages due to their established
safety profiles and affordability, which may facilitate rapid clinical
integration if proven effective (311). Moreover, HDTs may reduce
the dependency on prolonged use of repurposed antibiotics such

as oxazolidinones and fluoroquinolones, thereby lowering the
risk of resistance development in M. tuberculosis and other
pathogens (312). Additionally, their anti-inflammatory properties
may mitigate pulmonary damage and improve patient outcomes
(309). Nonetheless, HDT development faces key challenges.
In vitro studies remain essential for initial pharmacological
screening (313), while animal models provide valuable insights into
immune modulation, treatment efficacy, and disease progression.
These models help assess therapeutic effects on bacterial load,
tissue pathology, and survival (314). Ultimately, findings from
experimental models must be validated in clinical trials to
determine real-world applicability and address safety, efficacy, and
regulatory considerations (315).

4.6 Digital health tools and telemedicine in
TB management

The emergence of digital health technologies and telemedicine
platforms has opened new avenues for improving TB care,
particularly in settings with limited healthcare access or disrupted
services. These tools are increasingly utilized for treatment
adherence monitoring, contact tracing, remote diagnostics, and
patient education—forming a critical component of modern TB
control strategies. One of the most impactful digital innovations is
the digital adherence technology (DAT) platform, which includes
tools such as 99DOTS, evriMED smart pillboxes, and video directly
observed therapy (vDOT) (316). These systems track medication
intake in real-time and alert healthcare providers to missed doses.
A multicountry evaluation by Thomas et al. (317) found that
99DOTS, a low-cost cellphone-based system, improved medication
adherence among TB patients in India, with 93% of doses recorded
on the platform and significantly fewer missed doses compared to
standard DOT.

Similarly, vDOT platforms like SureAdhere have been adopted
by TB programs in the U.S. and Europe, enabling patients to
record and submit videos of themselves taking their medications.
A randomized controlled trial by Story et al. (318) demonstrated
that vDOT was non-inferior to in-person DOT, with higher patient
satisfaction and reduced logistical burden on health workers. In
rural or crisis-affected regions, telemedicine has played a vital role
in bridging access gaps. Real-time video consultations, chat-based
triage systems, and remote expert panels facilitate timely diagnosis
and clinical decision-making. For example, during the COVID-
19 pandemic, the TB REACH initiative implemented a telehealth-
supported TB triage model in Pakistan that reduced diagnostic
delays by over 40% (319).

Mobile applications (e.g., Nikshay in India, TB eHealth in
Uganda) now offer centralized digital platforms to track patient
records, laboratory results, and treatment progress, allowing health
authorities to monitor outbreaks in real time and improve linkage
to care (320). These platforms also integrate AI-based analytics
to identify high-risk patients and predict treatment interruptions.
Despite their potential, digital TB tools face challenges such as poor
internet connectivity, digital illiteracy, privacy concerns, and lack of
integration into national health information systems. Nonetheless,
as part of the WHO’s End TB Strategy, digital health is recognized
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FIGURE 7

The key HDTs that may enhance the efficacy of M. tuberculosis treatment are as follows: (A) Regulating inflammatory mechanisms and mediators is
crucial for reducing inflammation and preventing lung tissue damage, ultimately enhancing lung integrity. (B) Strengthening the host immune and
memory responses is essential for overall health. (C) Enhancing host bactericidal mechanisms, such as macrophage-mediated killing of M.
tuberculosis and inhibiting bacillary growth, is vital for an effective immune response. (D) The disintegration of granulomas and the release of M.
tuberculosis bacilli increase exposure to anti-TB medications.

as a cornerstone for improving TB program efficiency, enhancing
patient-centered care, and achieving universal health coverage.

4.7 Advances in TB vaccine development:
challenges and new frontiers

The development of an effective TB vaccine remains a pressing
global health priority. While the BCG vaccine, first introduced
in 1921, is still in use, its protective efficacy is highly variable—
especially against pulmonary TB in adolescents and adults (321).
With increasing rates of drug-resistant TB and the global burden
of latent infections, the need for improved preventive strategies
has gained renewed momentum. Recent advances in immunology,
systems biology, and vaccine technology have led to the emergence
of over 17 vaccine candidates currently in various phases of clinical
development (322). Among the most promising candidates is
M72/AS01E, a subunit vaccine developed by GSK and Aeras. In
a pivotal Phase IIb trial involving 3,573 latently infected adults in
Kenya, South Africa, and Zambia, the vaccine demonstrated ∼50%
efficacy in preventing active TB over a 3-year follow-up period
(323). This result marked the first successful demonstration of

vaccine-mediated protection against TB in latently infected adults
and has led to plans for a large-scale Phase III efficacy trial.

VPM1002, a recombinant BCG vaccine engineered to express
listeriolysin O and delete the ureC gene, has shown enhanced
immunogenicity and safety in comparison to traditional BCG.
Phase II trials conducted in India and South Africa have reported
favorable results, and Phase III trials are currently underway in
both infants and adults (324). Another advanced candidate is
MTBVAC, the first live-attenuated vaccine derived directly from
M. tuberculosis rather than M. bovis. Developed by Biofabri
and the University of Zaragoza, MTBVAC has completed Phase
I and II studies with promising safety and immunogenicity
profiles. It is currently in Phase III trials in multiple countries,
including high-burden settings in Africa (325). In addition to
these, ID93+GLA-SE, a protein–adjuvant vaccine, has shown
robust immune responses in early trials and completed Phase IIa
evaluation (326).

Ad5Ag85A, a recombinant adenoviral-vectored vaccine, is
being evaluated for its ability to enhance mucosal immunity—
a key defense mechanism in pulmonary TB. Notably, mRNA-
based TB vaccines, such as those developed by BioNTech,
have recently entered Phase I clinical testing following strong
preclinical evidence of immunogenicity and protection (327).
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TABLE 1 Leading Tuberculosis Vaccine Candidates in Clinical Development.

Vaccine
candidate

Platform Clinical phase Key findings Key
references

M72/AS01E Subunit (Mtb32A–Mtb39A + AS01E
adjuvant)

Completed Phase IIb; Phase
III planned

∼50% efficacy in latent TB adults (323)

VPM1002 Recombinant BCG (listeriolysin O;
�ureC)

Ongoing Phase III Improved safety/immunogenicity (324)

MTBVAC Live-attenuated M. tuberculosis strain Ongoing Phase III Safe, immunogenic in infants and adults (325)

ID93+GLA-SE Protein–adjuvant (ID93 + GLA-SE) Completed Phase IIa Robust T-cell responses (333)

Ad5Ag85A Recombinant adenoviral vector
expressing Ag85A

Phase I completed Safe and immunogenic in BCG-primed
adults; induced polyfunctional T cells

(334)

mRNA-based vaccines Synthetic mRNA-based platforms Phase I (initiated 2023) Preclinical protection; early trials begun (327)

These candidates represent a promising shift toward faster, more
adaptable vaccine development strategies. A summary of the
leading TB vaccine candidates currently in clinical development is
provided in Table 1. These candidates span diverse technological
platforms and clinical stages, underscoring the momentum and
innovation in the TB vaccine pipeline.

Despite the growing diversity of vaccine strategies, several
challenges continue to hinder progress. These include the absence
of validated immune correlates of protection, the high costs and
lengthy timelines associated with efficacy trials, and the biological
complexity of latent TB infection. Furthermore, regulatory
uncertainties, limited commercial incentives, and diminished
prioritization in high-income countries where TB incidence is
low contribute to underinvestment in vaccine development (328).
Nonetheless, this surge of innovation marks a turning point in
TB vaccine research. Continued support for translational science,
robust public–private partnerships, and equitable implementation
planning will be essential. With strategic investments, the global
community may finally be on the cusp of introducing the first new
TB vaccine in over a century—one that can significantly alter the
trajectory of the epidemic by preventing disease, reducing relapse,
and mitigating the spread of drug-resistant strains.

5 Future directions for diagnosis and
treatment of TB

Significant strides have been made in the diagnosis and
treatment of TB, driven by advances in point-of-care technologies,
innovative therapeutics, and integrated public health frameworks.
The incorporation of molecular assays, immunodiagnostics,
mass spectrometry, and CRISPR-based platforms has markedly
improved diagnostic precision and speed, enabling real-time
detection of M. tuberculosis and its resistance profiles. These
advancements support earlier and more targeted treatment
initiation, particularly in high-burden settings. Therapeutically,
the emergence of host-directed therapies aimed at modulating
the immune response holds promise for enhancing treatment
efficacy, reducing tissue damage, and shortening therapy duration.
In parallel, vaccine development has progressed with the design
of novel candidates intended to bolster both preventive and
therapeutic immunity against TB.

Public health strategies are also evolving to emphasize
community-centered approaches and integrated care models,
particularly for individuals with co-morbid conditions such as
HIV and diabetes. These models aim to improve patient retention,
treatment adherence, and overall outcomes. Moreover, increased
global investment in TB research and the formation of public-
private partnerships are accelerating innovation, facilitating the
translation of scientific breakthroughs into scalable interventions.
Together, these developments signify a shift toward a more holistic
and forward-thinking TB control paradigm—one that prioritizes
early detection, personalized treatment, and equitable access to care
in the global effort to reduce TB incidence and mortality.

6 Implementation challenges and
cost-effectiveness of advanced TB
technologies

The effective integration of diagnostic and therapeutic
innovations into TB control programs hinges not only on
technological readiness but also on their cost-effectiveness,
health system compatibility, and equitable access—key concerns
addressed by implementation science (Figure 8) (329). This
discipline evaluates how well evidence-based tools function in real-
world clinical environments, particularly in LMICs. Despite the
promise of technologies such as WGS, CRISPR-based diagnostics,
and new regimens like BPaLM, their widespread adoption remains
limited. Logistical, infrastructural, and financial constraints often
impede implementation. For example, although WGS provides
comprehensive and rapid drug-resistance profiling, its use in
resource-limited settings is curtailed by high setup costs, the
requirement for skilled personnel, and limited bioinformatics
infrastructure. A study in the Kyrgyz Republic reported an
initial capital investment of over $220,000, with early per-sample
costs averaging $277—figures that present major barriers to
scale-up (149).

Cost-effectiveness analyses are vital for policy-making in
settings with limited resources. Vassall et al. (330) found that
molecular diagnostics like Xpert MTB/RIF outperform smear
microscopy in both effectiveness and cost, particularly in high-
burden settings by reducing diagnostic delays. Similarly, Isaacs
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FIGURE 8

Implementation challenges and strategic solutions for advanced TB
technologies. This infographic outlines four major barriers to
implementing innovative TB diagnostics and treatments—high costs,
limited infrastructure and workforce, fragmented healthcare
systems, and regulatory or funding hurdles—and pairs each with
corresponding solutions. These include cost-effectiveness analysis,
training programs, service integration, and policy advocacy, all of
which are critical to ensuring the real-world success of TB
innovations in diverse health system contexts.

et al. (331) showed that digital adherence tools—such as video-
observed therapy and SMS reminders—can be cost-saving,
especially when accounting for patient-incurred costs, although
effectiveness varies by context. Healthcare system fragmentation,
especially in countries with parallel public and private sectors,
further complicates implementation. Pai and Pakdil (332) noted
that expanding diagnostic access without concurrent investments
in healthcare quality, supply chains, workforce capacity, and
accountability mechanisms yields limited benefits.

Sustainable adoption is also hindered by regulatory barriers,
fragmented funding streams, and donor-driven priorities that may
neglect long-term system strengthening. As a result, validated
technologies like Line Probe Assays or video-DOT platforms
often remain underutilized. To overcome these challenges, national
TB strategies must incorporate implementation research, health
technology assessments, and economic modeling. Embedding
these components in TB innovation pipelines will help ensure
that emerging tools are not only scientifically effective but also
affordable, scalable, and contextually appropriate for diverse
health systems.

7 Conclusions

Despite over a century of medical progress, tuberculosis
remains a formidable global health challenge, exacerbated by the

rise of antimicrobial resistance and the limitations of existing
diagnostic and therapeutic tools. This review has highlighted
how recent innovations—ranging from advanced molecular
diagnostics and next-generation sequencing to novel therapeutics
and promising vaccine candidates—are reshaping the landscape
of TB control. However, technological advancement alone is
insufficient. The true impact of these innovations depends on
their integration into health systems, especially in LMICs where
the burden is highest. Effective implementation must be guided
by cost-effectiveness analyses, health equity considerations, and
robust infrastructure development. Furthermore, the urgency
to overcome regulatory, logistical, and funding barriers cannot
be overstated if we are to bridge the gap between scientific
discovery and public health impact. Encouragingly, the TB vaccine
pipeline has expanded significantly, offering hope for a long-
overdue replacement or complement to the BCG vaccine. To turn
the tide against TB, a multifaceted approach is essential—one
that harmonizes scientific innovation, political will, cross-sectoral
partnerships, and community engagement. Only through such
coordinated global efforts can we hope to achieve the goals of the
End TB Strategy and finally relegate this ancient disease to history.
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Pavšič J, et al. The use of digital pcr to improve the application of quantitative
molecular diagnostic methods for tuberculosis. BMC Infect Dis. (2016) 16:1–
10. doi: 10.1186/s12879-016-1696-7

137. Fan Y, Chen J, Liu M, Xu X, Zhang Y, Yue P, et al. Application of droplet digital
Pcr to detection of mycobacterium tuberculosis and mycobacterium leprae infections:
a narrative review. Infect Drug Resist. (2022):1067-76. doi: 10.2147/IDR.S349607

138. Meehan CJ, Goig GA, Kohl TA, Verboven L, Dippenaar A, Ezewudo M, et al.
Whole genome sequencing of mycobacterium tuberculosis: current standards and open
issues. Nat Rev Microbiol. (2019) 17:533–45. doi: 10.1038/s41579-019-0214-5

139. Zhang H, Tang M, Li D, Xu M, Ao Y, Lin L. Applications
and advances in molecular diagnostics: revolutionizing non-tuberculous
mycobacteria species and subspecies identification. Front Public Health. (2024)
12:1410672. doi: 10.3389/fpubh.2024.1410672

140. Loman NJ, Pallen MJ. Xdr-Tb Genome Sequencing: A Glimpse of the
Microbiology of the Future. Routledge: Taylor & Francis (2008). p. 111–3.

141. Witney AA, Cosgrove CA, Arnold A, Hinds J, Stoker NG, Butcher PD. Clinical
use of whole genome sequencing for mycobacterium tuberculosis. BMC Med. (2016)
14:1–7. doi: 10.1186/s12916-016-0598-2

142. Miller S, Chiu C. The role of metagenomics and next-generation
sequencing in infectious disease diagnosis. Clin Chem. (2022) 68:115–
24. doi: 10.1093/clinchem/hvab173

143. Di Resta C, Galbiati S, Carrera P, Ferrari M. Next-generation sequencing
approach for the diagnosis of human diseases: open challenges and new opportunities.
Ejifcc. (2018) 29:4.

144. Lecuit M, Eloit M. The diagnosis of infectious diseases by whole genome
next generation sequencing: a new era is opening. Front Cell Infect Microbiol. (2014)
4:25. doi: 10.3389/fcimb.2014.00025

145. Campbell PJ, Morlock GP, Sikes RD, Dalton TL, Metchock B, Starks AM, et al.
Molecular detection of mutations associated with first-and second-line drug resistance
compared with conventional drug susceptibility testing of mycobacterium tuberculosis.
Antimicrobial Agents Chemother. (2011) 55:2032–41. doi: 10.1128/AAC.01550-10

146. Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, et al. Evolution
of high-level ethambutol-resistant tuberculosis through interacting mutations in
decaprenylphosphoryl-B-D-arabinose biosynthetic and utilization pathway genes. Nat
Genet. (2013) 45:1190–7. doi: 10.1038/ng.2743

147. Clark TG, Mallard K, Coll F, Preston M, Assefa S, Harris D, et al.
Elucidating emergence and transmission of multidrug-resistant tuberculosis in
treatment experienced patients by whole genome sequencing. PLoS ONE. (2013)
8:e83012. doi: 10.1371/journal.pone.0083012

148. Sun W, Gui X, Wu Z, Zhang Y, Yan L. Prediction of drug resistance profile
of multidrug-resistant mycobacterium tuberculosis (Mdr-Mtb) isolates from newly
diagnosed case by whole genome sequencing (Wgs): a study from a high tuberculosis
burden country. BMC Infect Dis. (2022) 22:499. doi: 10.1186/s12879-022-07482-4

149. Vogel M, Utpatel C, Corbett C, Kohl TA, Iskakova A, Ahmedov S,
et al. Implementation of whole genome sequencing for tuberculosis diagnostics
in a low-middle income, high Mdr-Tb burden country. Sci Rep. (2021)
11:15333. doi: 10.1038/s41598-021-94297-z

150. Ness TE, DiNardo A, Farhat MR. High throughput sequencing for clinical
tuberculosis: an overview. Pathogens. (2022) 11:1343. doi: 10.3390/pathogens11111343

151. Tafess K, Ng TTL, Lao HY, Leung KSS, Tam KKG, Rajwani R, et al. Targeted-
sequencing workflows for comprehensive drug resistance profiling of mycobacterium
tuberculosis cultures using two commercial sequencing platforms: comparison of
analytical and diagnostic performance, turnaround time, and cost. Clin Chem. (2020)
66:809–20. doi: 10.1093/clinchem/hvaa092

152. Papaventsis D, Casali N, Kontsevaya I, Drobniewski F, Cirillo D, Nikolayevskyy
V. Whole genome sequencing of mycobacterium tuberculosis for detection
of drug resistance: a systematic review. Clin Microbiol Infect. (2017) 23:61–
8. doi: 10.1016/j.cmi.2016.09.008

153. Doyle RM, Burgess C, Williams R, Gorton R, Booth H, Brown J, et al.
Direct whole-genome sequencing of sputum accurately identifies drug-resistant
mycobacterium tuberculosis faster than mgit culture sequencing. J Clin Microbiol.
(2018) 56(8):10.1128/jcm. 00666-18. doi: 10.1128/JCM.00666-18

154. Iketleng T, Lessells R, Dlamini MT, Mogashoa T, Mupfumi L, Moyo S, et al.
Mycobacterium tuberculosis next-generation whole genome sequencing: opportunities
and challenges. Tuberc Res Treat. (2018) 2018:1298542. doi: 10.1155/2018/1298542

155. Smith C, Halse TA, Shea J, Modestil H, Fowler RC, Musser KA, et al. Assessing
nanopore sequencing for clinical diagnostics: a comparison of next-generation
sequencing (Ngs) methods for mycobacterium tuberculosis. J Clin Microbiol. (2020)
59:e00583–20. doi: 10.1128/JCM.00583-20

156. Chang C-C, Chen C-P, Wu T-H, Yang C-H, Lin C-W, Chen C-Y. Gold
nanoparticle-based colorimetric strategies for chemical and biological sensing
applications. Nanomaterials. (2019) 9:861. doi: 10.3390/nano9060861

157. Bansal SA, Kumar V, Karimi J, Singh AP, Kumar S. Role of gold
nanoparticles in advanced biomedical applications. Nanoscale Adv. (2020) 2:3764–
87. doi: 10.1039/D0NA00472C

158. Kooti S, Kadivarian S, Abiri R, Mohajeri P, Atashi S, Ahmadpor H, et al.
Modified gold nanoparticle colorimetric probe-based biosensor for direct and rapid
detection of mycobacterium tuberculosis in sputum specimens. World J Microbiol
Biotechnol. (2023) 39:118. doi: 10.1007/s11274-023-03564-w

159. McNerney R, Daley P. Towards a point-of-care test for active
tuberculosis: obstacles and opportunities. Nat Rev Microbiol. (2011)
9:204–13. doi: 10.1038/nrmicro2521

160. Valdemar-Aguilar CM, Manisekaran R, Acosta-Torres LS, López-Marín
LM. Spotlight on mycobacterial lipid exploitation using nanotechnology for
diagnosis, vaccines, and treatments. Nanomed Nanotechnol Biol Med. (2023)
48:102653. doi: 10.1016/j.nano.2023.102653

161. Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Surface plasmon
resonance in gold nanoparticles: a review. J Phys Condensed Matter. (2017)
29:203002. doi: 10.1088/1361-648X/aa60f3

162. Zhang Z, Wang H, Chen Z, Wang X, Choo J, Chen L. Plasmonic colorimetric
sensors based on etching and growth of noble metal nanoparticles: strategies
and applications. Biosens Bioelectron. (2018) 114:52–65. doi: 10.1016/j.bios.2018.
05.015

163. WHO. The Use of Loop-Mediated Isothermal Amplification (Tb-Lamp) for the
Diagnosis of Pulmonary Tuberculosis: Policy Guidance. Geneva: WHO (2016). Available
online at: https://www.who.int/publications/i/item/9789241511186

164. Becerra AH, Flores MG, Palma-Nicolas JP, Ramírez-García G,
López-Marín LM. Mycosome-coated gold nanoparticles for plasmonic
detection of tuberculosis-associated antibodies. ACS Appl Nano Mat. (2024)
7:11203–13. doi: 10.1021/acsanm.4c00706

165. Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, Maleki A, Irani M,
Zare I. Recent advances in gold nanoparticles-based biosensors for tuberculosis
determination. Talanta. (2024) 275:126099. doi: 10.1016/j.talanta.2024.126099

Frontiers in Medicine 22 frontiersin.org

https://doi.org/10.3389/fmed.2025.1596579
https://doi.org/10.7759/cureus.58298
https://doi.org/10.1128/iai.52.1.293-302.1986
https://doi.org/10.1016/j.heliyon.2022.e11935
https://doi.org/10.1128/jcm.35.12.3132-3139.1997
https://doi.org/10.1007/s10811-020-02223-z
https://doi.org/10.1080/14787210.2016.1238304
https://doi.org/10.1128/AEM.02476-07
https://doi.org/10.1016/S0195-6701(98)90277-8
https://doi.org/10.1086/529443
https://doi.org/10.1128/jcm.32.7.1827-1829.1994
https://doi.org/10.1016/j.critrevonc.2020.103163
https://doi.org/10.1371/journal.pntd.0007284
https://doi.org/10.1021/ac5041617
https://doi.org/10.1186/s12879-016-1696-7
https://doi.org/10.2147/IDR.S349607
https://doi.org/10.1038/s41579-019-0214-5
https://doi.org/10.3389/fpubh.2024.1410672
https://doi.org/10.1186/s12916-016-0598-2
https://doi.org/10.1093/clinchem/hvab173
https://doi.org/10.3389/fcimb.2014.00025
https://doi.org/10.1128/AAC.01550-10
https://doi.org/10.1038/ng.2743
https://doi.org/10.1371/journal.pone.0083012
https://doi.org/10.1186/s12879-022-07482-4
https://doi.org/10.1038/s41598-021-94297-z
https://doi.org/10.3390/pathogens11111343
https://doi.org/10.1093/clinchem/hvaa092
https://doi.org/10.1016/j.cmi.2016.09.008
https://doi.org/10.1128/JCM.00666-18
https://doi.org/10.1155/2018/1298542
https://doi.org/10.1128/JCM.00583-20
https://doi.org/10.3390/nano9060861
https://doi.org/10.1039/D0NA00472C
https://doi.org/10.1007/s11274-023-03564-w
https://doi.org/10.1038/nrmicro2521
https://doi.org/10.1016/j.nano.2023.102653
https://doi.org/10.1088/1361-648X/aa60f3
https://doi.org/10.1016/j.bios.2018.05.015
https://www.who.int/publications/i/item/9789241511186
https://doi.org/10.1021/acsanm.4c00706
https://doi.org/10.1016/j.talanta.2024.126099
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Elbehiry et al. 10.3389/fmed.2025.1596579

166. Soo P-C, Horng Y-T, Chang K-C, Wang J-Y, Hsueh P-R, Chuang C-Y, et al. A
simple gold nanoparticle probes assay for identification of mycobacterium tuberculosis
and mycobacterium tuberculosis complex from clinical specimens. Mol Cell Probes.
(2009) 23:240–6. doi: 10.1016/j.mcp.2009.04.006

167. Kaewphinit T, Santiwatanakul S, Chansiri K. Colorimetric DNA based
biosensor combined with loop-mediated isothermal amplification for detection of
mycobacterium tuberculosis by using gold nanoprobe aggregation. Sens Transduc.
(2013) 149:123.

168. Liandris E, Gazouli M, Andreadou M, Comor M, Abazovic N, Sechi
LA, et al. Direct detection of unamplified DNA from pathogenic mycobacteria
using DNA-derivatized gold nanoparticles. J Microbiol Methods. (2009) 78:260–
4. doi: 10.1016/j.mimet.2009.06.009

169. Hussain MM, Samir TM, Azzazy HM. Unmodified gold nanoparticles for direct
and rapid detection of mycobacterium tuberculosis complex. Clin Biochem. (2013)
46:633–7. doi: 10.1016/j.clinbiochem.2012.12.020

170. Veigas B, Pedrosa P, Couto I, Viveiros M, Baptista PV. Isothermal DNA
amplification coupled to au-nanoprobes for detection of mutations associated to
rifampicin resistance in mycobacterium tuberculosis. J Nanobiotechnology. (2013)
11:1–6. doi: 10.1186/1477-3155-11-38

171. Dahiya B, Prasad T, Singh V, Khan A, Kamra E, Mor P, et al. Diagnosis of
tuberculosis by nanoparticle-based immuno-Pcr assay based on mycobacterial Mpt64
and Cfp-10 detection. Nanomedicine. (2020) 15:2609–24. doi: 10.2217/nnm-2020-0258

172. Salmanzadeh S, Abbasissifar H, Alavi SM. Comparison study of quantiferon
test with tuberculin skin testing to diagnose latent tuberculosis infection among nurses
working in teaching hospitals of Ahvaz, Iran. Caspian J Internal Med. (2016) 7:82.

173. Pai M, Riley LW, Colford JM. Interferon-Γ assays in the
immunodiagnosis of tuberculosis: a systematic review. Lancet Infect Dis. (2004)
4:761–76. doi: 10.1016/S1473-3099(04)01206-X

174. Ferrara G, Losi M, D’Amico R, Roversi P, Piro R, Meacci M, et al. Use in
routine clinical practice of two commercial blood tests for diagnosis of infection
with mycobacterium tuberculosis: a prospective study. Lancet. (2006) 367:1328–
34. doi: 10.1016/S0140-6736(06)68579-6

175. Yancey JR, Melchert VE. Quantiferon-Tb Gold+ for the diagnosis of
mycobacterium tuberculosis infection. Am Fam Physician. (2021) 103:177–8.

176. Qiagen. Quantiferon-Tb Gold Plus (Qft-Plus) for Use as an Aid in the Detection
of Mycobacterium Tuberculosis (Tb) Infection. Available online at: https://www.qiagen.
com/us/products/diagnostics-and-clinical-research/tb-management/quantiferon-tb-
gold-plus-us 2018 (Accessed March 9, 2025).

177. U.S. Preventive Services Task Force. Final Recommendation Statement.
Latent Tuberculosis Infection: Screening (2023). Available online at: is:https://www.
uspreventiveservicestaskforce.org/uspstf/recommendation/latent-tuberculosis-
infection-screening (Accessed March 9, 2025).

178. Kobashi Y. Current status and future landscape of diagnosing tuberculosis
infection. Respir Investig. (2023) 61:563–78. doi: 10.1016/j.resinv.2023.04.010

179. Hong JY, Park SY, Kim A, Cho S-N, Hur Y-G. Comparison of Qft-plus and
Qft-git tests for diagnosis of M. Tuberculosis infection in immunocompetent Korean
subjects. J Thorac Dis. (2019) 11:5210. doi: 10.21037/jtd.2019.12.11

180. Venkatappa TK, Punnoose R, Katz DJ, Higgins MP, Banaei N,
Graviss EA, et al. Comparing quantiferon-Tb gold plus with other tests
to diagnose mycobacterium tuberculosis infection. J Clin Microbiol. (2019)
57:e00985–19. doi: 10.1128/JCM.00985-19

181. Lawn SD. Point-of-care detection of lipoarabinomannan (Lam) in urine for
diagnosis of Hiv-associated tuberculosis: a state of the art review. BMC Infect Dis.
(2012) 12:1–12. doi: 10.1186/1471-2334-12-103

182. Choudhry V, Saxena R. Detection of mycobacterium tuberculosis antigens
in urinary proteins of tuberculosis patients. Eur J Clin Microbiol Infect Dis. (2002)
21:1–5. doi: 10.1007/s10096-001-0651-7

183. Achkar JM, Lawn SD, Moosa M-YS, Wright CA, Kasprowicz VO. Adjunctive
tests for diagnosis of tuberculosis: serology, elispot for site-specific lymphocytes,
urinary lipoarabinomannan, string test, and fine needle aspiration. J Infect Dis. (2011)
204:S1130–S41. doi: 10.1093/infdis/jir450

184. Shivakoti R, Sharma D, Mamoon G, Pham K. Association of Hiv infection
with extrapulmonary tuberculosis: a systematic review. Infection. (2017) 45:11–
21. doi: 10.1007/s15010-016-0960-5

185. Bjerrum S, Schiller I, Dendukuri N, Kohli M, Nathavitharana RR,
Zwerling AA, et al. Lateral flow urine lipoarabinomannan assay for detecting
active tuberculosis in people living with HIV. Cochr Database Syst Rev. (2019)
10:CD011420. doi: 10.1002/14651858.CD011420.pub3

186. WHO. The Use of Lateral Flow Urine Lipoarabinomannan Assay (Lf-Lam) for
the Diagnosis and Screening of Active Tuberculosis in People Living with HIV: Policy
Guidance. Geneva: WHO (2015).

187. Gupta-Wright A, Corbett EL, van Oosterhout JJ, Wilson D, Grint D,
Alufandika-Moyo M, et al. Rapid urine-based screening for tuberculosis in hiv-
positive patients admitted to hospital in Africa (Stamp): a pragmatic, multicentre,
parallel-group, double-blind, randomised controlled trial. Lancet. (2018) 392:292–
301. doi: 10.1016/S0140-6736(18)31267-4

188. Grant AD, Charalambous S, Tlali M, Karat AS, Dorman SE, Hoffmann CJ,
et al. Algorithm-guided empirical tuberculosis treatment for people with advanced
HIV (Tb Fast Track): an open-label, cluster-randomised trial. The lancet HIV. (2020)
7:e27–37. doi: 10.1016/S2352-3018(19)30266-8

189. Bulterys MA, Wagner B, Redard-Jacot M, Suresh A, Pollock NR, Moreau E,
et al. Point-of-care urine lam tests for tuberculosis diagnosis: a status update. J Clin
Med. (2019) 9:111. doi: 10.3390/jcm9010111

190. Nicol MP, Schumacher SG, Workman L, Broger T, Baard C, Prins M, et al.
Accuracy of a novel urine test, fujifilm silvamp tuberculosis lipoarabinomannan, for
the diagnosis of pulmonary tuberculosis in children. Clin Infect Dis. (2021) 72:e280–
e8. doi: 10.1093/cid/ciaa1052

191. Reddy KP, Denkinger CM, Broger T, McCann NC, Gupta-Wright A, Kerkhoff
AD, et al. Cost-effectiveness of a novel lipoarabinomannan test for tuberculosis
in patients with human immunodeficiency virus. Clin Infect Dis. (2021) 73:e2077–
e85. doi: 10.1093/cid/ciaa1698

192. Sigal GB, Pinter A, Lowary TL, Kawasaki M, Li A, Mathew A, et al.
A Novel sensitive immunoassay targeting the 5-methylthio-D-xylofuranose–
lipoarabinomannan epitope meets the who’s performance target for tuberculosis
diagnosis. J Clin Microbiol. (2018) 56:e01338–18. doi: 10.1128/JCM.01338-18

193. Broger T, Nicol MP, Székely R, Bjerrum S, Sossen B, Schutz C, et al. Diagnostic
accuracy of a novel tuberculosis point-of-care urine lipoarabinomannan assay for
people living with HIV: a meta-analysis of individual in-and outpatient data. PLoS Med.
(2020) 17:e1003113. doi: 10.1371/journal.pmed.1003113

194. Broger T, Sossen B, du Toit E, Kerkhoff AD, Schutz C, Reipold
EI, et al. Novel lipoarabinomannan point-of-care tuberculosis test for
people with HIV: a diagnostic accuracy study. Lancet Infect Dis. (2019)
19:852–61. doi: 10.1016/S1473-3099(19)30001-5

195. Broger T, Muyoyeta M, Kerkhoff AD, Denkinger CM, Moreau E. Tuberculosis
test results using fresh vs. biobanked urine samples with Fujilam. Lancet Infect Dis.
(2020) 20:22–3. doi: 10.1016/S1473-3099(19)30684-X

196. Indirawati NN, Yunihastuti E, Yulianti M, Nasir UZ, Wulandari D, Rinaldi
I. Lateral flow urine lipoarabinomannan assay for extrapulmonary tuberculosis
diagnosis in adults who are HIV-positive. Int J Infect Dis. (2022) 122:415–
9. doi: 10.1016/j.ijid.2022.06.007

197. Kerkhoff AD, Lawn SD. A breakthrough urine-based diagnostic
test for Hiv-associated tuberculosis. Lancet. (2016) 387:1139–
41. doi: 10.1016/S0140-6736(16)00146-X

198. Kostrzewa M, Nagy E, Schröttner P, Pranada AB. How Maldi-Tof
mass spectrometry can aid the diagnosis of hard-to-identify pathogenic
bacteria–the rare and the unknown. Expert Rev Mol Diagn. (2019)
19:667–82. doi: 10.1080/14737159.2019.1643238

199. Shi J, He G, Ning H, Wu L, Wu Z, Ye X, et al. Application of matrix-assisted
laser desorption ionization time-of-flight mass spectrometry (Maldi-Tof Ms) in the
detection of drug resistance of mycobacterium tuberculosis in re-treated patients.
Tuberculosis. (2022) 135:102209. doi: 10.1016/j.tube.2022.102209

200. Elbehiry A, Aldubaib M, Abalkhail A, Marzouk E, ALbeloushi A, Moussa I,
et al. How Maldi-Tof mass spectrometry technology contributes to microbial infection
control in healthcare settings. Vaccines. (2022) 10:1881. doi: 10.3390/vaccines10111881

201. Rodriguez-Temporal D, Perez-Risco D, Struzka EA, Mas M, Alcaide F.
Evaluation of two protein extraction protocols based on freezing and mechanical
disruption for identifying nontuberculous mycobacteria by matrix-assisted laser
desorption ionization–time of flight mass spectrometry from liquid and solid cultures.
J Clin Microbiol. (2018) 56:e01548–17. doi: 10.1128/JCM.01548-17

202. Pastrone L, Curtoni A, Criscione G, Scaiola F, Bottino P, Guarrasi L, et al.
Evaluation of two different preparation protocols for Maldi-Tof Ms nontuberculous
mycobacteria identification from liquid and solid media. Microorganisms. (2023)
11:120. doi: 10.3390/microorganisms11010120

203. Gordon SV, Parish T. Microbe profile: mycobacterium tuberculosis: humanity’s
deadly microbial foe. Microbiology. (2018) 164:437–9. doi: 10.1099/mic.0.000601

204. Pranada AB, Schwarz G, Kostrzewa M. Maldi biotyping for microorganism
identification in clinical microbiology. In: Advances in MALDI and Laser-Induced Soft
Ionization Mass Spectrometry (2016). p. 197–225.

205. Rotcheewaphan S, Lemon JK, Desai UU, Henderson CM, Zelazny
AM. Rapid one-step protein extraction method for the identification of
mycobacteria using Maldi-Tof Ms. Diagn Microbiol Infect Dis. (2019)
94:355–60. doi: 10.1016/j.diagmicrobio.2019.03.004

206. Morales MPF, Lim CK, Shephard L, Weldhagen GF. Mycobacterial inactivation
protein extraction protocol for matrix-assisted laser desorption ionization time-
of-flight characterization of clinical isolates. Int J Mycobacteriol. (2018) 7:217–
21. doi: 10.4103/ijmy.ijmy_104_18

207. Saleeb PG, Drake SK, Murray PR, Zelazny AM. Identification of mycobacteria
in solid-culture media by matrix-assisted laser desorption ionization–time of flight
mass spectrometry. J Clin Microbiol. (2011) 49:1790–4. doi: 10.1128/JCM.02135-10

208. Robinne S, Saad J, Morsli M, Hamidou ZH, Tazerart F, Drancourt M, et al.
Rapid identification of mycobacterium tuberculosis complex using mass spectrometry:
a proof of concept. Front Microbiol. (2022) 13:753969. doi: 10.3389/fmicb.2022.753969

Frontiers in Medicine 23 frontiersin.org

https://doi.org/10.3389/fmed.2025.1596579
https://doi.org/10.1016/j.mcp.2009.04.006
https://doi.org/10.1016/j.mimet.2009.06.009
https://doi.org/10.1016/j.clinbiochem.2012.12.020
https://doi.org/10.1186/1477-3155-11-38
https://doi.org/10.2217/nnm-2020-0258
https://doi.org/10.1016/S1473-3099(04)01206-X
https://doi.org/10.1016/S0140-6736(06)68579-6
https://www.qiagen.com/us/products/diagnostics-and-clinical-research/tb-management/quantiferon-tb-gold-plus-us
https://www.qiagen.com/us/products/diagnostics-and-clinical-research/tb-management/quantiferon-tb-gold-plus-us
https://www.qiagen.com/us/products/diagnostics-and-clinical-research/tb-management/quantiferon-tb-gold-plus-us
is:https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/latent-tuberculosis-infection-screening
is:https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/latent-tuberculosis-infection-screening
is:https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/latent-tuberculosis-infection-screening
https://doi.org/10.1016/j.resinv.2023.04.010
https://doi.org/10.21037/jtd.2019.12.11
https://doi.org/10.1128/JCM.00985-19
https://doi.org/10.1186/1471-2334-12-103
https://doi.org/10.1007/s10096-001-0651-7
https://doi.org/10.1093/infdis/jir450
https://doi.org/10.1007/s15010-016-0960-5
https://doi.org/10.1002/14651858.CD011420.pub3
https://doi.org/10.1016/S0140-6736(18)31267-4
https://doi.org/10.1016/S2352-3018(19)30266-8
https://doi.org/10.3390/jcm9010111
https://doi.org/10.1093/cid/ciaa1052
https://doi.org/10.1093/cid/ciaa1698
https://doi.org/10.1128/JCM.01338-18
https://doi.org/10.1371/journal.pmed.1003113
https://doi.org/10.1016/S1473-3099(19)30001-5
https://doi.org/10.1016/S1473-3099(19)30684-X
https://doi.org/10.1016/j.ijid.2022.06.007
https://doi.org/10.1016/S0140-6736(16)00146-X
https://doi.org/10.1080/14737159.2019.1643238
https://doi.org/10.1016/j.tube.2022.102209
https://doi.org/10.3390/vaccines10111881
https://doi.org/10.1128/JCM.01548-17
https://doi.org/10.3390/microorganisms11010120
https://doi.org/10.1099/mic.0.000601
https://doi.org/10.1016/j.diagmicrobio.2019.03.004
https://doi.org/10.4103/ijmy.ijmy_104_18
https://doi.org/10.1128/JCM.02135-10
https://doi.org/10.3389/fmicb.2022.753969
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Elbehiry et al. 10.3389/fmed.2025.1596579

209. Bacanelli G, Olarte LC, Silva MR, Rodrigues RA, Carneiro PA, Kaneene JB,
et al. Matrix assisted laser desorption ionization-time-of-flight mass spectrometry
identification of mycobacterium bovis in Bovinae. J Vet Med Sci. (2019) 81:1400–
8. doi: 10.1292/jvms.19-0214

210. Bacanelli G, Araujo FR, Verbisck NV. Improved Maldi-Tof Ms Identification
of mycobacterium tuberculosis by use of an enhanced cell disruption protocol.
Microorganisms. (2023) 11:1692. doi: 10.3390/microorganisms11071692

211. Williams GR, Cook L, Lewis LD, Tsongalis GJ, Nerenz RD. Clinical validation
of a 106-Snv Maldi-Tof Ms pharmacogenomic panel. J Appl Lab Med. (2020) 5:454–
66. doi: 10.1093/jalm/jfaa018

212. Shi H-m, Wang Z-k, Wu H, Li J-k, Mo Y-y, Liu X, et al. Clinical
application of time-of-flight mass spectrometry nucleic acid detection technology in
diagnosis of drug-resistant pulmonary tuberculosis. Diag Microbiol Infect Dis. (2025)
111:116686. doi: 10.1016/j.diagmicrobio.2025.116686

213. Huang Z, Zhang G, Lyon CJ, Hu TY, Lu S. Outlook for crispr-
based tuberculosis assays now in their infancy. Front Immunol. (2023)
14:1172035. doi: 10.3389/fimmu.2023.1172035
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