
TYPE Original Research
PUBLISHED 02 July 2025
DOI 10.3389/fmed.2025.1596726

OPEN ACCESS

EDITED BY

Yanda Meng,
University of Exeter, United Kingdom

REVIEWED BY

Mohan Bhandari,
Samridhhi College, Nepal
M. Abdul Jawad,
National Institute of Technology, Srinagar,
India

*CORRESPONDENCE

Muhammad Hanif
muhammad.hanif@oru.se

RECEIVED 20 March 2025
ACCEPTED 04 June 2025
PUBLISHED 02 July 2025

CITATION

Umair M, Ahmad J, Saidani O, Alshehri MS, Al
Mazroa A, Hanif M, Ullah R and Khan MS
(2025) OculusNet: Detection of retinal
diseases using a tailored web-deployed neural
network and saliency maps for explainable AI.
Front. Med. 12:1596726.
doi: 10.3389/fmed.2025.1596726

COPYRIGHT

© 2025 Umair, Ahmad, Saidani, Alshehri, Al
Mazroa, Hanif, Ullah and Khan. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

OculusNet: Detection of retinal
diseases using a tailored
web-deployed neural network
and saliency maps for explainable
AI

Muhammad Umair1, Jawad Ahmad2, Oumaima Saidani3,

Mohammed S. Alshehri4, Alanoud Al Mazroa3,

Muhammad Hanif5*, Rahmat Ullah6 and

Muhammad Shahbaz Khan7

1Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia, 2Cybersecurity Center, Prince
Mohammad Bin Fahd University, Al Khobar, Saudi Arabia, 3Department of Information Systems, College
of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh,
Saudi Arabia, 4Department of Computer Science, College of Computer and Information Sciences,
Najran University, Najran, Saudi Arabia, 5Department of Informatics, School of Business, Örebro
Universitet, Örebro, Sweden, 6School of Computer Science and Electronic Engineering (CSEE),
University of Essex, Colchester, United Kingdom, 7School of Computing, Engineering and the Built
Environment, Edinburgh Napier University, Edinburgh, United Kingdom

Retinal diseases are among the leading causes of blindness worldwide, requiring
early detection for e�ective treatment. Manual interpretation of ophthalmic
imaging, such as optical coherence tomography (OCT), is traditionally
time-consuming, prone to inconsistencies, and requires specialized expertise in
ophthalmology. This study introduces OculusNet, an e�cient and explainable
deep learning (DL) approach for detecting retinal diseases using OCT images.
The proposedmethod is specifically tailored for complexmedical image patterns
in OCTs to identify retinal disorders, such as choroidal neovascularization
(CNV), diabetic macular edema (DME), and age-related macular degeneration
characterized by drusen. The model benefits from Saliency Map visualization,
an Explainable AI (XAI) technique, to interpret and explain how it reaches
conclusions when identifying retinal disorders. Furthermore, the proposed
model is deployed on a web page, allowing users to upload retinal OCT images
and receive instant detection results. This deployment demonstrates significant
potential for integration into ophthalmic departments, enhancing diagnostic
accuracy and e�ciency. In addition, to ensure an equitable comparison, a
transfer learning approach has been applied to four pre-trained models: VGG19,
MobileNetV2, VGG16, and DenseNet-121. Extensive evaluation reveals that the
proposed OculusNet model achieves a test accuracy of 95.48% and a validation
accuracy of 98.59%, outperforming all other models in comparison. Moreover,
to assess the proposed model’s reliability and generalizability, the Matthews
Correlation Coe�cient and Cohen’s Kappa Coe�cient have been computed,
validating that the model can be applied in practical clinical settings to unseen
data.
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1 Introduction

Retinal imaging technologies, such as optical coherence

tomography (OCT), have become essential tools in ophthalmology

due to their high resolution, non-invasive nature, and ability

to reveal critical microstructural details of retinal layers. In

humans and most vertebrates, the retina is a thin, light-sensitive

membrane located at the back of the eye (1). It consists of several

layers, including one made up of light-sensitive cells known as

photoreceptors. The retina converts incoming light into neural

signals (2–4). The human eye contains two types of photoreceptors:

rods and cones. Rod photoreceptors are responsible for black-and-

white vision and motion detection, performing particularly well in

low-light conditions. Cone photoreceptors, on the other hand, are

responsible for color and central vision. These receptors function

well in medium to bright light. Rods occupy the entire retina;

however, cones are located and clustered in a small central area

of the retina known as the macula. Furthermore, there is a slight

depression at the center of the macula, called the fovea. The fovea

is the point in the retina primarily responsible for color vision and

visual acuity (the sharpness of eyesight). The captured information

is processed by the retina and transmitted to the brain through

the optic nerve for further visual recognition (2, 4, 5). All of these

parts of the retina are critical for eyesight, andmost eyesight-related

diseases primarily occur due to damage or disease in the retina

(3, 6).

Several diseases can damage the retina, including choroidal

neovascularization (CNV), diabetic macular edema (DME), and

age-related macular degeneration characterized by drusen. These

disorders lead to visual impairment and even blindness. Conditions

affecting the retina have a critical impact on patients, as eyesight

(i.e., vision) plays a vital role in human life. Therefore, scientists

have been exploring new and effective tools for diagnosing and

detecting retinal conditions early (2, 7, 8). Recently, OCT has

proven to be a promising non-invasive technique for micro-

scale imaging of biological tissues (9). OCT technology captures

images of the retina in a cross-sectional format using light waves

(10, 11). OCT is significant in various medical applications, with

ophthalmology being its largest commercial application. OCT

is preferred for the monitoring and detection of several retinal

diseases (12, 13). This technology has evolved through various

configurations since its inception, i.e., time-domain OCT (14),

spectral-domain OCT (15), and swept-source OCT (16). Owing to

the aforementioned technological advancements, OCT is the most

preferred and reliable method for diagnosing eye diseases.

TABLE 1 Summary of dataset classes and distributions.

Class name Splitting details

Training
set

Validation
set

Testing
set

Total

CNV 992 248 310 1,550

DME 992 248 310 1,550

Drusen 992 248 310 1,550

NORMAL 992 248 310 1,550

Recently, the field of biomedicine has significantly evolved

in the detection and analysis of diseases. Traditional methods

of disease detection were often unreliable and time-consuming.

However, with the advent of artificial intelligence (AI), accuracy

in disease detection has increased exponentially, and turnaround

times have greatly improved. Deep learning (DL) techniques have

become integral to the biomedical field, providing fast and reliable

results for disease detection. Therefore, this paper presents an

efficient and explainable approach to classify retinal disorders, such

as CNV, DME, and Drusen, from normal conditions.

The main contributions presented by this study include the

following:

1. An efficient and explainable DL model specifically designed

for complex medical image patterns in OCTs classifies retinal

disorders, such as CNV, DME, and Drusen, differentiating them

from normal conditions. The results of reliability parameters

validate that OculusNet can be effectively used in practical

settings on unseen data.

2. The proposed approach utilizes saliency map visualization, an

explainable AI (XAI) technique, to visualize the most influential

pixels and interpret how the proposedmodel makes its decisions

while identifying retinal disorders. Results from Saliency Maps

have also been compared to other XAI techniques, such as

GradCam++, SHAP, and Lime.

3. The trained weights of the OculusNet model are deployed on

a webpage using the Streamlit server, which is accessible to all

devices connected to the same network. This deployment

demonstrates significant potential for integration into

ophthalmic departments, enhancing diagnostic accuracy

and efficiency.

4. The transfer learning technique has been applied to ensure a

fair comparison. It has been applied to four state-of-the-art

models that have been proven to be the best for classification

problems. The utilized pre-trained models include VGG16,

VGG19, MobileNetV2, and DenseNet-121.

The structure of the rest of the article is organized as follows:

Section 2 presents the literature related to this study, Section 3

discusses the dataset and data pre-processing methodologies,

Section 4 presents the utilized methodology along with the design

and architecture of the proposed OculusNet model, and Section 5

discusses the performance parameters that are utilized for this study

and reports the obtained results. Finally, a conclusion to this study

is provided in Section 6.

2 Related research

OCTs provide high-resolution cross-sectional images of the

retina, which play a potential role in diagnosing retinal disorders

(17). Recently, DL has been extensively utilized to detect retinal

disorders efficiently (11, 18–20). The development of novel image

processing models has enhanced noise reduction and retinal layer

segmentation in OCT images, thereby facilitating the accurate

diagnosis of retinal disorders (21). The application of OCT in

pediatric ophthalmology has been revolutionary, enabling the

visualization of retinal structures in infants and neonates (6),

which is crucial for the diagnosis of retinal-related diseases. The
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FIGURE 1

Samples of the dataset images of each class. (a) CNV-disorder class. (b) DME-disorder class. (c) Drusen-disorder class. (d) Normal-no disorder class.

FIGURE 2

Images after preprocessing: (a) CNV-disorder class; (b) DME-disorder class; (c) Drusen-disorder class; and (d) Normal-no disorder class.

FIGURE 3

Data augmentation process.

integration of deep learning (DL) methods has addressed reliability

issues in OCT image analysis, leading to improved diagnostic

accuracy (18, 22). Additionally, OCT’s capability to differentiate

between retinoschisis and retinal detachment has been confirmed,

showcasing its diagnostic versatility. For the diagnosis of age-

related macular degeneration diseases, several methods have been

proposed that detect retinal pigment epithelium (RPE) through

OCT images (23). Recently, various algorithms have also been

developed for the classification of eye diseases. For example,

the authors in Muni Nagamani and Rayachoti (24) present a

DL approach that utilizes OCT images for the classification of

retinal diseases using a modified ResNet50 model. Their study

shows that they used a single-view retinal image set along

with applied segmentation. Similarly, in Wang et al. (25), a

semi-supervision-based approach named Caps-cGAN has been

proposed to reduce noise in OCT images, particularly speckle noise.

Furthermore, to extend the automated diagnosis of eye diseases,

a semi-automated approach is presented in Shin et al. (26). The

authors utilized pig eye images in this approach and achieved

an accuracy of 83.89%. The classification of retinal diseases,
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FIGURE 4

Utilized methodology for the classification of retinal diseases.

namely DME, Drusen, and CNV, has been performed in Adel

et al. (27), using the Inception and Xception models with 6,000

OCT images.

Recent literature also demonstrates the use of pre-trained

models for detecting retinal disorders. For instance, in Islam et al.

(28), a total of 109,309 images were utilized for four classes: CNV,

Drusen, DME, and Normal, using 11 pre-trained models. Similarly,

several pre-trained models have been presented to demonstrate the

effectiveness of CNNs in detecting various retinal diseases (29–31).

Moreover, the authors in Jawad et al. (32) apply four Swin

Transformer variants tomulti-classify fundus images, utilizing local

window self-attention to address the limited global modeling of

traditional CNNs. Swin-L outperforms earlier research, with final

scores reaching up to 0.97 and an AUC exceeding 0.95 on three
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TABLE 2 Summary of layer outputs and parameters.

Layers Output shape Parameters

separable_conv2d 222, 222, 32 155

separable_conv2d_1 220, 220, 32 1,344

separable_conv2d_2 218, 218, 32 1,344

Max_Pooling2d 109, 109, 32 0

Batch_Normalization 109, 109, 32 128

separable_conv2d_3 107, 107, 64 2,400

separable_conv2d_4 105, 105, 64 4,763

Max_Pooling2d_1 52, 52, 64 0

Batch_Normalization_1 52, 52, 64 256

separable_conv2d_5 50, 50, 128 8,896

separable_conv2d_6 48, 48, 128 17,664

Max_Pooling2d_2 24, 24, 128 0

Batch_Normalization_2 24, 24, 128 512

separable_conv2d_7 22, 22, 256 34,176

separable_conv2d_8 20, 20, 256 68,096

Max_Pooling2d_3 6, 6, 256 0

Batch_Normalization_3 6, 6, 256 1,024

Flatten 9216 0

Dense 128 1,179,776

Dense_1 64 8,256

Dense_2 4 260

ODIR test splits and an external retina dataset, demonstrating

strong generalization. Metric standard deviations remain below

0.05, and one-way ANOVA indicates non-significant differences

among models (p = 0.32–0.94), confirming the statistical stability

of their results.

Furthermore, in a study by Abdul Jawad and Khursheed

(33), the authors build a DenseNet-based deep-and-dense CNN

that classifies BreakHis breast-cancer slides into benign/malignant

subtypes across all magnifications, achieving up to 96.6% patient-

level and 91.8% image-level accuracy, with t-tests showing that the

gains over earlier CNNs are significant. Additionally, in another

study by Abdul Jawad and Khursheed (34), the authors introduce

an automatic, color-balanced reference-image selector that, when

paired with Reinhard, Macenko, and Vahadane normalization,

consistently boosts SSIM, QSSIM, and PCC on BreakHis and

BACH datasets; Wilcoxon tests confirm that the improvements

compared to random selection are also significant.

Furthermore, the authors in Bhandari et al. (35) proposed

a lightweight convolutional neural network with only 983,716

trainable parameters. They employed this architecture to classify

OCT images of three retinal pathologies: CNV, DME, and Drusen,

achieving a test accuracy of 94.29% and a validation accuracy of

94.12%. To interpret the model’s decisions, the authors applied

two explainable AI techniques: Local Interpretable Model-Agnostic

Explanations (LIME) and Shapley Additive exPlanations (SHAP),

which highlighted clinically relevant retinal regions. The same

network was subsequently tested on two additional medical

imaging tasks: COVID-19 detection from chest X-rays and kidney

stone classification. Similarly, in another study by Bhandari et al.

(41), the authors utilized the proposed model with explainable AI

techniques, including LIME, Gradient-weighted Class Activation

Mapping (Grad-CAM), and SHAP.

Thus, the majority of existing approaches lack interpretability

and explanations of the decision-making process, which is

extremely important in clinical settings. Therefore, in addition

to designing a tailored deep learning model for the efficient

and accurate detection of retinal disorders, this paper focuses on

integrating explainable AI to visualize and interpret the features on

which the identification of retinal disorders is based.

3 Data preparation

3.1 Dataset

In this study, retinal OCT images were used to train DL models

for the classification of retinal disorders. From the accessed dataset

[“Retinal OCT Images (optical coherence tomography)” data (36)],

a balanced, high-quality subset of 6,200 images (1,550 per class)

was constructed using a two-step procedure: quality screening and

class balancing with computational constraints. During quality

screening, many raw files were found to contain white borders or

artifacts unrelated to retinal tissue. These were excluded to prevent

the models from learning irrelevant or misleading patterns. For

class balancing with computational limits, all experiments were

conducted on Google Colab, where limited GPU memory could

not accommodate the entire dataset without frequent crashes. A

balanced subset of 1,550 images per class provided a practical

compromise between dataset representativeness and hardware

constraints. The dataset comprises four classes: normal, CNV

disorder, DME disorder, and Drusen disorder. It was divided

into three sets: training, testing, and validation. A two-stage split

strategy was used. In the first stage, the dataset was split into 80%

for training and 20% for testing. In the second stage, the training

set was further divided, with 80% used for model training and 20%

for validation. Details of the dataset are provided in Table 1, and

representative sample images of retinal OCT scans are shown in

Figure 1.

3.2 Data preprocessing and augmentation

To train the DL on the OCT images, the dataset was

preprocessed. The OCT images in the dataset primarily contain

noisy pixels. Noisy pixels lead to incorrect feature extraction during

model training, resulting in underfitting and overfitting issues. To

eliminate noisy pixels, a preprocessing function Prepfunc given in

Equation 1 was utilized, which normalizes image pixels from the

range [0, 255] to [−1, 1]. Samples of the preprocessed and rescaled

images for each model are displayed in Figure 2. It is evident that

there are no noisy pixels (compared to the sample images shown in

Figure 1).
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FIGURE 5

Architectural overview of the proposed OculusNet model.

Prepfunc = ((
image pixels

255
)− 0.5)× 2 (1)

After scaling the images, data augmentation was applied using

a 30◦ rotation and horizontal flipping. Samples of the augmented

images are illustrated in Figure 3.

4 Methodology and experiments

The methodology employed in this study consists of four key

stages: data preparation, data augmentation, model training with

explainable AI, andmodel evaluation. An overview of the employed

methodology is illustrated in Figure 4. The data preparation and

data augmentation processes have already been discussed in the

previous section. This section details the model architecture and

evaluation parameters.

4.1 The proposed OculusNet model

4.1.1 Architecture of the proposed model
A DL model named OculusNet has been proposed in

this study. The OculusNet model comprises nine depthwise

separable (DWS) convolutional layers, four max pooling

layers, and four batch normalization layers. A max pool

size of 2 × 2 has been kept for this model. For each DWS

layer, a kernel size of 3 × 3 has been utilized, and in each

2D separable convolutional layer, the “ReLU” activation

function is utilized. The model summary and parameter

information for each layer are shown in Table 2. The model

architecture of the proposed CNN (i.e., OculusNet) is depicted

in Figure 5.

4.1.2 Depthwise separable convolutional layers
Depthwise Separable Convolution (DWS) is a computationally

efficient alternative to standard convolution, designed to reduce

the number of trainable parameters and floating-point operations

in convolutional neural networks. It decomposes a standard

convolution into two distinct operations: depthwise convolution

and pointwise convolution (37, 38). The visual comparison between

standard and DWS convolutional layers is illustrated in Figures 6,

7, respectively.

In a standard convolutional layer, an input image tensor with

the shape Ah ×Aw ×N (where Ah and Aw represent the height and

width, and N signifies the number of input channels) is convolved

with n filters, each sized Kd × Kd × N. This produces an output

tensor of shape A′
h
×A′

w×n, where A′
h
and A′

w depend on the stride

and padding. The computational cost for this operation is described

by Equation 2:

S = Ah × Aw × K2
d × N × n (2)
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FIGURE 6

Standard convolutional neural layers.

FIGURE 7

Depthwise convolutional neural layers.

In contrast, depthwise separable convolution divides the

operation described above into two stages:

1. Depthwise convolution: Applies a single Kd × Kd filter to each

input channel (no cross-channel mixing), generating N feature

maps. The computational cost is as follows:

DW = Ah × Aw × K2
d × N (3)

2. Pointwise convolution: Applies 1 × 1 × N filters to combine

the output of the depthwise stage across channels, generating n

output channels. The computational cost is as follows:

PW = Ah × Aw × N × n (4)

The total cost of a depthwise separable convolution is the sum

of Equations 3, 4, as indicated in Equation 5:

CM = DW + PW = Ah × Aw ×
(

K2
d × N + N × n

)

(5)

To understand the efficiency of DWS, the ratio of its

computational cost to that of standard convolution (Equation 2)

is derived in Equation 6:

CM

S
=

K2
d
× N + N × n

K2
d
× N × n

=
1

n
+

1

K2
d

(6)

For instance, with n = 256 filters and a kernel size of Kd = 3,

Equation 6 yields:

CM

S
=

1

256
+

1

9
≈ 0.115 (7)

This indicates that depthwise separable convolution requires

only about 11.5% of the computational cost of standard

convolution while still producing feature representations

with comparable effectiveness. This significant reduction in

operations and parameters makes DWS particularly suitable for

lightweight architectures such as OculusNet, which are intended

for deployment in resource-constrained environments such as

mobile or web applications.

Figure 6 illustrates the standard convolution operation, where

each filter operates on all input channels simultaneously. In

contrast, Figure 7 shows the DWS operation, which performs

filtering channel-wise followed by channel mixing, effectively

decoupling spatial and cross-channel computations.

4.1.3 Workflow of the utilized architecture
The coding flow utilized for the experiments was organized

into four main stages: data preprocessing, building model

architecture, model training, and model evaluation. Initially, the
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FIGURE 8

Architectural overview of the pre-trained model used in this study.

TABLE 3 Model architectures and layer details.

Model name No. of
layers

Size of
input layer

Size of
output layer

VGG19 19 (224, 224, 3) (4, 1)

VGG16 16 (224, 224, 3) (4, 1)

MobileNet 28 (224, 224, 3) (4, 1)

DenseNet-121 121 (224, 224, 3) (4, 1)

OculusNet 12 (224, 224, 3) (4, 1)

necessary libraries were imported, followed by the dataset, where

preprocessing functions were applied to standardize images and

split the dataset into training, validation, and testing subsets.

Hyperparameters were selected, and data augmentation techniques

were employed using an image data generator library to enhance

the model’s generalization capability. For building the models,

the OculusNet model was defined from scratch by adding

convolutional, max-pooling, flatten, and dense layers, after which

a model summary was printed. Similarly, pre-trained models

were imported from Keras libraries with ImageNet weights,

followed by adding flatten and dense layers and printing their

summaries. During model training, the models were trained

on the training dataset and validated on the validation dataset,

while loss and accuracy graphs were generated. The model

evaluation step involved obtaining the confusion matrices and

classification reports for both validation and testing datasets to

comprehensively assess the models’ performance. This structured

approach ensures a coherent and efficient workflow, leading to

reliable and reproducible results.
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TABLE 4 Model parameters and size details.

Model
name

Total
parameters

Trainable
parameters

Non-
trainable
parameters

Model
size
(MB)

VGG19 23,246,340 3,220,932 20,025,408 16.54

VGG16 17,936,644 3,220,932 14,715,712 26.21

MobileNet 9,664,132 6,433,220 3,230,912 6.22

DenseNet-

121

13,472,772 6,433,220 7,039,552 26.56

OculusNet 1,329,023 1,328,063 960 5.07

4.2 Explainable AI using saliency maps

DL models are typically referred to as black box models due to

the complicated interpretation of outputs or predicted results from

the trained DL models. However, several visualization techniques

are available, such as Grad-CAM (39–41), and saliency maps,

which are often known as class activation maps. By using saliency

maps, one can compute the effect of each input pixel on the final

prediction, highlighting the influential pixels in the image that the

model uses to classify the given image. However, Grad-CAM does

not calculate pixel by pixel; instead, it generates a heatmap of the

input pixels (39, 40).

In this study, saliency maps have been utilized for class-

specific results on images. Mathematically, the saliency map can be

explained by Equation 8, where w is the weight of each pixel. Sn
represents the score of the specific class n, which is acquired by the

trained model. I represents the pixel’s values of the given image.

Additionally, other techniques, such as Grad-CAM, have also been

employed (Grad-CAM++ is selected for this case), along with LIME

and SHAP.

w =
6Sn

6I
(8)

4.3 Transfer learning on pre-trained
models for comparison

To ensure a fair comparison, transfer learning has been

employed to optimize pre-trained models that are well-known

for classification tasks. The models used include VGG-16, VGG-

19, MobileNetV2, and DenseNet-121. The VGG16 model consists

of 13 convolutional layers and three dense layers, while the

VGG19 model comprises 16 convolutional layers with three dense

layers. In contrast, MobileNetV2 is a lightweight neural network

with fewer parameters, comprising 28 convolutional layers that

utilize depthwise separable convolution. Lastly, the DenseNet121

model includes 121 layers organized into four dense blocks. The

architectural details of the aforementioned models are shown

in Figure 8.

The aforementioned models are pre-trained on ImageNet, a

large dataset comprising 1,000 classes and almost 1,281,167 images.

In this study, the convolutional layers of the aforementioned

models were frozen to utilize the pre-trained weights, and the fully

TABLE 5 Representation of the confusion matrix.

Confusion matrix

Predicted classes

Actual classes CNV DME Drusen NORMAL

CNV TPCNV FAB FAC FAD

DME FBA TPDME FBC FBD

Drusen FCA FCB TPDrusen FCD

NORMAL FDA FDB FDC TPNORMAL

TABLE 6 Class-wise true positive and true negative.

Class True positive (TP) True negative (TN)

CNV TPCNV TPDME + FBC + FBD + FCB +

TPDrusen + FCD + FDB + FDC +

TPNORMAL

DME TPDME TPCNV + FAC + FAD + FCA +

TPDrusen + FCD + FDA + FDC +

TPNORMAL

Drusen TPDrusen TPCNV + FAB + FAD + FBA + TPDME

+ FBD + FDA + FDB + TPNORMAL

NORMAL TPNORMAL TPCNV + FAB + FAC + FBA + TPDME

+ FBC + FCA + FCB + TPDrusen

TABLE 7 Class-wise false positives and false negatives.

Class False positive (FP) False negative (FN)

CNV FBA + FCA + FDA FAB + FAC + FAD

DME FAB + FCB + FDB FBA + FBC + FBD

Drusen FAC + FBC + FDC FCA + FCB + FCD

NORMAL FAD + FBD + FCD FDA + FDB + FDC

connected layers were replaced to retrain the model for classifying

retinal OCT images. Additionally, to prevent underfitting during

the training phase, batch normalization layers and a dropout layer

with a size of 0.25 were added to the fully connected layers.

The details regarding the layers and parameters of all models are

provided in Table 3, which includes the input layer size of 224 ×
224× 3 (height×width× dimension) and an output layer size of 4,

1, where 4 represents the four classes and 1 is the final output layer.

Moreover, the trainable and non-trainable parameters of the

utilized models are detailed in Table 4. These parameters are

often referred to as model summaries and are derived from

the parameters used in the layers of the model. For the pre-

trained models, non-trainable parameters were the sum of the

frozen layers (frozen with ImageNet weights), while the trainable

parameters were the sum of the FC layer parameters (for which

the model weights were not frozen). The weights of the model

were updated only for the trainable parameters during the training

phase. Additionally, the FC layers remain the same for all the

utilized models. The first dense layer uses the ReLU activation

function with 128 units, and the second dense layer consists of 64

units. The third dense layer, which is the output layer, has four

units and uses softmax as the activation function. Softmax, in this

context, is responsible for providing the output.
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FIGURE 9

Accuracy and Loss curves. (a) DenseNet121. (b) MobileNetV2. (c) VGG16. (d) VGG19. (e) OculusNet.
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FIGURE 10

Confusion matrices for the validation dataset for each model. (a) DenseNet121. (b) VGG16. (c) MobileNetV2. (d) VGG19. (e) OculusNet.
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TABLE 8 Performance parameters of the models used for the validation dataset.

Models Classes Precision Recall F1-Score Specificity

DenseNet121 CNV 0.983 0.967 0.974 0.994

DME 0.972 0.987 0.979 0.990

Drusen 0.932 0.943 0.937 0.979

Normal 0.959 0.947 0.952 0.986

VGG16 CNV 0.950 0.919 0.934 0.983

DME 0.955 0.951 0.952 0.985

Drusen 0.866 0.919 0.891 0.952

Normal 0.921 0.899 0.909 0.974

MobileNetV2 CNV 0.983 0.979 0.98 0.994

DME 0.995 0.995 0.995 0.998

Drusen 0.955 0.955 0.955 0.985

Normal 0.971 0.975 0.972 0.990

VGG19 CNV 0.939 0.931 0.935 0.980

DME 0.942 0.915 0.928 0.981

Drusen 0.863 0.887 0.875 0.953

Normal 0.908 0.915 0.912 0.969

OculusNet CNV 0.987 0.987 0.987 0.995

DME 0.988 0.995 0.991 0.995

Drusen 0.979 0.979 0.979 0.993

Normal 0.987 0.979 0.982 0.995

5 Experiment and results

5.1 Evaluation parameters

5.1.1 Performance parameters
For the experimental parameters, a grid search strategy was

used, with the number of epochs set to 100 and the batch size

set to 32. A learning rate of 0.00001 with RMS optimizer was

applied. For performance evaluation, key performance parameters,

including precision, recall, specificity, F1 score, and accuracy, were

employed. These parameters were derived from the confusion

matrices. The 4× 4 confusion matrix with character representation

is given in Table 5. The analysis of the confusion matrix has

been presented for both the validation and testing datasets.

Considering the characters used in Table 5, the TP and TN

samples for each respective class are listed in Table 6. Similarly,

the FP and FN samples for each respective class are provided

in Table 7.

Accuracy represents the model’s overall ability to correctly

classify the TP and TN classes from all the predicted labels. It can

be calculated using Equation 9.

Accuracy =
TP + TN

FP + TP + TN + FN
× 100 (9)

Precisionmeasures the actual TP samples from all the positive

predicted samples of the respective class. It can be calculated using

Equation 10.

Precision =
TP

TP + FP
(10)

Recall is also commonly known as sensitivity. It measures the

actual TP samples from the considered predicted samples of that

class. It can be calculated using Equation 11.

Recall =
TP

FN + TP
(11)

Specificity measures the TN samples from the predicted

samples of the classes. It can be calculated using Equation 12.

Specificity =
TN

TN + FP
(12)

F1-Score describes the actual predicted results obtained

through precision and recall. It can be calculated using Equation 13.

F1− score = 2×
Precision × Recall

Precision + Recall
(13)

5.1.2 Reliability parameters
To assess the model’s reliability on unseen data and its

generalization, reliability parameters such as Cohen’s kappa
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FIGURE 11

Confusion matrices on the test dataset for each model (a) DenseNet121. (b) VGG16. (c) MobileNetV2. (d) VGG19. (e) OculusNet.
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TABLE 9 Performance parameters of the utilized models for the test dataset.

Models Classes Precision Recall F1-Score Specificity

DenseNet121 CNV 0.960 0.926 0.943 0.987

DME 0.956 0.971 0.963 0.985

Drusen 0.888 0.919 0.903 0.961

Normal 0.925 0.910 0.917 0.975

VGG16 CNV 0.946 0.852 0.896 0.984

DME 0.897 0.929 0.913 0.965

Drusen 0.809 0.903 0.854 0.929

Normal 0.901 0.855 0.877 0.969

MobileNetV2 CNV 0.969 0.925 0.947 0.990

DME 0.953 0.980 0.966 0.983

Drusen 0.908 0.929 0.918 0.968

Normal 0.938 0.935 0.935 0.979

VGG19 CNV 0.912 0.877 0.894 0.972

DME 0.930 0.912 0.921 0.974

Drusen 0.800 0.880 0.838 0.926

Normal 0.885 0.848 0.866 0.963

OculusNet CNV 0.983 0.945 0.963 0.994

DME 0.929 0.980 0.953 0.975

Drusen 0.950 0.938 0.943 0.983

Normal 0.957 0.954 0.955 0.986

coefficient and Matthews correlation coefficient have been

calculated.

Cohen’s Kappa coefficient

Cohen’s Kappa statistic (kappa) assesses a model’s performance

by measuring the agreement between predicted and actual labels,

while accounting for the agreement that could happen by chance.

It indicates how accurate the predictions are, or how close they

are to the actual value of their respective labels. It is computed

using the observed and expected accuracy values extracted from

the confusion matrices. Observed accuracy corresponds to the ratio

of accurately predicted values to the total number of values in

the confusion matrix. Equation 14 represents the mathematical

representation for observed accuracy. Expected accuracy is defined

as a random accuracy, and Equation 15 shows the mathematical

representation of expected accuracy, where the sum of total values

in the predicted row for a respective class is multiplied by the

sum of total values of the actual class for the respective class, and

i ∈ 0, 1, 2, 3 represents the four classes: 0: CNV, 1: DME, 2: Drusen,

and 3: NORMAL used in this study. The combination of observed

accuracy versus expected accuracy is known as the kappa statistic,

and Equation 16 represents the kappa statistic.

Observed accuracy =
TPi + TNi

TPi + TNi + FPi + FNi
(14)

Expected accuracy =
(TPi + FPi) (TPi + FNi) + (TNi + FPi) (TNi + FNi)

(TPi + TNi + FPi + FNi)
2

(15)

Kappa =
Observed Accuracy − Expected Accuracy

1− Expected Accuracy
(16)

Matthews correlation coefficient

The Matthews correlation coefficient (MCC) is used to assess

the correlation between predicted and true binary classification

labels, taking into account all four confusion matrix categories (TP,

TN, FP, FN). The range of MCC lies between –1 and 1, where 1

indicates that a model is perfectly positive and capable of classifying

positive samples with greater accuracy. Conversely, –1 indicates

that the model has a negative correlation and, in most cases, will

misclassify positive samples. Thus, –1 represents the worst-case

scenario for a model, which will be unable to classify the samples

correctly. Equation 17 represents the mathematical formulation of

MCC, and i ∈ 0, 1, 2, 3 represents the four classes, namely 0: CNV,

1: DME, 2: Drusen, and 3: NORMAL, used in this study.

MCC =
(TPi × TNi) − (FPi × FNi)√

(TPi + FPi) (TPi + FNi) (TNi + FPi) (TNi + FNi)

where, i ∈ 0, 1, 2, 3 (17)

5.2 Results and discussion

This section provides the results of the training performance,

the key performance parameters, and the reliability parameters

of the models. In addition, an ablation study has also

been performed on the proposed OculusNet model to

validate it.
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TABLE 10 Kappa coe�cient and Matthews correlation coe�cient for all models.

Dataset Models Classes Expected Acc. Observed Acc. Kappa MCC

Valid DenseNet-121 CNV 0.627 0.987 0.965 0.967

DME 0.622 0.989 0.970 0.973

Drusen 0.623 0.968 0.915 0.917

NORMAL 0.626 0.976 0.935 0.937

VGG16 CNV 0.629 0.967 0.911 0.913

DME 0.625 0.976 0.936 0.938

Drusen 0.617 0.944 0.853 0.855

NORMAL 0.628 0.955 0.879 0.880

MobileNetV2 CNV 0.625 0.990 0.973 0.975

DME 0.625 0.997 0.992 0.994

Drusen 0.625 0.977 0.938 0.940

NORMAL 0.624 0.986 0.962 0.965

VGG19 CNV 0.626 0.967 0.911 0.913

DME 0.628 0.964 0.903 0.905

Drusen 0.621 0.936 0.831 0.832

NORMAL 0.623 0.955 0.880 0.882

OculusNet CNV 0.625 0.993 0.981 0.983

DME 0.623 0.995 0.986 0.989

Drusen 0.625 0.989 0.970 0.971

NORMAL 0.626 0.991 0.975 0.978

Test DenseNet-121 CNV 0.629 0.971 0.921 0.924

DME 0.622 0.981 0.949 0.950

Drusen 0.620 0.950 0.868 0.870

NORMAL 0.627 0.958 0.887 0.889

VGG16 CNV 0.637 0.950 0.862 0.866

DME 0.620 0.955 0.881 0.883

Drusen 0.610 0.922 0.800 0.803

NORMAL 0.631 0.940 0.837 0.838

MobileNetV2 CNV 0.630 0.974 0.929 0.930

DME 0.621 0.983 0.955 0.955

Drusen 0.622 0.958 0.888 0.891

NORMAL 0.625 0.967 0.912 0.913

VGG19 CNV 0.629 0.948 0.859 0.860

DME 0.627 0.961 0.895 0.896

Drusen 0.612 0.915 0.780 0.783

NORMAL 0.630 0.934 0.821 0.823

OculusNet CNV 0.629 0.982 0.951 0.952

DME 0.618 0.976 0.937 0.939

Drusen 0.626 0.972 0.925 0.926

NORMAL 0.625 0.978 0.941 0.941

5.2.1 Training and validation results
The training performance of the proposed OculusNet model,

as well as the models used for comparison, has been evaluated

and reported in terms of validation and test accuracy. The training

curves for the proposed OculusNet model, along with the other

utilizedmodels, are shown in Figure 9. The curves demonstrate that
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FIGURE 12

Saliency maps, Gradcam++, and LIME heatmaps generated by the trained OculusNet for CNV, DME, Drusen, and Normal classes.

the models are well-trained, exhibiting no data bias, underfitting,

or overfitting. Each model achieved over 90% validation and

training accuracy.

5.2.2 Class-wise classification report
The confusion matrices obtained from the validation dataset

are shown in Figure 10. In these confusion matrices, the labels on

the y-axis represent the actual labels, while the labels on the x-axis

represent the predicted number of images for the respective classes.

Moreover, Table 8 provides a classification report for each model.

These parameter values are obtained after the training of the model

and can be validated using Equations 9–13.

Considering the results presented in Table 8 and the obtained

confusion matrices shown in Figure 10, the validation accuracies

of each model “VGG19, DenseNet121, MobileNetV2, and VGG16”
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FIGURE 13

SHAP heatmaps generated by the trained OculusNet for CNV, DME, Drusen, and normal classes.

are 91.03%, 97.18%, 97.48%, and 92.14%, respectively. However, the

proposedmodel, OculusNet, outperformed the pre-trainedmodels,

achieving a validation accuracy of 98.59%.

Similarly, the confusion matrices (Figure 11) and classification

report (Table 9) for the testing dataset have been obtained. The test

dataset remains unseen and was not exposed to the models during

the training phase.

Considering the results from these models as shown in

Table 9 and Figure 11, the test accuracy for each model “VGG19,

DenseNet121, MobileNetV2, and VGG16” was 87.98%, 93.15%,

94.19%, and 88.59%, respectively. The proposed model achieved

the highest test accuracy of 95.48%. These results indicate that the

proposed model outperformed all other pre-trained models with

the highest validation and testing accuracies.

5.2.3 Reliability parameters results
The results of the reliability parameters are presented in

Table 10, demonstrating that the proposed OculusNet model

outperformed across all classes and metrics, with observed

accuracies ranging from 0.989 to 0.995 on the validation set and

0.972 to 0.982 on the test set, along with high Kappa and MCC

values. This suggests that OculusNet’s architecture is particularly

effective for feature extraction and generalization capabilities

suited to the specific characteristics of retinal disease images. The

Kappa statistic and MCC values across all models and classes

were high, indicating a strong agreement between the predicted

and actual labels. These metrics highlight the models’ ability to

accurately differentiate among various classes, which is crucial in

medical diagnostics, where the stakes are high due to the potential

consequences of misdiagnosis. The high Kappa and MCC values

also imply that the models were well-trained, providing a reliable

assessment of their predictive performance.

5.2.4 Saliency map results
By utilizing Equation 8, the strongest pixel values are calculated

from the given input image and then used to display the
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TABLE 11 Models architecture utilized for the ablation study.

Layers Model 1 Parameters Model 2 Parameters Model 3 Parameters

separable_conv2d X 155 X 155 X 155

separable_conv2d_1 X 1,344 X 1,344 X 1,344

separable_conv2d_2 X 1,344 X 1,344 X 1,344

Max_Pooling2d X 0 X 0 X 0

Batch_Normalization X 128 X 128 X 128

separable_conv2d_3 X 2,400 X 2,400 - -

separable_conv2d_4 X 4,763 X 4,763 - -

Max_Pooling2d_1 X 0 X 0 - -

Batch_Normalization_1 X 256 X 256 - -

separable_conv2d_5 X 8,896 - - - -

separable_conv2d_6 X 17,664 - - - -

Max_Pooling2d_2 X 0 - - - -

Batch_Normalization_2 X 512 - - - -

separable_conv2d_7 - - - - - -

separable_conv2d_8 - - - - - -

Max_Pooling2d_3 - - - - - -

Batch_Normalization_3 - - - - - -

Flatten X 0 X 0 X 0

Dense X 9,437,312 X 22,151,296 X 48,664,704

Dense_1 X 8,256 X 8,256 X 8,256

Dense_2 X 260 X 260 X 260

TABLE 12 Obtained confusion metrics for the three models.

Model No. Accuracy (%) Total
parameters

Model
size (MB)

Model 1 83.55 9,483,263 36.18

Model 2 80.89 22,170,175 84.57

Model 3 75.24 48,676,191 185.68

saliency map. Moreover, the input images used to generate

the saliency map are first rescaled, and their pixel values are

normalized to a range between 0 and 1 because our model was

trained on rescaled and preprocessed images. The saliency map

of each class on the OculusNet model is shown in Figure 12.

Furthermore, for a fair comparison, Grad-CAM++ and LIME

results have also been presented for each class in Figure 12.

From the comparison, it can be observed that the saliency

map and Grad-CAM++ show that the model was more focused

on the retina layers, unlike LIME. Moreover, it is also a

limitation of this study that LIME and Grad-CAM have not been

optimized further; thus, as a future direction, these techniques

will be explored. Additionally, SHAP analysis for each class is

shown in Figure 13. From these heatmaps, it can be observed

that the model is trying to focus on the retina layers for

decision-making.

5.3 Ablation study

In this section, an ablation study was conducted to understand

the impact of various architectural components on the performance

of OculusNet. An ablation study systematically removes parts

of the network to evaluate their contribution to the model’s

final performance. This approach helps identify the most critical

components of the network that significantly affect its accuracy and

efficiency. Three different models of OculusNet were evaluated on

the test dataset, each with varying configurations and complexities.

These models were designed to investigate the influence of specific

layers and parameters on the network’s ability to process and

analyze data. The configurations of these models are detailed in

Table 11, which outlines the layers and parameters involved in each

model.

Following the detailed layer and parameter configurations,

Table 12 provides a summary of the total parameters, accuracy,

and model size in MB for each of the three models. The ablation

study emphasizes the significant impact of layer configuration

and parameter count on the computational efficiency and model

size of OculusNet. By comparing Model 1, Model 2, and Model

3, it becomes clear that increasing the complexity and the

number of parameters greatly enlarges the model size, with

Model 3 having the largest size of 185.68 MB. Conversely, Model

1, which has the fewest parameters, demonstrates a balance

between model size and complexity, suggesting a more efficient
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FIGURE 14

Confusion matrices of the tested models in the ablation study.

TABLE 13 Comparison with other studies.

Reference Dataset Approach Result

Shin et al. (26) Pig eye dataset Semi-automated 83.89%

Bhandari et al. (35) OCT dataset Lightweight CNN

model

94.29%

Kang et al. (29) OCT B- scan images Pre-trained

models

92.00%

This study OCT OculusNet 95.48%

architecture for applications where computational resources

are limited.

As shown in Table 12, Model 1 demonstrates the highest

accuracy at 83.55% among the three models. With an accuracy

of 80.89%, Model 2 exhibits a slight decrease in performance

compared to Model 1. This model has improved identification for

the CNV category but shows a reduction in accuracy for DME

and Drusen conditions. Model 3, with an accuracy of 75.24%,

reflects a decline in classification performance. The confusion

matrix reveals a significant challenge in distinguishing between

all conditions. Compared to Model 1, Model 2, and Model 3, the

proposed architecture of the OculusNet model, which contains

all layers, achieved the best testing accuracy of 95.48%. The

respective confusion metrics for all three models are shown

in Figure 14.

Additioanlly, Table 13 presents a comparison with recent

deep-learning approaches for retinal “disease classification.” In

Shin et al. (26), a semi-automated pipeline was applied to a

pig-eye dataset, achieving an accuracy of 83.89%. In contrast,

(29) fine-tuned several pre-trained networks on OCT B-scan

images, with Xception achieving the best test accuracy of

92.00%. Moreover, Bhandari et al. (35) proposed a lightweight

CNN with only 983,716 trainable parameters, achieving a test

accuracy of 94.29% for classifying CNV, DME, and Drusen. By

comparison, the proposed OculusNet achieves a superior accuracy

of 95.48%.

5.4 Web deployment

The web deployment of OculusNet was hosted by Streamlit,

a platform known for its ease of use and efficiency in deploying

data applications. The Streamlit library was employed to build

an interactive web application that enables users to upload OCT

images and receive classification results based on the pre-trained

OculusNet model. As shown in Figure 15, the steps that will be

followed to classify OCT images are outlined. Pre-trained weights

from the OculusNet model are loaded into the system, ensuring

that the web application utilizes the refined and optimized weights

derived from extensive training sessions. A background image is

set for the web application to enhance the user experience. The

title and header are defined to prompt users to upload an OCT

image for classification. A file uploader widget is provided for

users to upload OCT images in “jpeg,” “jpg,” or “png” formats.

Upon uploading, the image is displayed on the web interface.

The uploaded image is passed to the classify function, which

preprocesses the image and utilizes the model to predict the class of

retinal disease. The classification result, along with the confidence

score, is presented to the user. The confidence score is formatted

to display a percentage, aiding in the interpretability of the result.

Upon accessing the Streamlit web application, users encounter a

clear and straightforward interface. The process is designed to be

intuitive, allowing the user to easily upload an OCT image and

wait for the model to classify the retinal condition. The application

promptly displays the classification along with a confidence score,

providing a valuable tool for preliminary diagnosis or a second

opinion in clinical settings.

6 Conclusion

This study presented an interpretable and web-deployable

approach to retinal disease classification, promising to enhance

diagnostic capabilities in clinical settings. The use of saliency

map visualization as an explainable AI technique improved the

interpretation of the decision-making process of the proposed
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FIGURE 15

Steps for using Web page for OCT image classification. (a) Step 1: upload image. (b) Step 2: display uploaded image. (c) Step 3: prediction.

model. This transparency is crucial for clinical adoption, as it

fosters trust and understanding among healthcare professionals.

Furthermore, an ablation study was conducted on OculusNet to

validate the effectiveness and robustness of the chosen architecture.

To ensure a fair comparison, transfer learning was applied to

four pre-trained models. The results demonstrated the superior
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performance of the proposed model compared to the pre-trained

model, with a test accuracy of 95.48% and a validation accuracy

of 98.59%. The model’s performance was also evaluated using

the Kappa statistic and MCC, both of which confirmed the high

reliability and consistency of our model’s predictions. For practical

deployment, the Streamlit server was utilized to create a user-

friendly interface that allows users to upload retinal OCT images

and receive instant classification results. This web application has

significant potential for integration into ophthalmic departments,

providing an accessible and efficient tool for diagnosing retinal

diseases.
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