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Background: Numerous radiomic models have been developed to predict 
treatment outcomes in patients with NSCLC receiving chemotherapy and 
radiation therapy. However, computed tomography (CT) radiomic models that 
integrate the Gross Tumour Volume of the primary lesion (GTVp), the Gross 
Tumour Volume of nodal disease (GTVnd), and clinical information are relatively 
scarce and may offer greater predictive accuracy than models focusing 
on GTVp alone. This study aimed to evaluate the efficacy of a CT radiomic 
model combining GTVp, GTVnd, and clinical data for predicting treatment 
response in unresectable stage III–IV NSCLC patients undergoing concurrent 
chemoradiotherapy.

Methods: A total of 101 patients with unresectable stage III–IV NSCLC were 
included. GTVp was delineated using lung windows, and GTVnd was delineated 
using mediastinal windows. Radiological features were extracted using Python 
3.6, then subjected to F-test and Lasso regression for feature selection. Logistic 
regression was performed on the selected radiological features. Clinical 
information was analysed with univariate and multivariate logistic regression to 
identify significant clinical variables. Five models were developed and evaluated, 
incorporating GTVp, GTVnd, and clinical data.

Results: The GTVp-based radiomics model achieved an area under the curve 
(AUC) of 0.855  in the training cohort and 0.775  in the validation cohort. The 
multimodal composite model (integrating GTVp, GTVnd, and clinical parameters) 
significantly outperformed the GTVp-only model, with a training AUC of 0.862 
and validation AUC of 0.863, demonstrating superior predictive performance for 
concurrent chemoradiotherapy response in this patient population.
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1 Introduction

Lung cancer has a high incidence and mortality rate, with an 
estimated five-year survival of only around 23% (1). It is classified into 
non-small cell lung cancer (NSCLC) and small cell lung cancer 
(SCLC) based on pathological features, with NSCLC accounting for 
approximately 85% of cases (2). For patients with inoperable stage 
III–IV NSCLC, concurrent chemoradiotherapy (CCRT) is a vital 
treatment approach (3). However, treatment sensitivity varies among 
individuals (4, 5), affecting prognosis. Notably, the response to cancer 
therapy is closely linked to prognosis. Notably, patients who respond 
more favourably to therapy often experience longer progression-free 
and overall survival then those with poorer responses (6–8).

Imaging remains the primary method for tumour evaluation in 
clinical practice (9), and radiomics has emerged as a non-invasive, 
effective tool for prognostic prediction (10–14). Several radiological 
models have been developed to predict treatment response and 
outcomes in patients with NSCLC undergoing CCRT (15–17). 
Approximately 60% of patients with NSCLC present with advanced or 
locally advanced disease at diagnosis (18), often because of late 
detection of non-specific symptoms (19), which can lead to 
mediastinal lymph node metastasis. In such cases, radiation 
oncologists typically delineate the Gross Tumour Volume of the 
primary lesion (GTVp) and nodal disease (GTVnd) for chest radiation 
therapy. However, when extracting CT radiomic features, many 
researchers focus solely on GTVp while overlooking GTVnd (20, 21). 
This omission is notable because pre- and post-treatment changes in 
GTVnd are equally critical for tumour staging (22). Moreover, prior 
research has shown that combining mediastinal window CT images 
with lung window CT images can improve both the malignancy of a 
nodule and its potential indolence (23, 24). Thus, incorporating 
GTVnd CT images may be crucial for assessing CCRT efficacy.

Despite the demand for multimodal biomarkers in NSCLC 
management, no prior study has simultaneously integrated CT 
radiomics features of GTVp (lung window) and GTVnd (mediastinal 
window) with clinical parameters to predict CCRT response. 
Therefore, this study aims to develop and validate a composite model, 
specifically evaluating its performance in predicting short-term CCRT 
efficacy among patients with unresectable stage III-IV NSCLC.

2 Methods

The study received approval from the Ethics Committee of the 
Second Affiliated Hospital of Guizhou Medical University (SAHGMU; 
approval number 2020-LS-03) and was conducted in strict accordance 
with the Declaration of Helsinki. Informed consent was obtained from 
all participants.

Figure 1 presents the study flowchart. The inclusion criteria were: 
(1) pathologically confirmed NSCLC; (2) no surgical indications; (3) 
no prior therapies (including neoadjuvant chemotherapy, 
interventional therapy, immunotherapy, or targeted therapy) before 
CCRT; (4) stage III or IV disease with confirmed mediastinal lymph 
node metastasis (N2/N3) based on the 8th edition UICC 

Tumor-Node-Metastasis staging system; (5) availability of standard 
contrast-enhanced chest CT images obtained within 1 month before 
and 3 months after treatment completion; and (6) receipt of 
conventional fractionated radiotherapy (target dose: 60–66 Gy/30–33\
u00B0F, intensity-modulated radiotherapy) combined with 
chemotherapy. For squamous cell carcinoma, weekly paclitaxel plus 
cisplatin was used, whereas for non-squamous cell carcinoma, 
pemetrexed was administered every 3 weeks alongside cisplatin (25). 
The exclusion criteria were: (1) concomitant malignancies, (2) 
incomplete or poor-quality CT images, and (3) insufficient 
follow-up data.

This multicentre retrospective study enrolled patients from two 
distinct cohorts: (1) 77 patients treated at SAHGMU; (2) 24 patients 
from three regional hospitals (Guiyang Pulmonary Hospital, 
Qiandongnan People’s Hospital, Qiannan Traditional Chinese 
Medicine Hospital). All cases were recruited consecutively between 
January 2019 and July 2023. Treatment outcomes were categorized as 
complete response (CR), partial response (PR), stable disease (SD), or 
progressive disease (PD) according to RECIST 1.1 (26). Patients with 
CR or PR were classified into the treatment-sensitive group, while 
those with SD and PD were classified as treatment-insensitive.

Chest contrast-enhanced CT images were preprocessed using 
MATLAB 2014b1 with: (1) Spatial normalization: Rigid registration to 
the INHALE chest CT atlas via ANTs (v2.3.3) using mutual 
information; (2) Isotropic resampling: Resampling normalized images 
to 1 mm isotropic voxels using B-spline interpolation. Following the 
guidelines of ICRU 83 (27), a radiation oncologist with 10 years of 
experience in lung cancer treatment delineated the GTVp and GTVnd 
without access to patient information. ITK-SNAP (version 3.8.0; 
http://www.itksnap.org) was used to manually label slices layer-by-
layer (28). GTVp was delineated in the lung window (WW 1600 HU, 
WL − 600 HU), and GTVnd in the mediastinal window (WW 250 
HU, WL 50 HU). The criteria for defining GTVnd included: (1) short-
axis diameter ≥1 cm, (2) presence of ≥3 clustered lymph nodes within 
a single station, (3) pathological confirmation of metastasis in 
mediastinal lymph nodes (in select patients), or (4) PET-CT 
SUVₘₐₓ > 2.5 in the region (in select patients). After completing the 
annotations were completed, the region of interest (ROI) was 
designated. For each patient, 1,834 radiological features were extracted 
from the ROIs. These features were standardized using the Z-score 
and then screened by an F-test in ANOVA, where F is defined as the 
ratio of between-group variance to within-group variance. To avoid 
overfitting, LASSO regression with 10-fold cross-validation (via 
glmnet in R) was performed on each training subset to select the λ 
minimizing mean square error. Only features selected in ≥80% of 
folds were retained for the final model. Finally, logistic regression was 
used to construct the radiological models.

Clinical data—including sex, ethnicity, age, smoking history, 
pathological type, tumour stage, and haematological markers 
measured 1 week before treatment (such as carcinoembryonic antigen, 

1 https://ww2.mathworks.cn/
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neuron-specific enolase [NSE], white blood cell count, haemoglobin, 
and platelet levels)—were collected and initially analysed via 
univariate regression. Factors with p < 0.05 underwent multivariate 
regression, and variables remaining significant (p < 0.05) were 
incorporated into a clinical prediction model built through logistic 
regression. PyRadiomics was used for radiomic feature extraction 
(v3.0.1; https://github.com/radiomics/pyradiomics) (29). Statistical 
modeling was conducted in R (v3.5.1; https://www.r-project.org/). 
SPSS (v26.0, IBM Corp., Armonk, NY, USA) handled 
descriptive statistics.

Combination models were constructed using logistic regression 
with selected radiological and clinical features. Model performance 
was evaluated through Receiver Operating Characteristic (ROC) 
curves, Area Under the Curve (AUC), accuracy, precision, recall, and 
Decision Curve Analysis (DCA). Statistical significance was defined 
as p < 0.05 for all hypothesis tests.

3 Results

A total of 101 participants met the inclusion criteria. Patients 
were recruited from the SAHGMU (n = 77), Guiyang Pulmonary 
Hospital (n = 13), Qiandongnan Prefecture People’s Hospital 
(n = 5), Qiannan Prefecture Traditional Chinese Medicine Hospital 

(n = 6). Table  1 shows the clinical information. Guizhou—an 
ethnically diverse province in southwest China—is home to all four 
treatment centres included in this study. The principal ethnic groups 
were Han (39.60%), Miao (29.70%), and Dong (25.74%). The 
training cohort and external validation cohort exhibited comparable 
treatment efficacy rates (p > 0.05). Table 2 presents the relationship 
between clinical features and CCRT treatment sensitivity. After 
screening, only haemoglobin was significantly correlated with 
CCRT treatment sensitivity. However, as shown in Table  3, the 
haemoglobin-based clinical model underperformed among the 
models, with an AUC of 60.65% in the training set and 65.00% in 
the validation set.

Following the F-test and Lasso regression feature selection, six 
radiomic features were selected for GTVp (lung window) and four for 
GTVnd (mediastinal window). Figure 2 and Table 4 illustrate the 
distribution of these selected features. The predictive performance of 
the radiological models is shown in Figure  3 and Table  3. In the 
training set, the composite model—incorporating GTVp, GTVnd, and 
clinical features—achieved the highest AUC (0.862). The second-
ranked model was the GTVp-only model (AUC: 0.855), followed by 
the GTVp + GTVnd combination (AUC: 0.853). The GTVnd-only 
model yielded the lowest performance (AUC: 0.734). In the external 
validation set, the composite model again demonstrated the highest 
accuracy (AUC: 0.863). The GTVp + GTVnd combination ranked 

FIGURE 1

Experimental flowchart.
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second (AUC: 0.800), the GTVp-only model placed third (AUC: 
0.775), and the GTVnd-only model performed poorest (AUC: 0.375).

The DeLong test on the external validation set ROC data (Table 5) 
showed no statistically significant difference between the composite 
model and the conventional GTVp model (p = 0.14). Considering the 
limited sample size of the validation cohort (n = 24), we conducted 
clinical decision curve analysis to evaluate real-world utility. As shown 
in Figure 4, the composite model provided a superior net benefit 
across threshold probabilities compared to both the conventional 
clinical model and the GTVp model.

4 Discussion

In this study, our radiomic models outperformed the clinical factor 
model in predicting treatment outcomes. At present, the most 
commonly used guideline for tumour evaluation is RECIST 1.1; 
however, metabolic changes in tumour cells induced by chemotherapy 

and radiation therapy may become apparent earlier than morphological 
changes (30, 31). While radiation and chemotherapeutic agents 
effectively inhibit tumour cell proliferation, their structural impact can 
manifest slowly, making it difficult to detect short-term treatment 
effects through conventional imaging. Unlike RECIST 1.1, radiomics 
extracts pre-treatment data from the tumour, thus enabling an earlier 
assessment of treatment sensitivity before therapy is complete.

Among the 101 patients analysed, decreased haemoglobin 
emerged as the only clinical feature associated with CCRT sensitivity. 
Haemoglobin is critical for oxygen transport to tissues. When 
haemoglobin levels are low, increased anoxia in tumour cells leads to 
reduced sensitivity to radiotherapy and chemotherapy, ultimately 
weakening the therapeutic effect (32). In our patient population, over 
70% presented with low haemoglobin levels prior to treatment. This 
could be  explained by several factors. First, dietary habits among 
middle-aged and elderly individuals in Guizhou, who tend to eat more 
vegetables than meat, can result in insufficient iron intake and 
anaemia. Second, compromised immunity in cancer patients elevates 

TABLE 1 Baseline characteristics of patients.

Variables Categories Total (n = 101) Training (n = 77) External validation 
(n = 24)

P

Sex, n (%) Female 17 (16.83) 15 (19.48) 2 (8.33) 0.583

Male 84 (83.17) 62 (80.52) 22 (91.67)

Age, n (%) ≤50 17 (16.83) 15 (19.48) 2 (8.33) 0.336

>50 84 (83.17) 62 (80.52) 22 (91.67)

Ethnicity, n (%) Miao 30 (29.70) 27 (35.06) 3 (12.50) 0.005

Dong 26 (25.74) 22 (28.57) 4 (16.67)

Han 40 (39.60) 23 (29.87) 17 (70.83)

Others 5 (4.95) 5 (6.49) 0 (0.00)

Efficacy, n (%) CR/PR 28 (27.72) 24 (31.17) 4 (16.67) 0.166

SD/PD 73 (72.28) 53 (68.83) 20 (83.33)

Histology, n (%) LUSC 65 (64.36) 46 (59.74) 19 (79.17) 0.238

LUAD 31 (30.69) 26 (33.77) 5 (20.83)

Other 5 (4.95) 5 (6.49) 0 (0.00)

TNM, n (%) III 67 (66.34) 53 (68.83) 14 (58.33) 0.342

IV 34 (33.66) 24 (31.17) 10 (41.67)

CEA, n (%) Normal 59 (58.42) 45 (58.44) 14 (58.33) 0.993

Elevated 42 (41.58) 32 (41.56) 10 (41.67)

NSE, n (%) Normal 72 (71.29) 55 (71.43) 17 (70.83) 0.955

Elevated 29 (28.71) 22 (28.57) 7 (29.17)

WBC, n (%) Reduced 3 (2.97) 3 (3.90) 0 (0.00) 0.548

Normal 86 (85.15) 66 (85.71) 20 (83.33)

Elevated 12 (11.88) 8 (10.39) 4 (16.67)

Hb, n (%) Reduced 71 (70.30) 53 (68.83) 18 (75.00) 0.564

Normal 30 (29.70) 24 (31.17) 6 (25.00)

PLT, n (%) Reduced 5 (4.95) 3 (3.90) 2 (8.33) 0.567

Normal 89 (88.12) 69 (89.61) 20 (83.33)

Elevated 7 (6.93) 5 (6.49) 2 (8.33)

LUSC, Lung squamous cell carcinoma; LUAD, Lung adenocarcinoma; CEA, carcinoembryonic antigen; NSE, neuron specific enolase; WBC, White blood cell; Hb, Hemoglobin; PLT, Platelet; 
Alb, Albumin.
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their risk of secondary infections, which may lead to the excessive 
destruction of red blood cells. Third, acute and chronic bleeding (e.g., 
haemoptysis) often associated with lung cancer can further exacerbate 
anaemia in these patients.

Although the validation set showed that the GTVnd radiomics 
model alone had a relatively poor predictive performance (AUC: 
0.375) compared to the GTVp model (AUC: 0.775), these findings 
indicate that, in standard CT-based radiomics models for stage 

III - IV lung cancer, primary tumour features may be more influential 
than those of metastatic mediastinal lymph nodes. In our study, the 
radiological features of metastatic mediastinal lymph node lesions 
sensitive to CCRT all originated from “wavelets” a phenomenon that 
warrants further inquiry. Moreover, the absence of comprehensive 
PET/CT scans or mediastinal lymph node biopsies in some patients 
may have limited the precision of GTVnd delineation, as radiation 
oncologists relied solely on conventional imaging criteria (e.g., short 

TABLE 2 Clinical model: clinical features related to CCRT sensitivity.

Variables Univariate analysis Multivariate analysis

OR (95%CI) P OR (95%CI) P

Sex

Female 1.00 (Reference)

Male 0.77 (0.23 ~ 2.60) 0.673

Age (years)

≤50 1.00 (Reference)

>50 0.13 (0.02 ~ 1.05) 0.055

Ethnicity

Miao 1.00 (Reference)

Dong 2.10 (0.61 ~ 7.23) 0.239

Han 1.17 (0.42 ~ 3.22) 0.766

Others 2.00 (0.20 ~ 20.33) 0.558

Histology

LUSC 1.00 (Reference)

LUAD 0.59 (0.23 ~ 1.50) 0.270

Other 1.31 (0.14 ~ 12.55) 0.817

TNM

III 1.00 (Reference)

IV 3.03 (1.04 ~ 8.88) 0.043

CEA

Normal 1.00 (Reference)

Elevated 1.40 (0.57 ~ 3.46) 0.459

NSE

Normal 1.00 (Reference)

Elevated 0.51 (0.20 ~ 1.28) 0.149

WBC

Reduced 1.00 (Reference)

Normal 0.00 (0.00 ~ Inf) 0.991

Elevated 0.00 (0.00 ~ Inf) 0.991

Hb

Normal 1.00 (Reference) 1.00 (Reference)

Reduced 2.85 (1.14 ~ 7.16) 0.025 2.85 (1.14 ~ 7.16) 0.025

PLT

Reduced 1.00 (Reference)

Normal 4.57 (0.72 ~ 29.14) 0.108

Elevated 2.00 (0.19 ~ 20.61) 0.560

OR: Odds Ratio, CI: Confidence Interval; LUSC, Lung squamous cell carcinoma; LUAD, Lung adenocarcinoma; CEA, carcinoembryonic antigen; NSE, neuron specific enolase; WBC, White 
blood cell; Hb, Hemoglobin; PLT, Platelet.
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FIGURE 2

Lasso regression was employed to screen radiological features. (A) LASSO coefficient curve for the GTVp group. (B) Cross-validation curve for the 
GTVp group. (C) LASSO coefficient curve for the GTVnd group. (D) Cross-validation curve for the GTVnd group.

TABLE 3 Performance of the models.

Model Accuracy Precision Recall F1-score AUC

Clinical

Training set 68.83% 68.83% 100.00% 81.54% 60.65%

Validation set 83.33% 83.33% 100.00% 90.91% 65.00%

GTVp

Training set 83.12% 85.71% 90.57% 88.07% 85.53%

Validation set 79.17% 82.61% 95.00% 88.37% 77.50%

GTVnd

Training set 79.22% 80.33% 92.45% 85.96% 73.43%

Validation set 83.33% 86.36% 85.00% 90.48% 37.50%

GTVp + GTVnd

Training set 83.12% 84.48% 92.45% 88.29% 85.30%

Validation set 83.33% 83.33% 100.00% 90.91% 80.00%

Composite model (GTVp + GTVnd + clinical)

Training set 83.12% 84.48% 92.45% 88.29% 86.16%

Validation set 83.33% 83.33% 100.00% 90.91% 86.25%

Data in parentheses are 95% CIs. AUC, area under the curve; GTVp, gross tumor volume of the primary lesion; GTVnd, gross tumor volume of nodal disease.
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diameter ≥1 cm or at least three clustered lymph nodes in one 
region), potentially resulting in a reduced diagnostic rate for positive 
mediastinal lymph nodes.

We also noted that integrating clinical features with radiological data 
led to superior predictive performance compared to radiological models 
alone. The radiomics model combining GTVp and GTVnd (AUC: 0.800) 
outperformed the individual GTVp and GTVnd models. We compared 
our model not only to our own previous models but also to similar 
studies, such as: 1. A 2022 study that used a radiomics nomogram based 

solely on CT-derived GTVp and clinical features to predict 
chemoradiotherapy efficacy in  locally advanced non-small cell lung 
cancer, with a training set C-index of 0.796 and a validation set C-index 
of 0.756 (17); 2. A 2023 study developed a radiomics model based on 
CT-derived GTVp to predict concurrent chemoradiotherapy in patients 
with locally advanced non-small cell lung cancer. The study reported that 
the AUC for the GTV reduction (Criteria A) model was 0.767, while the 
AUC for the RECIST 1.1 standard (Criteria B) model was 0.771 (16). In 
contrast, our composite model (GTVp + GTVnd + clinical characteristics) 
achieved higher AUCs in both the training set (0.862) and the validation 
set (0.863). Further analysis revealed that the GTVnd features added 
critical information: (1) “wavelet. LHL_firstorder_10Percentile” quantifies 
low-intensity pixels in regions with vertical textural detail; (2) “wavelet. 
LHL_glcm_Contrast” captures roughness/heterogeneity of vertical 
textures and sensitivity to directional structures; (3) “wavelet. HLH_
glszm_SizeZoneNonUniformityNormalized” indicates lesion size 
heterogeneity; (4) “wavelet. LLL_firstorder_InterquartileRange” stably 
quantifies slow-varying grayscale distribution in anatomical structures. 
The inclusion of these GTVnd radiomic features enhanced the 
model’s efficacy.

In conclusion, our composite model (AUC = 0.863) demonstrated 
notably better performance than the conventional GTVp model 
(AUC = 0.775), indicating that including GTVnd radiological features 
can significantly improve the predictive capacity of CT-based models for 
CCRT outcomes. Decision curve analysis further confirmed that the 
composite model provided higher accuracy than the GTVp model alone, 

TABLE 4 Selected radiological features.

GTVp GTVnd

lbp.3D.k_glszm_

GrayLevelNonUniformityNormalized
wavelet. LHL_firstorder_10Percentile

lbp.3D.k_glrlm_

RunLengthNonUniformityNormalized
wavelet. LHL_glcm_Contrast

original_shape_Sphericity
wavelet. HLH_glszm_

SizeZoneNonUniformityNormalized

square_glcm_Imc2
wavelet. LLL_firstorder_

InterquartileRange

squareroot_glcm_Correlation

exponential_glrlm_

RunLengthNonUniformity

FIGURE 3

Comparison of ROC curves for different models. (A) ROC curves of different radiomic models in the training cohort. (B) ROC curves of different 
radiomic models in the validation cohorts.

TABLE 5 DeLong test for AUC values of the validation set.

Model Clinical GTVp GTVnd GTVp+GTVnd Composite model

Clinical 1 0.59 0.04 0.55 0.26

GTVp 0.59 1 0.23 0.57 0.14

GTVnd 0.04 0.23 1 0.23 0.09

GTVp + GTVnd 0.55 0.57 0.23 1 0.40

Composite model 0.26 0.14 0.09 0.40 1

GTVp, gross tumor volume of the primary lesion; GTVnd, gross tumor volume of nodal disease.
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highlighting the importance of incorporating additional radiomic 
features and clinical data in treatment response predictions. This study 
is the first to show that CT-based radiomic models integrating GTVnd, 
GTVp, and clinical information can meaningfully enhance CCRT 
response prediction in unresectable stage III–IV NSCLC. By extracting 
a broader range of radiomic features, the composite model offers a more 
comprehensive assessment of the tumour’s biological characteristics, 
potentially facilitating more individualized cancer treatment strategies. 
Overall, our findings emphasize the importance of including GTVnd in 
CT imaging analyses, reinforcing the need for a holistic approach to 
tumour evaluation.

Despite these promising results, our study has several limitations. 
First, the use of various CT scanners across four different institutions 
may have introduced variability in imaging parameters. To reduce this 
effect, all CT scans were normalized and reconstructed into 1-mm 
slices. Second, not all patients underwent PET/CT or mediastinal 
lymph node biopsies, potentially impacting the precision of GTVnd 
delineation. Previous research indicates that PET/CT is more accurate 
than conventional CT for detecting malignant lymph nodes (33, 34). 
Consequently, future research should incorporate PET/CT or biopsy 
before CCRT to better define GTVnd and improve model accuracy. 
Third, a single radiation oncologist performed all ROI delineations, 
restricting our ability to assess inter-observer consistency in radiomic 
feature extraction. Fourth, due to a relatively small sample size, larger 
studies are necessary to validate these findings.

5 Conclusion

This study demonstrates that a CT-based model integrating GTVp, 
GTVnd, and clinical data surpasses the conventional GTVp radiological 
model in predicting CCRT efficacy for patients with unresectable 
stage  III–IV NSCLC. Such an approach may allow for earlier 
adjustments to treatment regimens for patients expected to have less 
favourable outcomes.
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