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Acute Respiratory Distress Syndrome (ARDS) remains a critical challenge in intensive 
care, marked by high mortality and significant patient heterogeneity, which limits 
the effectiveness of conventional supportive therapies. This review highlights the 
transformative potential of Artificial Intelligence (AI) and Machine Learning (ML) 
in revolutionizing ARDS management. We explore diverse AI/ML applications, 
including early prediction and diagnosis using multi-modal data (electronic health 
records [EHR], imaging, ventilator waveforms), advanced prognostic assessment 
and risk stratification that outperform traditional scoring systems, and precise 
identification of ARDS subtypes to guide personalized treatment. Furthermore, 
we detail AI's role in optimizing mechanical ventilation (e.g., PEEP settings, patient-
ventilator asynchrony detection, mechanical power-guided strategies), facilitating 
Extracorporeal Membrane Oxygenation (ECMO) support decisions, and advancing 
drug discovery. The review also delves into cutting-edge methodologies such as 
Graph Neural Networks, Causal Inference, Federated Learning, Self-Supervised 
Learning, and the emerging paradigm of Large Language Models (LLMs) and 
agent-based AI, which promise enhanced data integration, privacy-preserving 
research, and autonomous decision support. Despite challenges in data quality, 
model generalizability, interpretability, and clinical integration, AI-driven strategies 
offer unprecedented opportunities for precision medicine, real-time decision 
support, and ultimately, improved patient outcomes in ARDS.
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1 Introduction

Acute Respiratory Distress Syndrome (ARDS) is a life-threatening form of respiratory 
failure characterized by rapid onset, diffuse lung inflammation, and severe hypoxemia. Despite 
standardized diagnostic criteria (1), ARDS remains challenging to recognize and treat, with 
mortality rates stubbornly hovering between 35 and 45% in severe cases (1, 2). This grim 
reality highlights the limitations of current treatment strategies. Over the past few decades, 
critical care medicine has made significant but limited progress in ARDS management. Lung-
protective ventilation strategies, including the use of low tidal volumes, appropriate positive 
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end-expiratory pressure (PEEP) settings, and early prone positioning, 
have become standard of care (2). These interventions have 
successfully reduced mortality from the high levels of 65–70% in the 
1980s by mitigating ventilator-induced lung injury (VILI) (2). 
However, behind these achievements lies an undeniable fact: existing 
therapies are essentially supportive, aiming to create conditions for 
lung healing rather than directly intervening in the fundamental 
pathophysiological processes of the disease.

The “ceiling” encountered in current treatment progress is 
fundamentally due to the profound heterogeneity of ARDS. ARDS is 
not a single disease but a clinical syndrome triggered by various 
etiologies (e.g., sepsis, pneumonia, trauma), with vast differences in 
clinical, imaging, and biological phenotypes (3). This heterogeneity 
makes “one-size-fits-all” treatment approaches ineffective for all 
patients, thus forming the current bottleneck in efficacy. Given these 
challenges, integrating AI and ML into ARDS management holds 
significant promise for addressing these issues, potentially improving 
patient outcomes and healthcare efficiency.

The conceptual origins of AI trace back to ancient mythology, 
where inventors and storytellers imagined the creation of intelligent 
machines or artificial beings. Centuries later, with the advent of 
programmable computers, early thinkers immediately questioned the 
potential intelligence these machines could achieve. Building upon 
these early ideas, Alan Turing introduced the Turing Test, a conceptual 
framework to assess whether a machine could convincingly exhibit 
human-like intelligence, often evaluated through aspects like language 
comprehension, learning, reasoning, and decision-making. Early AI 
approaches focused on rule-based systems that replicated human 
decision-making but encountered limitations when addressing 
complex tasks. This led to the development of expert systems 
integrating extensive knowledge bases with reasoning engines. 
However, these expert systems struggled to effectively handle complex, 
ambiguous data such as images or natural language. To overcome these 
limitations, the field shifted toward ML, where algorithms progressively 
refine their performance through data-driven learning. ML 
encompasses supervised, unsupervised, and reinforcement learning 
methods, initially employing straightforward algorithms such as 
decision trees, logistic regression, and support vector machines, which 
typically depend on predefined or manually engineered features by 
human experts. Advances in computational capabilities and data 
availability have further enabled deep learning, utilizing artificial neural 
networks to identify intricate patterns in large datasets, significantly 
advancing fields like image recognition and language processing.

In healthcare, ML has seen widespread applications, significantly 
enhancing diagnostic accuracy in medical imaging, improving 
predictive analytics from electronic health records (EHR), and 
addressing longstanding healthcare challenges often described as the 
“impossible trinity”: simultaneously achieving high-quality patient 

outcomes, cost efficiency, and operational effectiveness. Specifically, 
in ARDS management, modern ICUs generate vast amounts of data—
including high-frequency vital signs, ventilator waveforms, laboratory 
results, medical imaging, and clinical notes—which exceed clinicians’ 
ability to assimilate unaided. AI and ML algorithms can analyze and 
learn complex patterns from these multimodal data sources, offering 
considerable potential to enhance clinical decision-making by 
providing more precise and personalized insights into patient 
diagnosis, prognosis, and treatment. This review aims to provide a 
comprehensive overview of recent advances in AI and ML for ARDS 
management. Guided by the framework for AI-driven ARDS 
management illustrated in Figure  1, we  first detail the clinical 
applications of AI/ML, followed by a discussion of emerging 
methodologies. Subsequently, we address the practical implementation 
challenges and shortcomings, and finally, explore promising future 
directions to further promote personalized care strategies in ARDS.

2 AI/ML applications in ARDS 
management

In ARDS management, AI and ML have become pivotal for 
enhancing patient outcomes across various clinical domains. This section 
provides a comprehensive overview of how AI/ML applications are 
transforming ARDS care, from early detection and diagnosis to 
personalized treatment strategies. We will explore their utility in predictive 
analytics, prognostic assessments, and emerging therapeutic guidance, 
highlighting key advancements and their clinical implications.

2.1 Early prediction and diagnosis

ARDS is frequently missed or diagnosed late, which significantly 
hinders timely intervention and worsens patient prognosis (4, 5). The 
limitations of the Berlin definition have prompted efforts toward a 
new global definition aimed at increasing diagnostic sensitivity (5). To 
address this, ML models are being developed to predict ARDS onset 
hours to days in advance, leveraging diverse data sources such as EHR, 
medical imaging, and biomarkers (6). See Figure 2 for a schematic 
overview of the supervised learning workflow used for ARDS 
prediction. Deep learning, particularly CNNs, demonstrates 
substantial potential in analyzing CXRs and CT scans for identifying 
ARDS signs, often surpassing human interpretation accuracy (7). 
Additionally, VWD has emerged as a novel data source for early 
ARDS detection through DNNs (8).

Systematic reviews and meta-analyses indicate that ML models 
generally achieve good performance in ARDS prediction, with pooled 
AUCs ranging approximately from 0.74 to 0.83, despite persistent 
heterogeneity and limitations in model quality, including risk of bias, 
sample size, and validation methods (5). Specific studies highlight this 
progress: Rehm et al. demonstrated that CNN models utilizing VWD 
outperformed Random Forest models in ARDS detection (AUC 0.95 
vs. 0.88) (8). Sjoding et al. developed DETECT-ARDS, a deep CNN 
model employing transfer learning, which achieved expert-level 
accuracy in identifying ARDS signs on CXRs (9). For COVID-19 
ARDS, prediction studies integrating clinical data and CT images 
achieved high AUC values using XGBoost and CNN models (e.g., an 
integrated model AUC of 0.97) (10).

Abbreviations: ARDS, Acute Respiratory Distress Syndrome; AI, Artificial Intelligence; 

ML, Machine Learning; ICU, Intensive Care Unit; EHR, Electronic Health Record; 

CNN, Convolutional Neural Network; RL, Reinforcement Learning; GNN, Graph 

Neural Network; SSL, Self-Supervised Learning; FL, Federated Learning; PEEP, 

Positive End-Expiratory Pressure; FiO₂, Fraction of Inspired Oxygen; PaO₂, Partial 

Pressure of Arterial Oxygen; PaO₂/FiO₂, Ratio of PaO₂ to FiO₂; LIPS, Lung Injury 

Prediction Score; APACHE, Acute Physiology and Chronic Health Evaluation; 

SOFA, Sequential Organ Failure Assessment; RCT, Randomized Controlled Trial.
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AI’s capacity to predict ARDS before its full clinical 
manifestation (e.g., 24–48 h in advance (4)) signifies a paradigm 
shift from reactive diagnosis to proactive screening and potential 
early targeted intervention. This predictive capability, if combined 
with effective early treatments, could fundamentally alter the 
natural course of ARDS by moving from treating established 
disease to potentially preventing its full development or mitigating 
its severity through earlier interventions. An emerging trend is the 
integration of various data types—including clinical data, imaging, 
VWD, biomarkers, and unstructured notes analyzed via NLP (4). 
Models that combine these data sources generally exhibit superior 
performance, underscoring that a holistic view is crucial for 
capturing the complex features of ARDS. AI’s strength lies in its 
ability to synthesize these disparate signals, a task challenging for 
individual clinicians or simple scoring systems, thus 
foreshadowing future AI systems as sophisticated data integrators 
and pattern recognizers (Table 1).

FIGURE 1

Framework for AI-driven ARDS management. A conceptual model demonstrating the integration of AI and Machine Learning into the management of 
ARDS. AI/ML informs patient diagnosis and stratification, guides interventions like respiratory support, and aids in predicting clinical outcomes, 
facilitating a move toward precision medicine.

FIGURE 2

An illustration of a supervised learning workflow for ARDS prediction. 
Multiple clinical feature sets from the same patient (Pt. 1) are labeled 
as either “ARDS” or “Not ARDS.” After the model is trained on these 
labeled examples, it can then predict the label for a new patient’s 
clinical features.
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2.2 Prognostic assessment and risk 
stratification

Despite advancements, ARDS mortality remains high (5). 
Accurate early risk assessment is critical for guiding treatment 
intensity, allocating resources effectively, and facilitating 
communication with patients and their families (11). Traditional 
scoring systems, such as SOFA, SAPS-II, and APACHE II, have 
demonstrated limitations in comprehensively assessing ARDS 
prognosis (4). In response, ML models are increasingly employed to 
predict mortality in ARDS patients, frequently outperforming these 
conventional scoring systems by leveraging complex clinical datasets 
to identify key prognostic factors (4).

A meta-analysis of 21 studies, encompassing 31,291 ARDS 
patients, revealed that ML models achieved high performance in 
mortality prediction (pooled C-index of 0.84 for training sets, 0.81 for 
external validation sets), significantly surpassing the predictive 
capabilities of SOFA (AUC 0.64) and SAPS-II (AUC 0.70) (11). The 
application of LSTM models to time-series data derived from 
APACHE II, SOFA, and SAPS II scores has notably improved AUC 
values (e.g., APACHE II LSTM AUC 0.898 vs. traditional Logistic 
Regression 0.777) (12). Furthermore, specific models like Random 
Forest have also shown robust performance in predicting ARDS 

mortality (4). Hannon et al. developed a C5.0 ML model that predicted 
early (7-day) mortality in ARDS patients undergoing prone 
positioning with an AUROC of 0.78 on test data, utilizing only seven 
variables (13).

AI models, particularly those that incorporate time-series data 
such as LSTM models (12), are capable of capturing the dynamic 
trajectory of a patient’s condition. This provides more nuanced and 
potentially more accurate prognostic assessments compared to static 
scores based on worst values within a 24-h period, thereby enabling 
continuous risk re-evaluation. Given that ARDS is a dynamic 
condition, AI’s ability to track its evolution and provide updated risk 
profiles offers a significant advantage over single-snapshot scores. 
While most studies primarily focus on mortality prediction, there (14) 
is a growing recognition for the need to predict disability and long-
term outcomes (4). This represents an underexplored yet crucial area 
where AI can provide substantial value in planning rehabilitation and 
managing patient expectations. Current AI prognostic models are 
heavily biased toward mortality prediction; however, ARDS survivors 
often face prolonged and challenging recovery processes. If AI could 
predict not only mortality but also the likelihood of severe disability 
or long-term recovery, it could better inform post-ICU care, 
rehabilitation planning, and more comprehensive discussions about 
quality of life (Table 2).

TABLE 1 Application of AI/ML in early prediction and diagnosis of ARDS.

Study 
(Author, 
Year)

AI/ML 
method

Data source 
& cohort 
size

Key input 
features/
variables

Key performance 
metrics 
(validation type)

Reported 
progress/
novelty

Clinical 
significance/
implications

Rehm et al. (8) CNN Single-center ICU 

(N = 100, 50 

ARDS, 50 non-

ARDS)

VWD AUC: 0.95 (CNN) vs 0.88 

(RF); Acc: 0.84 (CNN) vs 

0.80 (RF); Spec: 0.81 

(CNN) vs 0.71 (RF) 

(Internal cross-validation)

Utilized raw VWD 

for ARDS detection, 

superior to 

traditional ML 

models; found 

importance of high-

frequency 

information

Suggests VWD as an 

unbiased early screening 

tool for ARDS, DL can 

capture information 

difficult to extract via 

manual feature 

engineering

Sjoding et al. (9) Deep CNN (121 

layers), Transfer 

Learning

External public 

CXR (450 k pre-

trained), Single-

center CXR (8 k 

fine-tuned), 

External 

validation set 

(another hospital 

system)

CXR High accuracy 

(comparable to physician 

expert level) (External 

validation)

Trained ARDS 

detection model on 

CXR using transfer 

learning and large-

scale datasets

Can provide rapid 

diagnostic support, 

improve ARDS 

identification rate, ensure 

timely treatment

Zhou et al. (10) XGBoost, CNN, 

Integrated DL 

model

Single-center 

(N = 103 

COVID-19 

patients, 23 

developed ARDS)

Clinical data 

(demographics, 

comorbidities, vital 

signs, lab tests, etc.), 

CT images

XGBoost AUC: 0.94; 

CNN (CT) AUC: 0.96; 

Integrated model AUC: 

0.97 (Internal validation)

Integrated clinical 

features and CT 

images with DL 

model to predict 

COVID-19 ARDS

Improves COVID-19 

ARDS prediction 

accuracy, aids early 

identification of high-risk 

patients

Yang et al. (5) Various ML 

algorithms (LR, 

SVM, RF, DL, etc.)

Pooled data from 

17 studies

EHR data, 

physiological 

parameters, lab tests

Pooled AUC: 0.7407 

(ARDS prediction) (Meta-

analysis)

ML shows high 

efficacy in ARDS 

prediction, but 

model quality and 

external validation 

need attention
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2.3 ARDS subtype/phenotype identification

ARDS is a highly heterogeneous syndrome, contributing to the 
near-universal failure of many clinical trials due to “one-size-fits-all” 
approaches (1, 3). Precision medicine aims to identify more 
homogeneous patient groups through Phenotypes (observable 
characteristics), Subphenotypes (distinct subgroups with measurable 
features), and Endotypes (subphenotypes with unique biological 
mechanisms and predictable treatment responses). The goal is to find 
“treatable traits” for prognostic enrichment (identifying high-risk 
patients) and predictive enrichment (identifying 
treatment responders).

2.3.1 Pioneering discoveries: inflammatory 
subtypes

A significant breakthrough is the discovery of two major 
inflammatory subtypes: hypo-inflammatory (P1) and hyper-
inflammatory (P2), identified using LCA on large RCT cohorts (15).

The hyper-inflammatory subtype is characterized by elevated 
inflammatory biomarkers (e.g., IL-6, IL-8, sTNFR-1), more severe 
organ dysfunction, higher shock rates, and significantly higher 
mortality (e.g., 90-day mortality of 40–50% vs. 18–26% for P1) (3, 7, 
16, 17). The hypo-inflammatory subtype has lower inflammatory 
markers, less severe disease, and better outcomes (18).

Crucially, these subtypes exhibited markedly different responses 
to therapies previously deemed ineffective (3, 4, 16, 17, 19). For 
instance, high PEEP was harmful to hyper-inflammatory but 
potentially beneficial to hypo-inflammatory patients (3). Fluid 
management strategies and drugs like simvastatin and corticosteroids 
also showed differential benefits (3, 4, 16, 17, 19). These findings 
explain past trial failures, where effects in one subgroup were offset by 
others (18). The hyper-inflammatory phenotype is consistently found 
across various ARDS etiologies (sepsis, COVID-19) and even in 
pediatric ARDS, suggesting it’s a “general critical illness biological 
feature” (15, 16).

To enable real-time clinical application, supervised ML models, 
especially GBM, have been developed. These models classify 
LCA-derived phenotypes using readily available routine clinical data 
(e.g., demographics, vital signs, lab tests) (7). They show exceptional 
performance (AUC 0.94–0.95) and are rigorously validated in multiple 
“real-world” observational cohorts (3, 7). This confirms that complex 
biological information is encoded in routine data, making bedside 
phenotyping feasible for precision medicine in the ICU.

Beyond Inflammatory Subtypes, ARDS can be  “direct” 
(pulmonary, e.g., pneumonia) or “indirect” (extrapulmonary, e.g., 
sepsis) (1). They differ in pathology, imaging, mechanics, and 
biomarkers (1, 20). Direct ARDS often shows patchy consolidations 
and reduced lung compliance, while indirect ARDS has diffuse 

TABLE 2 Application of AI/ML in prognostic assessment and risk stratification of ARDS.

Study 
(Author, 
Year)

AI/ML method Data source 
& cohort 
size

Key input 
features/
variables

Key performance 
metrics 
(validation type)

Reported 
progress/
novelty

Clinical 
significance/
implications

Deng et al. (12) LSTM ICU databases 

(mentions 

APACHE II, 

SOFA, SAPS II)

Time-series variables 

(used to calculate 

APACHE II, SOFA, 

SAPS II)

APACHE II LSTM AUC: 

0.898 (vs LR 0.777); 

SOFA LSTM AUC: 0.861 

(vs LR 0.715); SAPS II 

LSTM AUC: 0.897 (vs LR 

0.708) (Internal 

validation)

LSTM optimizes 

traditional scoring 

systems, 

significantly 

improving 

prediction accuracy

Emphasizes the 

importance of temporal 

dynamic information for 

prognostic prediction, 

superior to static scores 

based on worst values

Hannon et al. (13) C5.0 Decision Tree 

(with boosting)

Single-center ICU 

retrospective data 

(N = 131 ARDS 

patients 

undergoing prone 

positioning)

7 variables: Prone 

respiratory rate, P/F 

ratio change, Base 

excess change, 

APACHE II, Pre-

prone lactate, Sodium 

change, Bicarbonate 

change

AUROC (7-day 

mortality): 0.89 (training 

set), 0.78 (test set)

Early mortality 

prediction model for 

ARDS patients 

undergoing prone 

positioning

Aids in identifying non-

responders to prone 

positioning, potentially 

guiding early 

consideration of ECMO 

or alternative treatments

Li et al. (14) XGBoost (best 

among 8 ML 

models); Bayesian 

optimization; SHAP 

for interpretability

MIMIC-IV (v3.0), 

eICU-CRD (v2.0); 

N = 5,732 ARDS 

patients

54 variables 

(demographics, vital 

signs, blood gas, lab 

tests, comorbidities, 

severity scores)

Model effectively 

identifies high-risk ARDS 

patients (specific metrics 

not detailed)

Developed 

interpretable ML 

mortality risk 

prediction model

Supports clinical 

decision-making, 

promotes early 

intervention, and 

improves prognosis

Tan et al. (11) Various ML 

algorithms 

(Systematic Review 

& Meta-Analysis)

Pooled data from 

21 studies; 

N = 31,291 ARDS 

patients

Complex clinical 

datasets

Pooled C-index 

(mortality): 0.84 (training 

set), 0.81 (external 

validation set); Superior 

to SOFA (AUC 0.64) and 

SAPS-II (AUC 0.70) 

(Meta-analysis)

ML models 

outperform 

traditional scoring 

tools in ARDS 

mortality risk 

assessment

Facilitates early 

identification of high-

risk patients, enabling 

timely intervention and 

personalized risk 

prevention strategies
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ground-glass opacities and more chest wall compliance issues (1, 20). 
Despite their clinical relevance, dedicated AI/ML research for 
classifying these remains a significant gap (9).

2.3.2 Physiological subtypes
AI/ML increasingly derives subtypes from dynamic 

physiological data:

 • “Efficient vs. Restrictive”: ML identified two physiological 
subtypes based on respiratory mechanics and gas exchange, with 
“efficient” showing better outcomes (21).

 • “Recruitable vs. Non-recruitable”: AI/ML models integrating 
quantitative CT imaging and respiratory mechanics predict 
PEEP/recruitment maneuver response for personalized settings 
(3, 22, 23).

 • “Dry, Wet, and Fibrotic”: In severe ECMO-ARDS, LCA identified 
these three. “Fibrotic” has highest mortality; “Wet” may benefit 
from higher PEEP (1, 24).

2.3.3 Multi-omics driven endotypes
The frontier involves integrating high-dimensional molecular data 

(genomics, proteomics) to reveal deep biological mechanisms. AI/ML 
processes these complex datasets to identify novel biomarkers and 
therapeutic targets, leading to “metabolic endotypes” for precise drug 
development (25–27).

The evolution of ARDS subtyping progresses toward a 
comprehensive, multi-layered, dynamic patient profile integrated by 
AI. AI/ML is uniquely capable of synthesizing diverse information 
streams to generate a holistic patient portrait, guiding personalized, 
combinatorial treatment strategies (Table 3).

TABLE 3 ARDS subtypes identified by AI/ML and their clinical implications.

Subtype category Specific subtype Defining characteristics AI/ML method(s) 
used

Clinical implications / 
differential treatment 
response

Inflammatory (7, 15, 17, 19) Hypo-inflammatory (P1) Lower inflammatory biomarkers, less 

severe organ dysfunction, lower 

mortality.

LCA (discovery), GBM/

XGBoost (classification)

May benefit from liberal fluid 

strategy; high PEEP potentially 

beneficial or neutral.

Hyper-inflammatory (P2) Elevated inflammatory biomarkers, 

severe organ dysfunction, shock, 

higher mortality.

LCA (discovery), GBM/

XGBoost (classification)

High PEEP harmful; liberal fluid 

strategy associated with higher 

mortality; differential response to 

statins (e.g., rosuvastatin showed 

no benefit in this study), potential 

benefit from corticosteroids.

Physiological (21, 23) Efficient Lower mortality, better gas exchange. Unsupervised ML (GMM), 

Supervised ML (XGBoost)

Less aggressive ventilation may 

be sufficient.

Restrictive Higher mortality, worse gas 

exchange.

Unsupervised ML (GMM), 

Supervised ML (XGBoost)

May require more aggressive 

lung-protective strategies.

Recruitable Lungs open with PEEP/recruitment 

maneuvers.

LCA/ML (CT imaging & 

respiratory parameters)

Benefit from higher PEEP and 

recruitment maneuvers.

Non-recruitable Lungs do not open with PEEP/

recruitment maneuvers.

LCA/ML (CT imaging & 

respiratory parameters)

Higher PEEP may be harmful; 

focus on minimizing VILI.

Dynamic (e.g., ECMO-

ARDS) (24)

Dry type Minimal fluid accumulation. LCA (discovery) (Specific treatment implications 

under investigation)

Wet type Significant fluid retention. LCA (discovery) May benefit from higher PEEP 

(e.g., ≥10 cmH₂O) on ECMO.

Fibrotic type Evidence of lung fibrosis. LCA (discovery) Highest mortality; may require 

different long-term strategies.

COVID-19 Specific (53) Dynamic subtypes Based on longitudinal ventilation 

parameter trajectories.

Longitudinal LCA Elevated ventilatory ratio 

trajectory associated with poor 

prognosis.

Sepsis-ARDS Specific (4) Cluster 0 (Mild) Mildest clinical signs, lowest 

mortality.

AdaBoost (clustering) High PEEP may be harmful.

Cluster 1 (Severe) Most severe clinical signs, highest 

mortality.

AdaBoost (clustering) High PEEP may be harmful.

Cluster 2 (Moderate) Moderate severity, longest ICU stay. AdaBoost (clustering) High PEEP may reduce mortality.

Multi-omics (25–27) Metabolic endotypes Distinct molecular profiles. AI/ML (high-dimensional 

data analysis)

Potential for novel, highly 

targeted drug therapies.
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2.4 PEEP optimization

Optimizing PEEP selection in ARDS is a critical yet complex 
endeavor, aiming to enhance oxygenation and prevent atelectrauma 
while simultaneously avoiding overdistension and hemodynamic 
compromise (1). Due to significant patient heterogeneity, a “one-size-
fits-all” approach to PEEP is insufficient (28). To address this, ML 
models are being explored to predict physiological responses, such as 
oxygenation and compliance, at various PEEP levels, thereby 
facilitating personalized PEEP settings using routinely measured 
clinical data (29).

Händel et al. developed a multi-task neural network model that 
utilized MIMIC-III and eICU data to predict PaO2, PaCO2, and Crs 
approximately 45 min in advance, based on current ventilator settings 
and patient data. This model demonstrated the ability to simulate the 
effects of PEEP adjustments, achieving MAPE of approximately 21% 
for PaO2 and 16% for Crs in the MIMIC-III test set (29). Earlier 
foundational work, such as that by Chase et al., though not strictly 
ML, employed model-based methods to estimate patient-specific lung 
elastance at different PEEP levels to guide optimal PEEP selection (30).

ML models, exemplified by the work of Händel et al. (29), advance 
beyond traditional trial-and-error or static table methods for PEEP by 
providing predictive simulations of PEEP effects. This capability 
allows clinicians to virtually explore PEEP changes and their potential 
consequences before actual application. Unlike traditional PEEP 
adjustment, which involves slow incremental changes and observation, 
the model described in (29) can predict the outcome of PEEP changes, 
representing a shift from reactive adjustment to proactive, model-
guided titration. Its “simulation” capability (29) is a key innovation, 
offering a foresight into PEEP adjustments. The features identified as 
important in Händel et al.’s model, such as the last known values of 
predicted variables and ventilator mode (29), often align with clinical 
intuition and physiological principles. This alignment can enhance 
clinician trust and understanding, as AI functions not as a complete 
“black box” but as a tool that quantifies and predicts known 
relationships. Clinician trust is a recognized barrier to AI adoption 
(5); therefore, if an AI model for PEEP selection highlights variables 

that clinicians already deem important (e.g., current oxygenation, 
current compliance), its recommendations become more 
comprehensible and trustworthy. This suggests that AI can augment, 
rather than replace, clinical reasoning by providing more precise, 
data-driven insights based on plausible features (Table 4).

2.5 Detection of patient-ventilator 
asynchrony (PVA)

PVA is a common occurrence in mechanically ventilated patients, 
with reported incidences as high as 90% in some studies (31). PVA is 
associated with adverse clinical outcomes, including prolonged 
ventilation, increased work of breathing, and an elevated risk of 
barotrauma (31). The visual detection of PVA from ventilator 
waveforms is inherently challenging and time-consuming for 
clinicians (31). To address this, AI and ML, including deep learning 
techniques, are being employed to automatically detect and quantify 
various types of PVA from ventilator waveforms (flow, pressure, 
volume) and, in some cases, from Pes (esophageal pressure) (32).

A narrative review by van der Staay et al. identified 13 studies on 
AI detection of PVA, with 10 reporting sensitivity and specificity 
greater than 0.9, and 8 reporting accuracy greater than 0.9. Notably, 
three of these studies focused on ARDS as an indication for 
mechanical ventilation (32). Another review by Rietveld et  al. 
examined 19 studies, highlighting promising results with average 
reported sensitivity of 0.80, specificity of 0.93, and accuracy of 0.92. 
However, they also noted limitations, such as most models being 
offline, detecting only a small fraction of PVA types (primarily 
ineffective triggers and double triggers), or lacking external validation 
(31). Stell et al. developed an ML method for PVA detection that 
achieved a specificity greater than 90% (33).

While accurate PVA detection is a crucial initial step, its ultimate 
clinical value lies in linking detection to real-time intervention, such 
as automatic ventilator adjustments or immediate alerts to clinicians. 
This “closed-loop” or “decision support” aspect represents the next 
frontier. Although many studies report high accuracy for PVA 

TABLE 4 Application of AI/ML in PEEP optimization for ARDS patients.

Study 
(Author, 
Year)

AI/ML 
method

Data source 
& cohort size

Key input 
features/
variables

Key performance 
metrics 
(validation type)

Reported 
progress/
novelty

Clinical 
significance/
implications

Händel et al. (29) Multi-task Neural 

Network (NN); 

Random Forest 

(RF) for 

comparison

MIMIC-III 

(training/testing), 

eICU (independent 

testing)

Ventilator settings, 

vital signs, lab 

results, and other 

routine 

measurements

MAPE (NN, MIMIC-III 

test set, 30-min blinded 

prediction): PaO2 21.7%, 

PaCO2 10.0%, Crs 15.8%. 

NN outperformed RF on 

MIMIC-III, but RF was 

partially superior on 

eICU

Predicts 

physiological 

parameters (PaO2, 

PaCO2, Crs) 

approximately 

45 min after PEEP 

adjustment, and can 

perform simulations

Provides a new method 

for personalized PEEP 

titration, without 

additional cost, aiding 

clinical decision-making

Chase et al. (30) Model-based 

parameter 

identification 

(integral method)

Single-center ALI/

ARDS patients 

(N = 10)

Airway pressure and 

flow data

Median absolute 

percentage fitting error 

(Edrs): 0.9%; Model-

selected PEEP was 

generally higher than 

clinically selected values

Identified patient-

specific dynamic 

lung elastance (Edrs) 

to optimize PEEP

Individualized PEEP 

selection based on 

physiological models, 

aiming for minimal 

elastance (maximal 

compliance)
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detection (31), Rietveld et al. (31) point out that most models are 
“offline,” meaning historical detection is less useful than real-time 
identification and actionable insights. The future trend should focus 
on developing real-time systems that not only detect but also suggest, 
or even (in highly validated future systems) automatically implement 
corrective ventilator adjustments. This aligns with discussions in (22) 
regarding AI adjusting ventilator settings in real-time. The success of 
AI in PVA detection, often based on raw waveform data, underscores 
the rich yet underutilized information embedded in these continuous 
physiological signals. AI excels at discovering complex patterns that 
may be too subtle or rapid for human clinicians to consistently detect. 
For instance (33), notes that visual parsing of “whole polysomnograms” 
is “labor-intensive and error-prone,” and (31) describes visual 
inspection as “extremely challenging.” AI, particularly deep learning, 
can process these high-frequency, complex waveform data streams 
more effectively, as demonstrated by Rehm et al. (8) for detecting 
ARDS from VWD. This suggests a broader applicability of AI for 
waveform analysis in other critical care monitoring tasks beyond PVA 
(Table 5).

2.6 Mechanical power-guided lung 
protective strategies

VILI remains a significant concern in the treatment of ARDS (34). 
MP, an emerging concept, integrates variables such as pressure, 
volume, flow, and respiratory rate to quantify the energy delivered to 
the lungs and estimate VILI risk (34). High MP values are consistently 
associated with worse clinical outcomes (34). While it’s lack of the 
direct use of AI/ML to guide MP-based strategies, ML models have 
incorporated MP as a key feature for mortality prediction (35), and 
methods for individualizing MP thresholds using ML are currently 
being explored (36).

Gattinoni et  al. established a foundational formula for MP, 
indicating that values exceeding 12 J/min are associated with an 
increased risk of VILI (34). Becher’s simplified formula is commonly 

used for MP calculation in pressure-controlled ventilation modes 
(35). Studies have demonstrated that both MP and VR are 
independently associated with ICU mortality in ARDS patients 
(35). Chang et  al. found that in ARDS patients undergoing PP, 
post-PP MP/compliance and changes in MP, MP/PBW, and MP/
compliance were significantly associated with 28-day mortality, 
with changes in MP/compliance identified as an independent 
predictor (HR 7.972) (37). It is important to note that this particular 
study utilized traditional statistical methods rather than ML for 
prediction. More recently, Alkhalifah et al. employed various ML 
models (e.g., LR, RF, SVM, XGBoost) to predict ICU mortality 
based on MP and other variables, with the XGBoost model 
demonstrating high prediction accuracy (AUC 0.88). They 
proposed individualizing mechanical ventilation settings based on 
real-time physiological variables to reduce predicted mortality (36) 
(Table 6).

2.7 Prone positioning

PP is a cornerstone therapy for moderate to severe ARDS, 
significantly improving oxygenation and reducing mortality when 
applied early and for extended durations (1). However, patient 
response to PP varies, and predicting who will benefit most remains a 
challenge (1). ML models are being developed to identify patients 
most likely to respond positively to PP or to predict mortality in 
patients undergoing PP. For instance, Hannon et al. developed a C5.0 
ML model that predicted 7-day mortality after PP in ARDS patients 
with an AUROC of 0.78, aiding in the early identification of 
non-responders (13). Fosset et al. used unsupervised ML to identify 
three distinct subtypes among ARDS patients undergoing PP, 
associated with different mortality rates, though their model could not 
predict individual PP benefit based on existing data (38). This 
highlights the need for more comprehensive data, such as multi-
modal data, to fully capture the complex physiological responses to 
PP and guide personalized application (Table 7).

TABLE 5 Application of AI/ML in patient-ventilator asynchrony (PVA) detection.

Study 
(Author, 
Year)

AI/ML 
method

Data source 
& cohort 
size

Key Input 
features/
variables

Key performance 
metrics 
(validation type)

Reported 
progress/
novelty

Clinical 
significance/
implications

Tlimat et al. (32) Various ML and 

DL techniques

13 studies, 332 

participants, >5.8 

million breaths (3 

studies for ARDS 

patients)

Ventilator waveform 

data (pressure, flow, 

volume), some with 

Pes

10/13 models Sens/Spec 

>0.9; 8/13 models Acc 

>0.9 (validation methods 

varied across studies)

AI models show high 

accuracy across 

different populations 

and asynchrony types

AI has great potential in 

detecting PVA, expected 

to improve mechanical 

ventilation management

Rietveld et al. (31) Rule-based 

algorithms, ML, 

DL

19 studies Ventilator 

waveforms, some 

with Pes or EAdi

Average Sens: 0.80, Spec: 

0.93, Acc: 0.92 (pooled 

across studies)

Automated PVA 

detection techniques 

are evolving and 

show promise

Future needs external 

validation and real-time 

deployment to optimize 

personalized ventilation 

and improve outcomes

Rodriguez et al. 

(54)

Rule-based 

algorithm

ARDS patients 

(invasive 

ventilation)

Paw and flow 

waveforms

Pes validation set: Acc: 

0.92, Sens ≥0.86, Spec 

≥0.91; No Pes validation 

set: Acc: 0.96, Sens ≥0.74, 

Spec ≥0.80

Detection of reverse 

triggering and double 

triggering

Even without Pes, 

algorithm can detect 

specific PVA types with 

high accuracy
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2.8 ECMO support

ECMO is a highly resource-intensive and high-risk rescue 
therapy for severe ARDS, with its value increasingly recognized, 
leading to updated clinical guidelines recommending its use for 
certain severe ARDS patients (39). The challenge lies in precisely 
identifying patients who will benefit most and optimizing the 
timing of initiation. ML models are being developed to address 
these complexities. A significant advancement is “PreEMPT-
ECMO,” a hierarchical deep learning model by Zhu et  al. that 
predicts ECMO use up to 96 h in advance using large-scale, 

multi-modal, time-series data, outperforming traditional ML 
models (e.g., AUC 0.89 at 48 h in advance) (40). This early 
warning capability is crucial for patient triage and resource 
allocation. Furthermore, models like ECMO PAL, a deep neural 
network trained on a vast international cohort of over 18,000 
ECMO patients, has shown superior performance in predicting 
in-hospital mortality for VA-ECMO patients compared to all 
existing traditional scoring systems (41). These AI tools provide 
objective, data-driven predictions to facilitate equitable and 
efficient allocation of this critical resource, ensuring it is used for 
patients most likely to benefit (Table 8).

TABLE 6 Application of AI/ML in mechanical power (MP)-guided lung protective strategies.

Study 
(Author, 
Year)

AI/ML 
method

Data source 
& cohort size

Key input 
features/
variables

Key performance 
metrics 
(validation type)

Reported 
progress/
novelty

Clinical 
significance/
implications

Alkhalifah et al. 

(36)

LR, RF, SVM, Ada 

boosting, 

XGBoost, Stacking

Single-center ICU 

database (ARDS 

patients)

MP, IBW-

normalized MP, VT, 

RR, ΔP, Ppeak, 

lactate levels, age, 

etc.

XGBoost (ICU mortality 

prediction): Acc: 0.78, 

Prec: 0.79, Recall: 0.76, 

AUROC: 0.88 (5-fold 

cross-validation)

Used ML models to 

predict ICU mortality 

and proposed 

methods for 

individualizing MV 

settings based on MP 

and other covariates

Highlights the potential 

of individualized MP 

thresholds to reduce VILI 

and mortality, promoting 

data-driven ventilation 

management

Chang et al. (37) Cox Regression 

Model (non-ML)

Multi-center 

retrospective data 

(8 hospitals in 

Taiwan, N = 135 

ARDS patients 

undergoing prone 

positioning)

MP, MP/PBW, MP/

compliance (post-

prone and changes)

Change in MP/

compliance was an 

independent predictor of 

28-day mortality (HR: 

7.972, p < 0.001)

Found association 

between post-prone 

MP-related 

parameters and 

ARDS patient 

mortality

Suggests monitoring post-

prone MP parameters can 

predict prognosis, but 

needs ML models to 

further validate its 

guiding role

Gattinoni et al. 

(34)

MP calculation 

formula (non-ML)

- VT, RR, Ppeak, ΔP, 

PEEP

MP > 12 J/min associated 

with increased VILI risk

Proposed MP 

concept and its 

calculation method

Provides a basis for 

quantifying VILI risk, an 

important input 

parameter for subsequent 

ML applications

TABLE 7 Application of AI/ML in prone positioning for ARDS patients.

Study 
(Author, 
Year)

AI/ML 
method

Data source 
& cohort size

Key input 
features/
variables

Key performance 
metrics 
(validation type)

Reported 
progress/
novelty

Clinical 
significance/
implications

Hannon et al. (13) C5.0 Decision Tree 

(with boosting)

Single-center ICU 

retrospective data 

(N = 131 ARDS 

patients undergoing 

prone positioning)

7 variables (see 

Table 2 in Section 

2.2)

AUROC (7-day 

mortality): 0.78 (test set)

Predicts early 

mortality risk for 

ARDS patients 

undergoing prone 

positioning

Aids in identifying prone 

positioning “non-

responders,” potentially 

guiding early 

consideration of ECMO 

or adjustment of 

treatment strategies

Fosset et al. (38) Unsupervised ML 

(clustering)

Retrospective 

observational study 

(N = 353 ARDS 

patients undergoing 

prone positioning)

Respiratory 

mechanics, 

oxygenation 

parameters, 

demographic 

variables (pre-

prone)

Identified 3 subtypes with 

different 28-day mortality 

rates (Cluster 3 had 

highest mortality 56%), 

but could not predict 

prone positioning 

responders

Used unsupervised 

learning to identify 

subtypes of ARDS 

patients undergoing 

prone positioning 

and their association 

with mortality

Suggests heterogeneity in 

the prone positioning 

population, but cannot 

yet guide individualized 

PP decisions based on 

this
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2.9 Prediction of ventilator weaning and 
extubation

Successful ventilator weaning and extubation are critical 
milestones in the recovery of ARDS patients, significantly impacting 
patient outcomes, ICU length of stay, and healthcare costs. Premature 
extubation can lead to reintubation and increased mortality, while 
delayed extubation prolongs ventilation-associated complications. 
Given the complexity and dynamic nature of ARDS, predicting 
successful weaning and extubation remains a significant challenge for 
clinicians. ML models offer a promising approach to leverage vast 
amounts of physiological and clinical data to provide more accurate 
and timely predictions, thereby optimizing the extubation process.

However, direct evidence for predicting extubation “success” (as 
a binary outcome) specifically within pure ARDS cohorts is relatively 
scarce (42). Most studies on extubation success rates use heterogeneous 
ICU populations, which may include ARDS patients but do not 
analyze them as a distinct subgroup (42). These models are typically 
trained on vast amounts of data from EHRs and large public databases 
(e.g., MIMIC-III/IV and eICU-CRD) (43). The combination of input 
features is highly variable, with one review noting studies using 
anywhere from 8 to 78 variables (42). Common features include 
patient demographics (e.g., age), disease severity scores (e.g., SAPS II, 
SOFA), vital signs (e.g., heart rate), laboratory results (e.g., BUN, 
PaO2), neurological status (e.g., Glasgow Coma Scale), and ventilator 
parameters (e.g., MV duration, PEEP, FiO2) (42). A significant trend 
is the utilization of high-frequency time-series data from ventilators, 
which provides a rich and continuous view of the patient’s respiratory 
status (44).

The ultimate goal of AI/ML applications is to improve patient 
outcomes. Several studies have shown that integrating AI prediction 
models into clinical weaning protocols can yield tangible benefits. 
One notable study demonstrated that AI-assisted protocols 

significantly reduced average MV duration, ICU length of stay 
(LOS), and total hospital stay compared to control groups without 
AI (45). Another study reported a 0.5-day reduction in average 
ventilation days required for successful weaning after AI intervention 
(46). These findings suggest that AI can serve as a practical tool to 
help clinicians make more timely and accurate weaning decisions, 
thereby improving healthcare quality and resource utilization 
efficiency (47). This is particularly crucial for ARDS patients, where 
the unique pathophysiological challenges necessitate highly precise 
and individualized weaning strategies. Future research should focus 
on developing and validating AI models specifically tailored to 
predict extubation success in pure ARDS cohorts, leveraging their 
unique physiological characteristics to bridge this critical 
knowledge gap.

2.10 AI-driven drug discovery

Perhaps the most transformative potential contribution of AI to 
ARDS treatment is its ability to shift therapeutic strategies from purely 
supportive care to targeted molecular interventions addressing the 
disease’s core biological mechanisms. Generative AI is revolutionizing 
drug discovery (48).

The discovery of Rentosertib serves as an excellent example. This 
is the first drug whose biological target (TNIK) and the drug molecule 
itself were discovered by generative AI37. The process involves AI 
biology engines like PandaOmics analyzing vast biological data (e.g., 
genomics, proteomics) to identify novel disease-related drug targets. 
Subsequently, generative chemistry engines like Chemistry42 design 
and optimize new small molecule compounds with desired 
pharmacological properties for the identified targets (48). This entire 
process is significantly faster than traditional methods and has shown 
higher success rates in early clinical trials (48).

TABLE 8 Application of AI/ML in ECMO support for ARDS patients.

Study 
(Author, 
Year)

AI/ML 
method

Data source & 
cohort size

Key input 
features/
variables

Key performance 
metrics 
(validation type)

Reported 
progress/
novelty

Clinical 
significance/
implications

Zhu et al. (40) Hierarchical Deep 

Learning Model 

(including LSTM)

N3C multi-center 

database 

(N = 101,400 

COVID-19 ICU 

patients, 1,298 

ECMO cases)

Static features 

(demographics, 

comorbidities) and 

multi-granularity 

time-series features 

(vital signs, 

treatments, lab 

values)

AUROC (ECMO use 

prediction, 48 h in 

advance): 0.89; AUPRC: 

0.27. Outperformed LR, 

SVM, RF, XGBoost 

(multi-timepoint 

comparison)

Continuously 

predicts ECMO use 

risk, up to 96 h in 

advance; integrates 

static and dynamic 

multi-granularity 

data

Early warning tool, 

guiding patient triage 

and ECMO resource 

allocation, especially 

during resource scarcity

Stephens et al. 

(41)

DNN International cohort 

(400 + centers, 

>18,000 ECMO 

patients)

Pre-ECMO registry 

variables, (e.g., 

lactate, age, serum 

bicarbonate, 

respiratory rate, 

endotracheal 

intubation time, 

infectious organisms, 

comorbidities, and 

other clinical and 

physiological data)

Outperformed all existing 

traditional scoring 

systems in predicting 

in-hospital mortality for 

VA-ECMO patients

Breakthrough in 

predicting ECMO 

survival with large-

scale, generalizable 

data

Aids in precise patient 

selection for ECMO, 

optimizing resource 

allocation and improving 

outcomes
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Although IPF, its targeted fibrotic pathway is highly relevant to the 
fibroproliferative phase many ARDS patients enter during prolonged 
illness. Therefore, the success of this method in related lung diseases 
provides strong conceptual validation for its direct application in 
ARDS research. In the future, AI can analyze multi-omics data from 
ARDS patients to discover novel anti-inflammatory or anti-fibrotic 
drug targets (49), potentially leading to the development of the first 
truly specific ARDS therapies.

For the past half-century, the battle against ARDS has primarily 
focused on supportive care to mitigate VILI. AI-driven drug discovery 
opens a crucial second front in this battle: directly combating the core 
biological processes driving the syndrome. This represents the greatest 
potential for a step-change reduction in mortality. If AI can help 
develop a drug that effectively blocks the inflammatory storm or 
prevents lung fibrosis, its impact would far exceed any optimization of 
PEEP or prone positioning. This directly addresses the fundamental 
question of AI’s role in “significantly reducing mortality.”

3 Emerging AI/ML techniques in ARDS 
research

Building upon the established applications of AI/ML in ARDS 
management discussed previously, the field of AI is continually 
evolving. Several cutting-edge machine learning techniques, including 
the transformative rise of LLMs and their agentic applications, hold 
particular promise for further advancing ARDS research and care. 
These methods, some only recently applied in medicine, can address 
current limitations by modeling complex relationships, leveraging 
diverse data, and enabling collaborative training. We highlight a few 
notable ones:

3.1 Graph neural networks (GNNs)

Traditional deep learning (like CNNs, RNNs) handles data in 
Euclidean formats (grids of pixels, sequences of time points). But 
much of healthcare data is relational – patients connected to clinical 
events, or physiological variables interacting in networks. GNNs are a 
class of models that operate on graph-structured data, learning 
representations for nodes (e.g., patients or clinical variables) by 
aggregating information from their neighbors. In critical care, one can 
construct graphs such as a patient-similarity network (nodes are 
patients, edges connect patients with similar profiles), or knowledge 
graphs linking clinical concepts. GNNs can capture the 
interdependencies in such graphs. A recent survey identified a surge 
of interest in GNNs for clinical risk prediction using EHRs (49). Over 
5 studies since 2020 have explored GNN architectures (especially 
Graph Attention Networks) on ICU datasets like MIMIC-III to predict 
outcomes or diagnoses (49). For ARDS, one might imagine a GNN 
that links patients by common risk factors and learns a representation 
of “ARDS propensity” that could improve prediction accuracy, or a 
GNN that models relationships between different organ systems’ 
dysfunctions to better predict ARDS onset in sepsis. Early work shows 
GNN-based models can outperform flatter models by utilizing 
relationship data – for example, connecting current patients to past 
patients who had similar trajectories can help forecast deterioration. 
While GNNs have not yet been widely applied specifically to ARDS, 

the technique’s ability to naturaly incorporate heterogeneous data and 
relationships (such as a graph of ventilator settings changes connected 
over time, or molecular interaction networks in ARDS pathology) 
makes it a promising avenue for future research.

3.2 Multi-modal learning

ARDS diagnosis and management rely on integrating data from 
multiple sources (clinical measurements, imaging, lab tests, 
waveforms, etc.). Multi-modal ML refers to algorithms that jointly 
learn from different data types. We already discussed examples like 
combining CT scans with EHR data for ARDS prediction (4). Moving 
forward, more sophisticated multi-modal architectures (such as 
models that fuse time-series vitals, lab trends, CXR images, and even 
genomics) could provide a comprehensive “holistic” prediction. 
Techniques like cross-modal attention allow a model to focus on 
relevant features in one modality based on patterns in another – e.g. 
an algorithm might learn that worsening oxygenation (vitals modality) 
together with new bilateral opacities (image modality) is a stronger 
ARDS signal than either alone. Multi-modal deep learning has been 
greatly enabled by the increasing availability of synchronized datasets 
(for example, MIMIC-IV linking ICU data with radiology images). 
For ARDS, multi-modal models have shown outstanding 
performance: one model combining clinical data + CXR features 
achieved 0.95–0.97 AUROC for ARDS vs. non-ARDS in a COVID 
cohort (6). As these techniques mature, we expect AI “ensembles” that 
mirror the way clinicians synthesize labs, imaging, and exam findings. 
This could also facilitate continuous monitoring – e.g. a system that 
continuously ingests ventilator waveforms, radiographs, and labs to 
update the probability of ARDS or to detect transitions (onset of 
fibroproliferative phase, etc.) and suggest timely interventions.

3.3 Causal inference and counterfactual 
prediction

A common critique of standard ML is that it’s correlation-based – 
it might predict outcomes, but it does not explain what will change the 
outcome. Causal inference techniques aim to estimate cause-effect 
relationships from data. We  already noted how causal ML (like 
Bayesian causal forests) can identify heterogeneous treatment effects 
in ARDS (50). Another aspect is counterfactual prediction: predicting 
what would happen under different hypothetical treatments. For 
example, “would this patient’s oxygenation improve if we increase 
PEEP by 5?” This typically requires causal modeling or causal 
assumptions. New algorithms such as causal reinforcement learning 
or deep counterfactual networks attempt to learn these causal relations 
from observational data. In ARDS, where RCTs are difficult for every 
possible intervention, such methods can inform treatment decisions by 
simulating interventions in silico. A concrete emerging method is 
“target trial emulation” combined with ML – structuring observational 
ICU data to mimic a randomized trial and then using ML to adjust for 
confounders and estimate an intervention’s effect. One study applied 
this to proning and steroid use in ARDS, using causal forests to 
suggest that certain subgroups derive more benefit from these 
therapies (findings that align with clinical intuition, but achieved with 
computational analysis) (3, 38). Causal inference is still a developing 
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field in ML, but as it progresses, clinicians may gain AI tools that not 
only risk-stratify but also answer “what if ” questions for ARDS 
management, providing a form of evidence-based guidance derived 
from big data.

3.4 Federated learning

A major barrier in developing robust ARDS AI models is data 
availability and privacy. ARDS patients are relatively rare at a single 
center, and data are siloed across hospitals. FL is an approach that 
enables AI model training on decentralized data – data stay at each 
institution, and only model updates (gradients) are shared to build a 
global model, preserving patient privacy. This is extremely pertinent 
for critical care: an ICU network could collaboratively train an ARDS 
prediction model on tens of thousands of patients without ever 
exchanging raw health data. Studies have shown that federated models 
can achieve performance on par with traditional centrally-trained 
models. For instance, a 2022 investigation into ICU mortality 
prediction found that a federated deep learning model performed 
equally as well as a model trained on pooled data, and significantly 
better than models trained on individual hospitals alone (11). This 
indicates FL can harness the “wisdom” of multiple institutions to 
improve generalizability. In the ARDS context, one can envision a 
federated effort where many centers contribute to training a robust 
ARDS early-warning model. Each ICU’s data (demographics, 
ventilator readings, etc.) helps the model learn, but patient privacy is 
maintained. Such a model would likely generalize better to new 
hospitals (a common issue where models fail when applied to external 
sites) because FL inherently brings heterogeneity during training. 
Federated learning frameworks also naturally address data ownership 
and legal concerns, making multi-center AI feasible.

While FL addresses data silos and privacy, variations in clinical 
practices across institutions (e.g., patient populations, protocols, data 
collection) can significantly impact model performance and 
generalizability. Such heterogeneity can lead to reduced accuracy, 
perpetuated biases, or “domain shift” when models are applied to new 
environments. To mitigate this, future efforts should focus on robust 
aggregation strategies, domain adaptation techniques, and 
standardizing data collection to ensure more generalizable and reliable 
federated models, along with transparent reporting of dataset 
characteristics and external validation.

3.5 Self-supervised learning

Supervised learning has so far been the workhorse of medical AI, 
successfully powering tools for prediction and prognosis in ARDS, yet 
it remains constrained by its reliance on the scarce labeled data. High-
quality labels (e.g., expert adjudicated ARDS diagnosis or outcomes) 
are expensive and time-consuming to obtain. SSL offers a way to 
pre-train models on unlabeled data to learn useful representations, 
which can then be fine-tuned on smaller labeled datasets. In ICU data, 
SSL methods have been applied to physiological time-series and 
clinical notes. For example, transformer-based models have been self-
supervised on large corpora of adult ICU data by masking parts of the 
data and teaching the model to predict them (a “fill in the blanks” 
pre-training). The resulting model captures latent structure in the 

patient data. Remarkably, one study showed that a self-supervised 
model trained on adult ICU stays could be  fine-tuned to predict 
pediatric patient outcomes with high accuracy  – in fact, its 
performance was non-inferior to a logistic regression trained on the 
pediatric data directly (8). Specifically, the SSL-pretrained model 
achieved an average AUROC of 0.90 on various pediatric outcome 
prediction tasks, versus 0.87 for the traditional model (8). This 
demonstrates SSL’s power to transfer knowledge from large adult 
datasets to smaller pediatric (or other domain) datasets, effectively 
circumventing limited labels. In ARDS, SSL could be used to learn 
general cardiorespiratory dynamics from hundreds of thousands of 
ICU stays (most of which will not develop ARDS) and then adapt that 
knowledge to identify subtle precursors of ARDS with relatively few 
positive cases for training. Similarly, self-supervised vision models 
could learn from the abundance of chest X-rays without needing each 
to be labeled as “ARDS” or not – by learning to represent normal vs. 
abnormal lung patterns – and then detect ARDS-specific patterns with 
minimal supervised tuning. As SSL techniques (such as contrastive 
learning, masked modeling, and transformer pre-training) evolve, 
we expect their adoption in ARDS research to grow, enabling more 
robust models especially in low-data settings. Future ARDS studies 
might use foundation models (pretrained on general ICU data or even 
multimodal medical data) and achieve strong performance with only 
a handful of ARDS-specific labels, which is extremely useful for 
rare syndromes.

3.6 Large language models (LLMs) and 
agent-based AI

The advent of LLMs and the subsequent development of 
LLM-based agents represent a profound paradigm shift in AI, moving 
from passive prediction to autonomous action and complex problem-
solving. These models, particularly those built on the Transformer 
architecture, are pre-trained on vast text corpora, endowing them with 
unprecedented capabilities in natural language understanding, 
generation, and reasoning.

3.6.1 LLMs as intelligent callers and interpreters 
for specialized models

Traditional supervised learning models (such as RF, SVM, etc., 
mentioned above) perform well in clinical prediction tasks, but their 
application presents some inherent challenges. They typically require 
large, high-quality datasets annotated by experts for training, and rely 
on complex manual feature engineering to extract meaningful 
variables, a process that is both time-consuming and requires deep 
domain knowledge (41). The advent of LLMs offers a new possibility 
for clinical prediction. Their core advantage lies in their powerful 
zero-shot or few-shot learning capabilities, meaning they can perform 
tasks with no or very few labeled samples (5). Because LLMs have 
encoded rich clinical knowledge in their massive pre-training data 
(including a large volume of medical literature and text), they can 
directly process raw text, eliminating the tedious feature engineering 
step (3). However, current research indicates a clear trade-off in 
performance. For clinical prediction tasks based on structured data, 
traditional ML models trained on local data (such as gradient boosting 
trees) still significantly outperform general LLMs (such as GPT-4) that 
have not undergone specific fine-tuning, in key metrics such as AUC 
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and model calibration (27). This means that for purely predictive 
tasks, specialized models remains the superior choice. When LLMs 
are provided with a small number of high-quality examples (few-shot 
examples) and employ carefully designed prompting strategies, the 
performance gap between them and traditional ML models 
significantly narrows (27). This reveals a key potential role for LLMs 
in the clinical AI ecosystem: they may not replace highly optimized 
specialized predictive models, but rather serve as intelligent “callers” 
and “interpreters” for these models. The flexibility of LLMs and their 
powerful ability to process unstructured information make them an 
ideal “brain” that can use specialized predictive models as “tools” 
within a larger agent-based framework, thereby complementing the 
strengths of both.

3.6.2 LLMs for unstructured data integration and 
enrichment

Additionally, LLMs can empower specialized predictive models 
by transforming how unstructured clinical data—a significant portion 
of EHRs—can be leveraged. Unlike early NLP techniques limited by 
keyword-based approaches or extensive feature engineering, LLMs 
can directly process raw text from clinical notes, radiology reports, 
and discharge summaries. This allows them to extract nuanced 
information and contextual clues vital for accurate diagnosis and risk 
assessment in ARDS. For instance, LLMs can summarize daily ICU 
progress notes, identify potential risks, and even translate natural 
language queries into structured SQL commands for database 
interaction [e.g., ICU-GPT (31)]. This capability significantly 
enhances the richness of data available for ARDS models, moving 
beyond structured vital signs and lab results to incorporate the full 
narrative of a patient’s journey. By providing a powerful means to 
integrate and interpret the complex, unstructured narrative of a 
patient’s clinical course, LLMs enrich the overall data landscape, 
thereby empowering specialized predictive models for 
ARDS management.

3.6.3 Multimodal large language models 
(M-LLMs)

The next frontier involves M-LLMs, which integrate and process 
information from diverse sources beyond text, including medical 
images (CXR, CT, ultrasound), physiological waveforms (ventilator 
data), and even genomic data. In ARDS, M-LLMs can fuse these 
heterogeneous data streams to provide a holistic patient assessment. 
For example, an M-LLM could simultaneously analyze a patient’s chest 
CT scan, read the radiologist’s report, interpret real-time ventilator 
waveforms, and understand the clinician’s notes to generate a dynamic 
ARDS risk score or suggest personalized treatment adjustments. This 
integrated approach mirrors the complex decision-making process of 
human clinicians, offering a more comprehensive understanding of 
the patient’s evolving condition.

3.6.4 LLM agents: from prediction to action
LLM agents extend the capabilities of static LLMs by enabling 

them to plan, act, and reflect autonomously to achieve complex goals. 
Unlike traditional LLMs that generate single-turn responses, agents 
can break down high-level clinical problems into sub-tasks, interact 
with external tools (e.g., specialized image analysis models, drug 
databases, clinical guidelines), and iterate through a “perceive-
think-act” loop. In ARDS management, an LLM agent could automate 

diagnosis and subtyping by calling specialized AI tools for image 
analysis or biomarker clustering, rapidly identifying ARDS and its 
specific phenotypes (e.g., hyper-inflammatory vs. hypo-
inflammatory), which is crucial for personalized treatment. It could 
also guide personalized ventilation, building on reinforcement 
learning, where a “ventilator agent” continuously analyzes dynamic 
physiological data (lung mechanics, gas exchange) and suggests 
optimal PEEP, tidal volume, or respiratory rate settings, while 
minimizing VILI risk, operating in a “human-in-the-loop” fashion 
and providing explainable recommendations for clinician review. 
Furthermore, an agent could assist in drug therapy by identifying the 
most appropriate immunomodulatory drugs for a specific ARDS 
phenotype, cross-referencing guidelines and patient contraindications, 
and even drafting medication orders.

The development of multi-agent systems, where different LLM 
agents collaborate (e.g., “predictor” and “critic” agents in 
EHR-CoAgent (8), or multi-disciplinary team simulations in 
MedAgents (39)), further enhances the robustness and reliability of 
AI in critical care. These systems can simulate complex clinical 
reasoning, identify biases, and self-correct, paving the way for more 
sophisticated decision support.

3.7 Reinforcement learning (RL)

RL is a powerful machine learning paradigm that addresses 
complex sequential decision-making problems in critical care. Its core 
premise is modeling a process where an “agent” (the AI) interacts with 
an “environment” (the patient) to maximize cumulative rewards. In 
the ICU, the AI agent recommends treatment plans, and the patient’s 
physiological state evolves in response to these interventions. This 
interaction is formalized through a Markov Decision Process (MDP), 
which defines the patient’s state, available actions, and the clinical 
objectives translated into a reward signal (39).

One prominent example is using RL to optimize mechanical 
ventilation. In an RL framework, an AI “agent” can learn to adjust 
ventilator settings in response to a patient’s state, with the goal of 
minimizing long-term harm (e.g., VILI) and improving survival. 
Recently, Liu et al. developed an RL-based decision support called 
“EZ-Vent” to recommend personalized vent settings for ICU patients 
on mechanical ventilation (10). They trained a policy network on two 
large critical care databases (MIMIC and eICU) with >26,000 
combined ventilated cases, using an off-policy deep Q-learning 
algorithm. The agent’s action space included suggestions for higher or 
lower PEEP, tidal volume, and FiO₂ levels depending on patient 
conditions. Off-policy evaluation (a retrospective simulation on 
held-out patient trajectories) showed that the RL policy would have 
achieved better patient outcomes than the observed clinician decisions 
(10). Specifically, the AI-recommended ventilation strategies were 
associated with an estimated reduction in hospital mortality (e.g., in 
one cohort, 12.1% mortality under the AI policy vs. a higher actual 
mortality in similar patients) and more time with optimal oxygenation 
and blood pressure ranges (10). These improvements came without 
increasing adverse events, aside from more frequent ventilator setting 
adjustments as the AI fine-tuned therapy (51). Such findings highlight 
the potential of reinforcement learning: the agent can discover an 
optimal policy by trial-and-error on data, balancing complex trade-
offs (oxygenation vs. ventilation pressures) that challenge human 
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intuition. Figure 3 illustrates an example framework of using an RL 
agent (“policy network”) supervised by clinical data to iteratively 
improve ventilator settings. Notably, while these results are 
retrospective, a prospective clinical trial (the DeVENT study) recently 
tested a decision support system based on a patient-specific 
physiological model (“digital twin”) to advise on PEEP adjustments in 
ARDS (51). The trial reported improved lung physiology (oxygenation 
index, ventilatory ratio) in the intervention arm, although no 
significant difference in the primary outcome (driving pressure) (51). 
Importantly, clinicians adhered to about 60% of the AI’s 

recommendations, and even this partial adoption yielded measurable 
benefits in gas exchange (51). This points to both the promise and 
current limitations: AI can provide reasonable treatment advice, but 
integrating it into practice and demonstrating hard outcomes benefits 
will require further refinement and clinician acceptance.

Beyond traditional RL, the emergence of LLMs is driving a new 
trend: LLM-based RL for clinical reasoning. While conventional RL 
handles structured data, LLMs can process complex, unstructured text 
from clinical notes and reports, which contain rich medical 
information (36). This allows LLM-based RL to move beyond simple 

FIGURE 3

A schematic overview of the reinforcement learning–based ventilation system. The environment encompasses patient physiology, ventilator settings, 
and oxygenation. The agent observes the patient’s status (vital signs and ventilation data), generates actions (adjusting PEEP, tidal volume, FiO₂), and 
receives rewards for improved survival. A supervisor network provides safety feedback to the reinforcement learning algorithm, which continuously 
updates the neural network policy to optimize ventilator management. Such an AI-driven decision support system aims to personalize ventilation in 
ARDS, improving outcomes.

https://doi.org/10.3389/fmed.2025.1597556
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2025.1597556

Frontiers in Medicine 15 frontiersin.org

optimization to perform sophisticated reasoning tasks, such as 
generating hypotheses, interpreting multimodal data, and engaging in 
diagnostic processes that mimic human clinicians. These advanced 
architectures, like EHRMind and Hypothesis-Driven Diagnosis 
(LA-CDM), aim to not only recommend actions but also explain the 
“why” behind them, addressing the “black box” problem of AI and 
fostering greater clinical trust. They learn from human feedback and 
verifiable outcomes, suggesting a future where AI acts as a “reasoning 
co-pilot” that continuously refines its strategies through human-in-
the-loop interaction (36, 39, 41).

4 Challenges and future directions

Despite the significant advancements and promising applications 
of AI and ML in ARDS management, several challenges must 
be  addressed to ensure their successful and widespread 
clinical integration.

One fundamental challenge lies in the distinction between 
algorithmic performance and clinical impact. Many research reports 
focus on algorithmic performance metrics on retrospective datasets, 
such as AUC-ROC (52), but this does not guarantee their utility in the 
real clinical world. Here lies a fundamental difference: algorithmic 
performance does not equal clinical impact. A model might achieve 
99% prediction accuracy on a test set, but if it errs at critical decision 
points, or if its alerts lead to disruption of clinical workflow and “alert 
fatigue,” then it may be  clinically useless, or even harmful. For 
example, a model used to predict ICU readmission risk, even if its 
AUC-ROC is high, must answer more important questions: Do 
clinicians trust its alerts? Do interventions triggered by alerts truly 
prevent patient readmission, or do they lead to unintended 
consequences such as unnecessary prolonged hospital stays? 
Therefore, the field must shift from computer science-centric 
evaluation (“How accurate is the model in predicting X?”) to clinical 
trial-centric evaluation (“Does using this model to predict X truly 
improve patient outcomes?”). The stepped-wedge cluster randomized 
controlled design of the ASIC trial is a prime example, evaluating 
endpoints not based on algorithmic accuracy, but on clinically critical 
key performance indicators such as ARDS diagnosis rate, guideline 
adherence, days of organ dysfunction, and mortality (7). This is a 
higher hurdle that AI tools must cross to prove their true value.

Other key challenges include data quality and availability, as AI 
models heavily rely on large, high-quality, and diverse datasets. In 
ARDS, data can be fragmented, incomplete, or inconsistent across 
different institutions, and the lack of standardized data collection 
protocols and interoperability between EHR systems hinders the 
development of robust and generalizable models. Model 
generalizability and external validation are also significant concerns, 
as models developed at a single center often perform poorly when 
applied to external populations due to differences in patient 
demographics, clinical practices, and data characteristics; rigorous 
external validation across diverse settings is crucial but often lacking. 
Furthermore, interpretability and explainability pose a challenge, as 
many advanced AI models, particularly deep learning models, operate 
as “black boxes,” making it difficult for clinicians to understand how 
decisions are made, which can reduce trust and hinder clinical 
adoption, especially in critical care settings where accountability is 
paramount. Clinical workflow integration is another significant 

hurdle, as seamlessly integrating AI tools into existing clinical 
workflows without disrupting patient care or increasing clinician 
burden requires user-friendly interfaces and efficient alert systems. 
Ethical and legal considerations, such as patient privacy, data security, 
algorithmic bias, and accountability for AI-driven decisions, also 
require careful consideration and robust regulatory frameworks. 
Finally, alert fatigue, caused by over-alerting from AI systems, can lead 
to clinicians ignoring important warnings, thus balancing sensitivity 
and specificity to provide actionable and relevant alerts is critical.

Despite these challenges, the trajectory of AI in ARDS 
management is exceptionally promising, poised to redefine critical 
care. Key future directions include digital twin patient simulations, 
enabling clinicians to virtually test treatment strategies on a 
continuously updated, personalized patient model before real-world 
application. Real-time AI-driven decision support systems will move 
beyond retrospective analysis, offering dynamic, bedside 
recommendations for ventilator settings, fluid management, or drug 
titration based on continuous patient data. The integration of multi-
omics data (genomic, proteomic, metabolomic) promises a deeper 
understanding of ARDS pathophysiology, leading to novel biomarkers 
and highly targeted therapies. Furthermore, reinforcement learning 
will empower AI agents to learn optimal, adaptive treatment policies 
from patient data, continuously refining interventions in real-time. 
Crucially, human-in-the-loop AI will ensure these advanced systems 
augment, rather than replace, human clinicians, fostering trust and 
leveraging the synergistic strengths of AI and human expertise. These 
innovations collectively pave the way for truly personalized, proactive, 
and ultimately life-saving ARDS care.

5 Conclusion

ARDS continues to be a major challenge in critical care, marked 
by high mortality and profound heterogeneity. The integration of AI 
and ML offers a transformative approach to address these complexities, 
ushering in a new era of precision medicine for ARDS management. 
This review has demonstrated how AI/ML models excel in 
synthesizing vast, multi-modal datasets to provide timely, accurate, 
and nuanced insights across the entire spectrum of ARDS care.

Key advancements highlighted include highly accurate predictive 
models for ARDS onset and mortality (5, 11), sophisticated classifiers 
for identifying distinct ARDS phenotypes (7), and innovative 
strategies for optimizing ventilator settings such as PEEP and 
mechanical power. Emerging techniques like Graph Neural Networks, 
Multi-Modal Learning, Causal Inference, Federated Learning, Self-
Supervised Learning, and the burgeoning field of LLMs with agentic 
capabilities are poised to further revolutionize the field. These 
methods promise more robust data integration, privacy-preserving 
collaborative research, and increasingly autonomous decision support, 
moving beyond passive prediction to active intervention.

Despite the significant progress, substantial challenges remain, 
particularly concerning data quality, model generalizability, 
interpretability, and seamless clinical integration. Overcoming these 
obstacles requires a concerted effort focusing on rigorous prospective 
validation, the development of robust and explainable AI models, and 
careful integration into existing clinical workflows. By fostering 
interdisciplinary collaboration among AI researchers, clinicians, 
ethicists, and regulators, and by prioritizing demonstrable clinical 
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impact over mere algorithmic performance, AI holds immense 
promise. It can fundamentally improve patient outcomes, optimize 
resource utilization, and ultimately transform the landscape of ARDS 
care, paving the way for a new paradigm of human-AI partnership in 
critical care.
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