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Introduction: Total-body PET is a recent development in clinical imaging that

produces large datasets involving multiple tissues, enabling the use of new

analytical methods for multi-organ assessments, such as network analysis—a

well-developed method in neuroimaging. The skeletal system provides a good

model for applying network analysis to total-body PET, as bone serves many

classical whole-body functions as well as being an endocrine regulator of

metabolism. Previous reports have suggested an association between the

expression of bone-specific phosphatase, orphan 1 and disorders of altered

energy metabolism such as obesity and diabetes. Here, we explore how lacking

phosphatase, orphan 1 a�ects the skeletal metabolic networks of mice as a test

approach for deploying network analysis in total-body PET.

Methods: We retrospectively analysed [18F]fluorodeoxyglucose total-body

PET/CT images from six 13-week-old wild type mice, three 22-week-old wild

type mice, and three 22-week-old Phospho1−/− mice. Pearson correlation

networks were created using the dynamic data from seven bone regions, with

a Pearson threshold of r>0.6 (significant at p < 0.005).

Results: The bone metabolic networks of 13-week-old wild type mice

were found to robustly resist changes to the data from di�erent PET

measurements, increased noise, and shortened scan length. Key features

were repeatedly observed, namely that all bones except the spine are

highly inter-correlated, while the spine has minimal correlation to other

bones. When network analysis was used to compare the three cohorts,

the older wild type network had similar features to the young mouse,

whereas the Phospho1−/− network had increased correlations across all bones.

An all-cohort network separated the data into one part including only bones

from the wild type mice (13 nodes) and one part only bones from the

Phospho1−/− mice (8 nodes, 95% separation purity). Within the wild type

section, the same bone from each young and old mouse were correlated.
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Discussion: We demonstrated network analysis is a promising method for

studying whole-body PET, sensitive to dynamic details in the data without

relying on assumptions or modelling. The proposed method could be applied

to other total-body PET data—of healthy and diseased subjects, with di�erent

radiotracers, andmore—to further elucidate tissue interactions at a systems level.

KEYWORDS

positron emission tomography, network analysis, systems biology, bone, PHOSPHO1

1 Introduction

Total-body positron emission tomography (TBPET) scanners

have a larger axial field-of-view compared to traditional PET,

producing large datasets involvingmultiple tissues. TBPET has seen

frequent use in pre-clinical research, but it is relatively new in

clinical imaging (1–3). As a result of scanning the entire body at

once, TBPET provides an opportunity to study systems biology and

systemic disease. Many diseases are well-known for being systemic,

such as vascular disease or metastasised cancer, and TBPET could

help in better understanding these conditions. Furthermore, some

diseases that have long been thought of as localised to one organ

are being discovered to have a systemic effect (1). For example,

recent evidence has shown that there is a significant link between

neurological and cardiovascular health known as the heart-brain

axis (4). Cardiovascular diseases are associated with higher risk of

brain diseases while brain diseases are often linked with failure of

the autonomic nervous system (4). There has even been research

into treatment links across organ systems. One example is the gut-

brain axis where cognitive behavioural therapy has been observed

to positively affect gastrointestinal disorders such as irritable bowel

syndrome (1). It is systemic links such as these where TBPET

can aid in understanding how different organs and organ systems

interact in healthy and disease states.

The traditional methods for PET image analysis, such as

calculating standardised uptake value (SUV) or performing

pharmacokinetic analysis, each hold an important place in PET

work and are applicable to TBPET. However, they each come

with their own trade-offs. SUV is a semi-quantitative method

of assessing the normalised radiotracer uptake in a given region

of interest, and is particularly useful in clinical work for lesion

detection and the evaluation of therapeutic efficacy (5). However,

there are many factors, such as noise and patient motion, that can

affect the accuracy of SUV (6, 7). In addition, SUV does not provide

information on the underlying physiological changes that lead to

unusual tracer uptake; for example, SUV values may be high due to

increased blood flow through an organ and not due to increased

uptake by an organ (8). On the other hand, pharmacokinetic

analysis is the gold standard for PET, as a quantitative method

that uncovers information about the delivery, uptake, retention,

and clearance of radiotracer by tissue (7). It is extremely useful

for determining the physiological origin of significant changes in

the PET scan, but requires blood sampling throughout a longer

dynamic scan, where a subject is imaged at multiple time points

after injection (8). This makes it an invasive and time-consuming

process, and thus not ideal for clinical use. While SUV is quick

but semi-quantitative, pharmacokinetics is very informative but

laborious. Contrastingly, network analysis is a fully quantitative

method of image analysis that can be easily implemented and may

prove particularly useful for studying systems biology with TBPET.

Network analysis is a method of correlation analysis that

produces representative networks, or graphs, of quantified

similarities and differences in image data from different tissues and

subjects. Network analysis is not yet a common analysis method for

multi-organ studies. However, it has seen much use in single-organ

research, particularly of the brain (9, 10). Networks have been used

to explore both the structure and functionality of the brain using

imaging methods such as magnetic resonance imaging (MRI) and

PET which both can provide information as to how signals from

different parts of the brain are correlated (11–13). Inferences can

then be made about the relationships and interactions that occur

between brain regions. Interestingly, functional and structural

networks of patients with brain diseases such as schizophrenia

or Alzheimer’s have also been shown to differ from their healthy

counterparts (9). This shows the potential for network analysis to be

a useful tool not only for studying pathology, but also as a method

of disease diagnosis and prognosis tracking. The goal of applying

network analysis to TBPET is similar to that of brain studies—to

further explore correlations in physiological behaviours between

different areas of the body and how these correlations may change

with disease.

Network analysis with clinical total-body and whole-body PET

has shown initial promising results. It has been shown with group-

level analysis of static TBPET data that metabolic networks of

lung cancer patients are significantly different from healthy subjects

(14, 15). Lung cancer patient networks are characterised by a

decrease in efficiency, which implies that lung cancer disrupts

metabolic regulation and coordination between organs (14). There

has also been exploratory work on using network analysis to

understand, diagnose, and manage cachexia with static whole-body

PET data (16). Other studies have used dynamic whole-body PET

to explore methods for performing individual-level analysis with

healthy subjects (17), and for comparing diabetic and non-diabetic

patients (18). These analyses highlight the increasingly relevant

field of systemic connectivity in PET research, largely driven by the

development of extended field of view imaging (19).

Here we present a method for applying network

analysis to dynamic TBPET data, using the radiotracer

[18F]fluorodeoxyglucose ([18F]FDG) for assessing glucose

metabolism in mice. Data from different bones were compared,

because the skeleton serves as a good model for studying complex

interactions throughout the body. The skeleton performs many
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FIGURE 1

Traditional static SUV analysis yields no statistically significant di�erences between cohorts. (A) A maximum intensity projection of total-body PET

data (120 min) for a 13-week-old wild type mouse. (B) Group SUV curves of the whole spine region for each of the trial groups: Phospho1−/− (blue),

old WT (red), and young WT (green). (C) Group SUV curves of the whole humerus region for each of the three trial groups. (D) Comparison of the

mean SUV at equilibrium across the three trial groups with two-way ANOVA returned no statistically significant di�erences in any of the seven bones.

Data are presented as mean ± SEM, n = 3 for Phospho1−/−, n = 3 for old WT, and n = 6 for young WT.

well-known functions throughout the entire body such as organ

protection, calcium and phosphorous storage, and locomotion.

Additionally, bones also have recently been discovered to serve

important endocrine functions (20). For example, the bone

mineralization phosphatase, Phosphatase, Orphan 1 (PHOSPHO1)

has been implicated to play a role in metabolic regulation in

both mice and humans (21–26). Phospho1−/− mice, which

lack PHOSPHO1, have been shown to have improved glucose

homeostasis compared to their wild type (WT) littermates, and

resist high-fat-diet-induced weight gain and diabetes (21, 27, 28).

Here we not only seek to test the robustness of our proposed

method of analysing TBPET data with network analysis, but also to

apply the method for comparing Phospho1−/− mice and WT mice

of varying ages.

2 Materials and methods

2.1 Animals

The data analysed here comes from two prior pre-clinical

studies, one of which was previously presented in the context of

skeletal metabolism networks (29). This first cohort is composed of

six adult male mice of the strain C57BL/6JCrl (13.5 ± 0.2 weeks,

29.4 ± 1.6 g, mean±SD) which were housed at 22−23◦C on a 12

h light/dark cycle. The mice had free access to food and water,

until they were fasted for 4 h prior to PET/CT acquisition (29).

These mice will be referred to here as young wild type (WT). The

second cohort involved six adult male mice, older than the first

cohort (22.4 ± 0.5 weeks, 31.6 ± 1.9 g, mean ± SD), comprised

of three WT mice and three Phospho1 null mice (27). These mice

were a hybrid strain of C3HeB/FeJ (providing the mutation) bred

to C57BL/6 (30). Both cohorts were maintained under the same

living conditions, and similarly fasted for 4 h prior to imaging (27).

These animals will be referred to here as the old WT mice and the

Phospho1−/− mice—or the old mice cohort all together.

All animal experiments were approved by the University of

Edinburgh’s named veterinary surgeon and named animal care and

welfare officer (NACWO), with animals maintained in accordance

with the UK Home Office code of practise.

2.2 Image acquisition

Mice were weighed and anaesthetised with a pre-set mixture

of 0.5/0.5 L/min of oxygen/nitrous oxide and 2 or 2.5% isoflurane

(2% for the young mice, 2.5% for the old mice). They were then

transferred to the microPET/CT scanner (nanoPET/CT, Mediso,

Hungary). General anaesthesia was maintained throughout the

entire PET/CT acquisition, and temperature and respiration rate

were monitored. All 12 mice received a tail vein intravenous bolus

injection of [18F]fluorodeoxyglucose ([18F]FDG, young: 15.1± 5.9

MBq, old: 8.1±3.8MBq,mean±SD). The radiotracer was produced

using standard radiolabelling methods (31). After radiotracer

administration, the young WT mice underwent a 120-min total-

body PET scan (Figure 1A) and the oldWTmice and Phospho1−/−

mice underwent a 60-min scan. The young WT mice received a

longer scan than the old WT mice because they are from two

different previous studies. The study protocol the young WT data

is from was designed to compare dosimetry of tracers over an

extended scan period. The PET scans were followed by a CT

scan (semi-circular full trajectory, maximum field of view, 360

projections, 50 kVp, 300 ms and 1:4 binning). The CT data were

used to perform attenuation correction on the PET images. For

the young WT mice, the PET images were reconstructed into 6

× 30, 3 × 60, 2 × 120, 10 × 300, and 6 × 600 s frames using

Mediso’s iterative Tera-Tomo 3D reconstruction algorithm, with
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the following settings: four iterations, six subsets, full detector

model, low regularisation, spike filter on, voxel size 0.4 mm, and

400–600 keV energy window (29). For the old WT mice, the PET

images were reconstructed into 18× 10, 2× 30, 1× 60, 2× 120, 10

× 300 s and the Mediso Tera-Tomo 3D reconstruction algorithm

was employed with the same settings. PET data were corrected for

random coincidences, scatter, and attenuation.

2.3 Image processing

The 12 PET/CT scans were processed using the image analysis

software PMOD version 4.4 (PMOD Technologies, Switzerland)

(32). Firstly, the PET data was corrected for the time delay between

the radiotracer injection and the scan start time. Then, the PET

images were re-sliced to match the CT images, bringing them into

a common coordinate space for precise segmentation. For each

mouse, seven bones were segmented on the CT scan: the skull,

spine, sternum, humeri, forearms (radius and ulna), femurs, and

tibiae. Two segmentation methods were used. The first method was

only performed on the six young WT mice as a way to validate

the networks under a low signal-to-noise ratio condition. In this

method of segmentation, two to three cuboid volumes of interest

(VOIs), of one cubic millimetre in size, were placed in each bone.

Each cube contained only bone as verified by a Hounsfield unit

(HU) threshold of 332 (29, 33). The VOIs were then transferred

onto the PET scan, where each cube was made up of 27 pixels in

total. Time-activity curves (TACs) were extracted both in terms of

measured activity (kBq/ml) and SUV, which was normalised for

injected dose and body weight. The TACs were averaged across all

pixels and for all cubes within a given bone. This produced seven

TACs per mouse for each measurement unit.

In the second segmentation method, applied to all 12 mice,

volumes of interest (VOI) were drawn around each of the seven

bones and then segmented using HU from the CT to distinguish

bone (332–50,000) from bone marrow and other tissues. The VOIs

were then transferred onto the PET scan. The data was extracted

from the scan in terms of the average SUV for each VOI, again

normalised for injected dose and body weight. An average was

taken of left and right appendicular bones, giving seven total TACs

per mouse for this segmentation method.

2.4 Statistical SUV analysis

The average SUV value was calculated from PET frames

between 45 and 60 min post-radiotracer injection for all 12 mice.

These data are presented as mean with standard deviation for each

of the three cohorts. Two-way analysis of variance (ANOVA) with

multiple comparisons was performed between cohorts for each

bone using Prism version 10.3.0 (GraphPad v10, USA).

2.5 Network analysis

Network analysis was performed using the Pearson correlation

coefficient (PCC), a linear correlation measure, in Graphia (34). To

do this, it is necessary for the PET data to be in tabular format

in a comma separated values (CSV) file, where rows are different

VOIs and columns are different time points. The Pearson value, r,

between each TAC is then calculated in Graphia. A graph is then

visualised where nodes represent each bone TAC and edges between

them represent significant correlations (r > 0.6, p < 0.005)

(35, 36). The edges are weighted to the Pearson value. In addition

to having a Pearson threshold for edges in each network, a k-

nearest neighbours edge reduction algorithm was applied (k = 3).

This algorithm reduces the total number of edges in the network,

retaining only the k strongest weighted edges for each node unless

there are more than k of equally strong weight (34, 37).

To explore the robustness of the network analysis paradigm,

many different networks were created through this method. Firstly,

one network per mouse for each segmentation method applied to

the six young WT mice was created: cuboid VOI kBq/mL data,

cuboid VOI SUV data, and whole-bone VOI SUV data. This was

done to test network consistency across multiple PET metrics

(kBq/mL and SUV) and to evaluate the effect of noise on the

networks as the cuboid VOI data has more noise due to the small

region size. Additionally, further networks were created with the

whole-bone VOI SUV data cropped to 60 min, to assess if reducing

the amount of data in this way affected network stability.

In order to compare with the young WT mice, one network for

each of the six older mice was created with the whole-bone VOI

SUV data. Next, whole-bone SUV data was averaged at each time

point within each of the three cohorts to create one average network

for each. Finally, the average data was compiled into one network

including all the mice. Given the higher number of nodes, it is

possible to define smaller communities within this larger network.

Communities are defined as node groupings where a given node

within a group has a higher probability of being connected to other

nodes in its community than any node outside of it (38). Practically,

this looks like networks with many connexions between nodes

inside a community, and reduced connexions across communities.

3 Results

3.1 No significant di�erences identified by
statistical SUV analysis

Observational comparison of the mean SUV curves of the three

cohorts (Figures 1B, C, Supplementary Figure 1) shows that the

Phospho1−/− mice are characterised by an overall high radiotracer

uptake, while the old WT generally have the lowest uptake of the

three groups. Despite any observational differences, when themean

SUV at equilibrium is compared across cohorts for each bone using

two-way ANOVA as described in Section 2.4, there is no significant

difference (Figure 1D, p > 0.05).

3.2 Network analysis is robust to PET data
changes from reduced datasets, di�erent
activity measurements, and VOI selection

As described in Sections 2.3 and 2.5, network analysis was

performed on PET data extracted from the six young WT mice
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FIGURE 2

(A) Whole-bone dynamic SUV network for a single mouse, including all 120 min of scan time. (B) Whole-bone dynamic SUV network for a single

mouse, including only data from the first 60 min of scan time. (C) Cuboid region dynamic kBq/mL network for a single mouse (60 min). (D) Cuboid

region averaged dynamic kBq/mL network of six 13-week WT mice (60 min). (E) Whole-bone averaged dynamic SUV network of six 13-week WT

mice (60 min).

in five different ways. At the individual mouse level, for all six

mice, networks were created using different radiotracer uptake

measurements (kBq/mL and SUV), different VOI sizes (whole-

bone or cuboid), and different timescales (1 and 2 h). An average

network of all six mice using whole-bone dynamic SUV for a

period of 60 min was also created. The resulting networks, shown

in Figures 2A–E, display correlations of r > 0.6, significant

at p < 0.001 for the full 2 h of data and p < 0.005

for the networks restricted to only 1 h of data. Figures 2A–D

are individual mouse networks all from the same single mouse,

whereas Figure 2E represents the average of all six young WT

mice. The edges in the networks are colour-coded to the weight

of the PCC between each node, with the scale given for each.

The scale often starts above the minimum Pearson threshold of

r > 0.6 due to the strong nature of the correlations between

regions, coupled with the pruning effect of the k-NN edge

reduction algorithm.

Comparing each of these five networks, a few shared

characteristics are apparent. Namely, the long bones (humerus,

forearm, femur, tibia) are highly intercorrelated, with high PCC

and increased edge density between them. The humerus in

particular is a central node in each of the networks, with a

high density of edges. Conversely, the spine is often dissimilar

from the rest of the network, still connected to other regions,

but with low degree and the lowest PCC values in the

network. These findings are not only consistent between the

young WT networks, but also agree with previously published

results (29).

3.3 Network analysis identifies and
separates di�erent Phospho1−/− and WT
pathologies based on bone glucose
metabolism

The average network created from the whole-bone 1-h dynamic

SUV data for the three old WT mice, as seen in Figure 3A,
shares notable properties with the young WT mice. Similar to the

young WT mouse networks described in Section 3.2 and shown in

Figure 2, the oldWT network has dense connexions with high PCC

values between long bones. It also has the humerus as a central
node of the network, whereas the spine is again characterised by

reduced connectivity.

While the young and old WT average SUV networks have

very similar characteristics, the Phospho1−/− network is distinctly
different (Figure 3B). The humerus remains a central node to the

network, but the spine has stronger correlations to other nodes and

the long bones no longer have a high density of intercorrelation. In

this network, the sternum is now the least similar node. However,

the overall minimum PCC is notably high, meaning even the lowest

correlations in the network are strongly significant.

When the average whole-bone 1-h SUV TACs from all three

cohorts is put into one network, effectively combining the networks

in Figures 2E, 3A, B, this produces the network in Figure 3C.

Network analysis separates the data into two distinct communities

within the network. One community is comprised of 8 nodes: all

seven bones from the Phospho1−/− cohort and the sternum of the

young WT cohort. The other community contains 13 nodes which

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2025.1597844
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Hellman et al. 10.3389/fmed.2025.1597844

FIGURE 3

Network analysis is sensitive to the di�ering metabolic behaviours in the three trial groups. (A) Whole-bone averaged dynamic SUV network for the

three old WT mice. (B) Whole-bone averaged dynamic SUV network for the three Phospho1−/− mice. (C) Whole-bone averaged dynamic SUV

network, including all three cohorts: Phospho1−/− (orange), old WT (light blue), and young WT (white).

are the remainingWT cohort bones. This network has a 95% purity

of separation between the Phospho1−/− PET data and WT PET

data.Within theWT section of the network, each of the same bones

from the young and old WT mice are connected; for example, the

young WT humerus is directly correlated to the old WT humerus.

4 Discussion

This study shows the applicability of network analysis to

the study of murine bone metabolic connectivity. The many

networks of young WT mice (Figure 2)—each created with

different perturbations of the data—contain repetitive features that

deem the analysis method robust. The networks were consistent

despite shorter and longer scan times, different measurement units,

and different VOI definition. Additionally, the network was robust

to individual-level vs. group-level analysis. The repetitive features

include the dissimilarity of the spine, the potential biological

impacts of which have been discussed extensively in prior research

(29). Whereas, the spine is relatively dissimilar to other bones,

the humerus is a central node to each network. This connectivity

means that the humerus has a very similar metabolic behaviour

to many of the other bones, both axial and appendicular. The

axial skeleton is comprised of bones along the central axis of the

body, while appendicular bones are those comprising the upper and

lower appendages. The high interconnectivity of the appendicular

bones suggests they have very similar metabolic responses to the

radiotracer. However, not all of the highly connected bones share

the same skeletal region and function, as the sternum is also

characterised by highly significant correlations to appendicular

bones. It is important to note that these significances apply to the

correlations between regions in the sample, but further study with a

larger cohort size is necessary to make population-wide inferences

about young WT mice.

There are some slight variations in the minimum PCC value

across the different young WT networks. Typically, the noisier

data-acquisition methods (individual mouse, cuboid) have a larger

range of PCC values throughout the network. These networks

thus have a lower, but still significant, minimum PCC. Despite

the variations in correlation strength, the patterns across the

networks remain consistent regardless of perturbations to the data.

While this method of network analysis for PET quantification

is robust to noise, other methods of PET quantification can be

more susceptible. SUV in particular has been shown to be very

affected by noise, such as causing large under and overestimations

of tumour size in cancer diagnosis (6). Non-linear regression, the

most complex but accurate pharmacokinetic model, is also very

sensitive to noise (39). In contrast to these quantification methods,

network analysis seems to be robust to noise without requiring a

specific acquisition protocol.

In addition to noise, quantification of PET with SUV can

be affected by scan duration. With [18F]FDG, uptake typically

equilibrates at about 45–60 min. This means the scan start time

post-injection and the duration of the scan can have significant

effects on SUV results. For example, in rats, it has been shown

that 45 min scans produce significantly different SUVs than 90

min scans for tumours and inflammatory lesions (40). Similar

results have also been found with clinical data, where SUV and

lesion detection from SUV were different for scans at ∼ 1-

h post-injection compared to a further 1-h delay beyond that

(40, 41). Furthermore, the change in SUV over time can depend

on the tissue, which is particularly relevant in total-body studies

(42). Unlike SUV, pharmacokinetic analysis assesses the dynamic

behaviour of radiotracer uptake, making it independent of scan
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length (39). Similarly, network analysis is reliant on the shape of the

curve over the course of the entire scan. Network analysis utilises

the data from every time point, making it resilient to the effects of

scan duration beyond equilibrium.

When static SUV analysis (Figure 1D) was performed to

compare the three different cohorts, no significant differences

were found at the region-level. By contrast, taking the robust

method of generating networks and applying it to the old WT

and Phospho1−/− cohorts, we show that the young and old WT

mice have similar characteristic networks whereas the Phospho1−/−

network is distinctly different (Figures 3A, B). Additionally, when

all of the data was compiled into one network, there was a 95%

separation purity between nodes from WT and Phospho1−/− data,

with correlations between the same bone from each young and old

WT cohort (Figure 3C). The network analysis method was sensitive

to the similar metabolic behaviours across WT mice despite age.

The networks were also sensitive to the differing physiological

responses between the WT and Phospho1−/− mice. It is possible

that traditional SUV analysis did not show significant differences

between the groups due to the limited statistical power of small

cohort sizes. Network analysis is not restricted in the same way due

to its reliance on dynamic data, meaning the number of time points

determines the significance. However, population-wide inferences

are still restricted. The reliance of network analysis on the dynamic

profile of data may also account for the difference—while regions

may have very similar absolute values at equilibrium, their dynamic

path to equilibrium can vary greatly. Traditional SUV analysis is

not sensitive to these variations. This shows that network analysis

has the potential to reveal new information not otherwise found

through conventional methods of PET analysis.

In a previous study of glucose uptake by the skeleton in mice,

it was shown that [18F]FDG uptake by bone tissue decreased with

age (43). Interestingly, despite this, the networks of young and old

WT mice are very similar. Furthermore, the cumulative network

even correlates each bone from both cohorts to one another.

This is because network analysis looks at the overall curve shape

rather than the specific uptake value. This allows for network

analysis to assess the similarities in the active metabolic behaviour

between young and old mice, rather than being dominated by the

specific value.

The difference between theWT and Phospho1−/− characteristic

networks, along with the separation of the data into two

components in the cumulative network, both point to PHOSPHO1

as a key regulator of metabolic processes in the bone. More

generally, PHOSPHO1 has recently been shown to mediate whole-

body glucose metabolism. This suggests that it would be interesting

to go a step further and analyse non-bone VOIs with networks

to assess the role of PHOSPHO1 and the skeleton in whole-body

endocrine regulation (27, 28). This is one of many recent results

displaying the important role of bone as a metabolic regulator

(44, 45).

These results relate to human health particularly due to the

links observed between PHOSPHO1 and disorders of altered

energy metabolism in humans (21). There exists a class of

compounds capable of inhibiting PHOSPHO1 in humans, which

could be used to further study the phosphatase’s role in

both skeletal and systemic metabolism (21, 46). Studying how

metabolic networks are affected by PHOSPHO1 inhibition—

particularly when comparing healthy patients to those with diabetes

or obesity—could affect disease understanding, diagnosis, and

treatment methods. Beyond this, the effect of ageing on the WT

networks could also have implications for research in humans.Mice

have similar cortical bone development to humans, increasing in

thickness until a certain age after which it decreases continuously

(47, 48). All mice here were younger than the age when decreasing

thickness is typically observed for the given strain (48). This means

the findings here could be related to metabolic patterns in human

cortical bone throughout the growth stage. Understanding the

characteristic bone metabolic networks of young, healthy mice and

humans could affect the way we approach treating low bone density

and even age-related bone loss.

This study has some limitations, namely: the small cohort

sizes, not having Phospho1−/− mice age-matched to the young

WT mice, and the fact that general anaesthesia was used. The

small size of the cohorts decreases the significance of biological

inferences. The Pearson correlation network results are still

statistically significant and informative, as Pearson is dependent on

the number of data points in the TACs and not the number of mice.

However, the cohort sizes are too small to accurately represent

a population. Additionally, having no young Phospho1−/− mice

makes it challenging to control for the potentially confounding

variable of age. Previous studies have shown that the spine has

reduced [18F]FDG uptake with age in mice, and that glucose

metabolism changes with age in humans, meaning that age could

affect the results of this study (43, 49). Furthermore, general

anaesthesia (isoflurane), which was required to take dynamic

images of mice, has been shown to affect the uptake of [18F]FDG

and thus may have influenced the results (50). Finally, while

Pearson correlation—along with covariance—has been used in

many of the metabolic network analysis studies performed to

date, it assumes linearity between regions (11, 13–15, 17, 18).

This is not necessarily the case with [18F]FDG uptake. We

explore the effect of using Spearman instead of Pearson in

Supplementary Figure 2, which measures monotonicity without

assuming linearity.

Beyond these limitations, the study also could have benefitted

from the addition of human data to better contextualise the results

in terms of systems biology and current clinical research. This is

difficult as total-body PET in humans is still quite new and not

often taken dynamically at present. It would also be beneficial to

consider other radiotracers, particularly in the context of further

assessing the robustness of network analysis with TBPET. An

example is [18F]NaF which is used as a marker of calcification in

the body, making it relevant for studying PHOSPHO1 and bone

mineralization (51).

5 Conclusion

Network analysis using the method described in this paper

provides a robust, statistically significant way to analyse [18F]FDG

dynamic total-body PET data in mice, even when traditional SUV

analysis fails. The method was shown to be sensitive to similar

and different metabolic responses across three different mouse
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cohorts. Network analysis can be employed with different PET

measures and dynamic or static data, allowing for easy application

alongside other methods of analysis. Applying this method to

larger sample sizes, more regions, different radiotracers, clinical

data, and many other variations has the potential to reveal novel

information about physiology and tissue-tissue interactions at a

systemic level.
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