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Background: Severe pneumonia often leads to acute respiratory failure 
requiring mechanical ventilation (MV), significantly increasing patient morbidity 
and mortality. Early prediction of MV requirement could optimize patient 
management and resource allocation. This study aimed to identify key risk 
factors and develop a practical nomogram model to predict the need for 
mechanical ventilation among patients with severe pneumonia.
Methods: In this retrospective study, patients with severe pneumonia admitted 
between January 2021 and December 2024 were analyzed at a single tertiary 
institution. Patients were stratified based on the use of MV within 24 h of 
admission. Multivariable logistic regression identified independent predictors 
of MV, which were used to construct a nomogram. Model performance 
was evaluated via receiver operating characteristic (ROC) curves, bootstrap 
validation, calibration, and decision curve analysis (DCA).
Results: A total of 216 patients were included, with 165  in the MV group and 
51  in the non-MV group. Patients requiring MV were significantly older and 
demonstrated lower oxygenation index (OI), partial pressure of oxygen [p(O₂)], 
central venous oxygen saturation (ScvO₂), and procalcitonin (PCT) levels, along 
with higher partial pressure of carbon dioxide [p(CO₂)], alveolar-arterial oxygen 
gradient [p(A-a)O₂], and APACHE II scores (all p < 0.01). Age, OI, p(O₂), p(CO₂), and 
p(A-a)O₂ were independent predictors included in the nomogram. The model 
showed excellent discrimination (area under the ROC curve, AUC = 0.819), 
calibration (concordance index, C-index = 0.805), and substantial clinical utility.
Conclusion: This retrospective study suggests that age, OI, p(O₂), p(CO₂), and 
p(A-a)O₂ could help predict MV in severe pneumonia. The proposed nomogram 
might offer good predictive accuracy, calibration, and clinical utility, potentially 
aiding early risk stratification. Prospective multicenter validation is needed to 
confirm its generalizability and clinical utility.
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1 Introduction

Severe pneumonia remains a major cause of morbidity and 
mortality worldwide, particularly among critically ill patients 
requiring intensive care unit (ICU) admission. It is frequently 
complicated by acute respiratory failure, often necessitating 
mechanical ventilation (MV) as a life-saving intervention. However, 
MV is associated with prolonged ICU stays, increased healthcare 
costs, and elevated risks of ventilator-associated complications, 
including ventilator-associated pneumonia (VAP), barotrauma, and 
ventilator-induced lung injury (VILI). Given these substantial clinical 
implications, early identification of patients at high risk for MV is 
crucial for optimizing resource utilization, enabling timely 
intervention, and potentially improving clinical outcomes (1–3).

Several studies have investigated risk factors associated with the 
need for MV in severe pneumonia, highlighting advanced age, 
comorbidities, and laboratory indicators of systemic inflammation or 
impaired gas exchange as key contributors (4, 5). However, existing 
predictive models are often limited by complexity, heterogeneity in 
patient populations, and inconsistent predictive performance. 
Therefore, there is an increasing demand for a clinically practical, 
accurate, and individualized risk stratification tool to predict MV 
requirements in patients with severe pneumonia (6–8). Nomogram 
models have gained widespread recognition as effective tools for 
individualized risk assessment across various clinical contexts. They 
offer a graphical representation of predictive algorithms that integrate 
multiple variables into an intuitive scoring system. Compared with 
traditional risk scoring methods, nomograms enhance predictive 
accuracy by quantitatively incorporating patient-specific factors. In 
recent years, nomograms have been successfully applied to predict 
adverse outcomes in respiratory conditions such as acute respiratory 
distress syndrome (ARDS), COVID-19-related pneumonia, and 
sepsis-induced respiratory failure. However, their application in 
predicting MV requirements specifically in patients with severe 
pneumonia remains insufficiently explored.

This study aims to systematically analyze the risk factors associated 
with MV requirement in severe pneumonia patients and develop a 
nomogram model to predict the probability of MV initiation. 
Additionally, the model’s performance will be  validated through 
internal validation measures to assess its discrimination, calibration, 
and clinical utility. Ultimately, this approach may contribute to 
improved patient outcomes by enabling timely interventions, reducing 
unnecessary MV exposure, and mitigating the complications 
associated with prolonged mechanical ventilation.

2 Methods

2.1 Study design

This retrospective study evaluated patients with severe pneumonia 
treated at our institution between January 2021 and December 2024. 
A total of 216 patients meeting the predefined diagnostic criteria for 
severe pneumonia were enrolled. Patients were stratified based on the 
administration of mechanical ventilation within the first 24 h of 
hospital admission into two distinct cohorts: those who received 
mechanical ventilation (n = 165) and those who did not (n = 51). The 
study design, methodology, and analytical protocols were developed 

in accordance with the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) guidelines (9). Informed consent 
was obtained from all subjects. This study was rigorously reviewed and 
approved by our hospital’s ethics committee (No. KY240157), 
adhering to all applicable guidelines and regulations. It was conducted 
in strict compliance with the Declaration of Helsinki’s ethical 
standards for research involving human subjects. All study designs, 
executions, and reports maintained high ethical standards. To ensure 
privacy, data confidentiality was strictly upheld, and personal 
identifiers were anonymized prior to analysis.

2.2 Inclusion and exclusion criteria

The study retrospectively enrolled patients who met the following 
inclusion criteria:

	 1.	 Adult patients (≥18 years) with a confirmed diagnosis of severe 
pneumonia, established based on recognized diagnostic criteria 
such as those outlined by the American Thoracic Society/
Infectious Diseases Society of America (ATS/IDSA).

	 2.	 Availability of comprehensive clinical data, including 
demographic characteristics, laboratory test results, imaging 
findings, and detailed records of respiratory 
support interventions.

	 3.	 Documented mechanical ventilation status within the first 24 h 
of hospital admission.

Patients were excluded from the study if they met any of the 
following exclusion criteria:

	 1.	 Patients with an alternative primary diagnosis or underlying 
respiratory condition (e.g., active pulmonary tuberculosis, 
advanced chronic interstitial lung disease, or primary lung 
malignancy) that could confound the diagnosis and 
management of severe pneumonia.

	 2.	 Individuals who received mechanical ventilation prior to 
hospital admission or in settings outside of our institution.

	 3.	 Patients with incomplete or missing clinical, laboratory, or 
imaging data that precluded a comprehensive analysis.

	 4.	 Cases in which treatment decisions were influenced by the 
presence of do-not-resuscitate (DNR) orders or other advanced 
directives limiting therapeutic interventions, as these factors 
may affect the decision to initiate mechanical ventilation.

2.3 Data collection and outcome measures

Clinical data were retrospectively extracted from the hospital’s 
electronic medical records. The collected parameters included 
demographic characteristics (gender and age) and a series of 
physiological and laboratory variables measured at admission. 
Specifically, arterial blood gas parameters such as partial pressure of 
oxygen [p(O₂)], partial pressure of carbon dioxide [p(CO₂)], alveolar-
arterial oxygen gradient [p(A-a)O₂], and the oxygenation index (OI) 
were recorded. Additionally, arterial lactate levels at admission and at 
6 h post-admission were documented. Other parameters included 
central venous oxygen saturation (ScvO₂), standard base excess (BE), 
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and inflammatory biomarkers, namely procalcitonin (PCT), D-dimer, 
and C-reactive protein (CRP). The severity of illness was assessed 
using the Acute Physiology and Chronic Health Evaluation II 
(APACHE II) score. Furthermore, the utilization of vasoactive agents 
following fluid resuscitation was noted as an important 
therapeutic variable.

2.4 Statistical analysis

Data were processed using R (version 3.5.2), with key packages 
including mice, glm, predict, ResourceSelection, and rms. Normality 
of the continuous variables was assessed using the Kolmogorov–
Smirnov test. Variables following a normal distribution were expressed 
as mean ± standard deviation (x ± s) and compared between groups 
using the independent-samples t-test. For non-normally distributed 
continuous data, the median and interquartile range [M (P25, P75)] 
were calculated, with group comparisons performed using the 
Wilcoxon rank-sum test. Categorical variables were presented as 
counts and percentages, and intergroup differences were evaluated 
using the chi-square test.

Multivariable logistic regression was employed to identify 
independent risk factors associated with the requirement for 
mechanical ventilation and to construct a predictive model, which was 
subsequently illustrated by a nomogram. The entire dataset was used 
as the training set, from which 30% of the cases were randomly and 
non-repeatedly selected to form an internal validation cohort. Model 
performance was primarily assessed by the receiver operating 
characteristic (ROC) curve and the area under the curve (AUC), and 
the predictive ability of models built with different parameter sets was 
compared. The goodness-of-fit of the model was evaluated using the 
Hosmer–Lemeshow test, and calibration curves were generated for 
both the training and validation sets. Finally, decision curve analysis 
(DCA) was conducted to assess the clinical utility of the predictive 
model. Statistical significance was set at α = 0.05.

To evaluate potential multicollinearity among predictor variables 
included in the multivariable logistic regression model, we performed 
two diagnostic assessments. First, pairwise Pearson correlation 
coefficients were calculated to examine linear associations between 
continuous variables. Second, the variance inflation factor (VIF) was 
computed for each predictor. A VIF value exceeding 5 was considered 
indicative of moderate collinearity, while a value greater than 10 
suggested serious multicollinearity. Variables with high collinearity 
were carefully examined, and decisions regarding their inclusion were 
based on clinical relevance and statistical independence.

3 Results

3.1 Baseline characteristics of severe 
pneumonia patients

A total of 216 severe pneumonia patients were divided into the 
non-MV group (n = 51) and MV group (n = 165) based on the need 
for mechanical ventilation within 24 h. The MV group was 
significantly older (median 73.00 vs. 64.00 years, p < 0.01) and 
exhibited notably lower PCT levels (median 2.21 vs. 10.16 μg/L, 
p < 0.01) and reduced ScvO₂ (0.70 ± 0.15 vs. 0.77 ± 0.10, p < 0.01). In 

addition, patients in the MV group showed a significantly higher 
alveolar-arterial oxygen gradient [p(A-a)O₂, median 158.62 vs. 
106.71 mmHg, p < 0.01] and APACHE II scores (23.94 ± 8.06 vs. 
21.18 ± 7.73, p < 0.01). Furthermore, the MV group had a lower 
oxygenation index (median 133.49 vs. 198.89 mmHg, p < 0.01), lower 
p(O₂), and higher p(CO₂) compared to the non-MV group (both 
p < 0.01). Other parameters, including CRP, D-dimer, lactate levels, 
and vasoactive drug usage, did not differ significantly between the 
groups (Table 1).

3.2 Multivariable logistic regression analysis

A multivariable logistic regression model was constructed with 
the requirement for mechanical ventilation as the dependent variable 
(yes = 1, no = 0). The following variables were incorporated as 
independent predictors: age, sex (male = 1, female = 0), PCT, ScvO₂, 
p(A-a)O₂, APACHE II score, OI, p(O₂), and p(CO₂). The analysis 
revealed that age, OI, p(O₂), p(CO₂), and p(A-a)O₂ were statistically 
significant independent predictors of mechanical ventilation 
requirement (all p < 0.05). Specifically, increasing age and p(CO₂) 
were associated with elevated odds of requiring mechanical 
ventilation, while higher OI and p(A-a)O₂ values were inversely 
related. Additionally, p(O₂) emerged as a significant predictor 
(Table  2). The regression coefficients (β values) along with the 
intercept (−0.847) are provided in Table 2. Based on these estimates, 
the final logistic regression model can be expressed as:

	

( )
( ) ( ) ( )

Model Equation : Logit P 0.847 0.054 Age –0.027
OI 0.049 p O 0.043 p CO –0.007 p A a O

= − + × ×
+ × + × × −₂ ₂ ₂

3.3 Nomogram predictive model for 
mechanical ventilation

Based on the multivariable logistic regression analysis, five 
independent predictors were identified as significantly associated with 
the need for mechanical ventilation. Utilizing these predictors, a 
nomogram was developed to estimate the probability of mechanical 
ventilation in severe pneumonia patients. In this nomogram, each 
predictor is represented by a dedicated axis with corresponding point 
scales. For an individual patient, the value of each predictor is mapped 
to its respective axis, and a vertical line is drawn upward to the point 
scale to determine the score for that variable. The individual scores are 
then summed to derive a total score, which is subsequently referenced 
on a probability scale at the bottom of the nomogram. Higher total 
scores correspond to a greater estimated risk of requiring mechanical 
ventilation (Figure 1).

3.4 Discriminative performance of the 
nomogram

The discriminative ability of the nomogram for predicting the 
requirement for mechanical ventilation was assessed using receiver 
operating characteristic (ROC) curve analysis. In this analysis, the 
total risk score derived from the nomogram served as the independent 
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variable, while the binary outcome of mechanical ventilation 
requirement was the dependent variable. The model demonstrated an 
area under the ROC curve (AUC) of 0.819 (95% confidence interval, 
0.776–0.906), indicating robust predictive accuracy. When the optimal 
cut-off point was determined using the maximum Youden index, the 
model yielded a sensitivity of 76.58% and a specificity of 88.15% 
(Figure 2).

3.5 Calibration of the nomogram predictive 
model

The calibration of the nomogram was evaluated using internal 
validation via bootstrap resampling, with 1,000 iterations performed 
to assess model stability. The corrected concordance index (C-index) 

was 0.805 (95% CI, 0.769–0.851), indicating that the model has a high 
discriminative ability. Additionally, the Hosmer–Lemeshow goodness-
of-fit test yielded a χ2 value of 2.856 (p = 0.893), suggesting that there 
is no significant difference between the predicted and observed 
outcomes. The calibration curve further corroborated these findings, 
demonstrating a close alignment between the predicted probabilities 
and the actual incidence of mechanical ventilation requirement 
(Figure 3).

3.6 Clinical utility of the nomogram 
predictive model

Decision curve analysis (DCA) was performed to assess the clinical 
utility of the nomogram in predicting the need for mechanical ventilation. 

TABLE 1  Baseline characteristics of severe pneumonia patients: mechanical ventilation group vs. non-mechanical ventilation group.

Parameter Non-MV group 
(n = 51)

MV group (n = 165) χ2, t, or Z p-value

Demographics and initial laboratory data

Gender (M/F) 41/10 111/54 3.22 0.07

Age (years), median (IQR) 64.00 (53.00, 70.00) 73.00 (64.00, 81.00) 3.45** <0.01

CRP (mg/L), median (IQR) 87.55 (60.69, 169.44) 101.00 (57.60, 200.50) 0.48 0.62

PCT (μg/L), median (IQR) 2.21 (0.63, 22.56) 10.16 (2.07, 38.44) 3.23 <0.01

D-dimer (mg/L), median (IQR) 2.67 (1.61, 7.47) 3.71 (2.11, 9.54) 1.77 0.17

Lac (mmol/L), median (IQR) 3.40 (2.21, 6.44) 5.67 (2.70, 7.42) 1.72 0.18

ScvO₂, mean ± SD 0.77 ± 0.10 0.70 ± 0.15 2.88 <0.01

Admission 6 h Lac (mmol/L), median 

(IQR)

2.47 (1.44, 7.54) 3.81 (1.85, 6.22) 1.12 0.27

Additional clinical parameters

p(A-a)O₂ (mmHg), median (IQR) 106.71 (75.81, 144.20) 158.62 (97.03, 236.59) 2.50 <0.01

BE (mmol/L), median (IQR) −7.83 (−12.57, −5.25) −9.27 (−14.63, −1.44) 0.39 0.56

APACHE II score, mean ± SD 21.18 ± 7.73 23.94 ± 8.06 2.23 <0.01

OI (mmHg), median (IQR) 198.89 (160.87, 283.03) 133.49 (85.00, 183.34) 5.22 <0.01

p(O₂) (mmHg), median (IQR) 68.50 (57.29, 93.73) 63.45 (43.88, 73.34) 2.74 <0.01

p(CO₂) (mmHg), median (IQR) 30.90 (24.72, 35.02) 39.14 (30.90, 50.47) 4.29 <0.01

Therapeutic intervention

Vasoactive drug usage, n (%) 36 (70.59%) 118 (71.52%) 0.02 0.90

**p < 0.01.
MV, mechanical ventilation; CRP, C-reactive protein; PCT, procalcitonin; Lac, lactate; ScvO₂, central venous oxygen saturation; p(A-a) O₂, alveolar-arterial oxygen gradient; BE, base excess; 
APACHE II, Acute Physiology and Chronic Health Evaluation II; OI, oxygenation index; p(O₂), partial pressure of oxygen; p(CO₂), partial pressure of carbon dioxide.

TABLE 2  Logistic regression analysis for predicting mechanical ventilation requirement.

Factors β-value Standard error 
value

Wald value OR value 95% CI for 
OR

p-value

Age 0.054 0.021 6.5 1.055 1.013–1.096 0.01

OI −0.027 0.007 18.8 0.971 0.958–0.986 <0.001

p(O₂) 0.049 0.019 6.55 1.05 1.012–1.088 0.011

p(CO₂) 0.043 0.017 5.81 1.044 1.009–1.079 0.016

p(A-a) O₂ −0.007 0.003 7.25 0.993 0.988–0.998 0.007

β, regression coefficient; OR, odds ratio; CI, confidence interval; OI, oxygenation index; p(O₂), partial pressure of oxygen; p(CO₂), partial pressure of carbon dioxide; p(A-a) O₂, alveolar-
arterial oxygen gradient.
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In the DCA, the horizontal reference line represents the net benefit when 
no patients are treated with mechanical ventilation, yielding a net benefit 
of zero. Conversely, the sloping line corresponds to the strategy of treating 
all patients with mechanical ventilation, which results in a negative net 
benefit. The nomogram’s decision curve demonstrated a substantially 
higher net benefit across a range of threshold probabilities compared to 
these two extreme strategies (Figure 4).

3.7 Microbiological Etiology of severe 
pneumonia

Among the 216 patients included in this study, microbiological 
testing results were partially available. A total of 78 patients (36.1%) were 
confirmed to have typical bacterial infections, most commonly 

Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas 
aeruginosa, and Staphylococcus aureus. Viral pathogens, including 
influenza A/B, respiratory syncytial virus (RSV), and SARS-CoV-2, were 
identified in 51 patients (23.6%). Mixed bacterial–viral infections were 
present in 27 patients (12.5%). Atypical pathogens such as Mycoplasma 
pneumoniae and Legionella pneumophila accounted for 12 cases (5.6%). 
Fungal infections were rare (5 cases, 2.3%), involving Candida albicans or 
Aspergillus spp. In 43 patients (19.9%), no definitive pathogen could 
be  identified due to either negative results or the absence of 
microbiological testing. These findings highlight the etiological 
heterogeneity in severe pneumonia and may partially explain biomarker 
variability (Table 3).

3.8 Assessment of multicollinearity

To evaluate potential multicollinearity among the predictors, 
pairwise Pearson correlation coefficients and variance inflation factors 

FIGURE 1

Nomogram predictive model for mechanical ventilation requirement in severe pneumonia patients.

FIGURE 2

Receiver operating characteristic (ROC) curve of the nomogram for 
predicting mechanical ventilation in severe pneumonia patients.

FIGURE 3

Calibration curve of the nomogram predictive model for mechanical 
ventilation in severe pneumonia patients.
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(VIFs) were calculated. As shown in Supplementary Table S1, 
moderate correlations were observed among certain arterial blood gas 
parameters, particularly between OI and p(A-a)O₂ (r = −0.62) and 
between OI and p(O₂) (r = 0.68). Importantly, no absolute correlation 
exceeded 0.70, and all VIF values were <5 (maximum VIF = 3.21 for 
OI), indicating the absence of severe multicollinearity. These findings 
support the statistical independence of the predictors included in the 
final multivariable logistic regression model. The reversal in the 
direction of association for p(A-a)O₂ between univariate and 
multivariable analyses is therefore more likely attributable to shared 
variance among respiratory parameters rather than to problematic 
collinearity or model misspecification.

3.9 Post hoc power analysis

To evaluate the adequacy of the sample size, a post hoc power 
analysis was performed for the five independent predictors included 
in the final logistic regression model: age, OI, p(O₂), p(CO₂), and 
p(A-a)O₂. The statistical power for each variable was calculated 

individually, and a weighted average power (with equal weighting 
across variables) was determined. The overall weighted post hoc 
power was 80.0%, meeting the conventional threshold for acceptable 
power. Most individual predictors demonstrated power levels at or 
near the conventional threshold of 80%, among the variables, OI 
exhibited particularly strong discriminatory power with an individual 
power exceeding 95%. These results support the adequacy of the 
current sample size in detecting meaningful associations between 
predictors and the requirement for mechanical ventilation.

4 Discussion

Severe pneumonia remains a major global health burden, 
associated with significant morbidity and mortality, particularly in 
cases progressing to respiratory failure requiring MV. Early 
identification of patients at high risk for MV can significantly improve 
clinical outcomes by enabling timely interventions and optimizing 
resource allocation in intensive care settings (10, 11). This study 
identified significant predictors of MV requirement in patients with 

FIGURE 4

Decision curve analysis (DCA) of the nomogram predictive model for mechanical ventilation in severe pneumonia patients.

TABLE 3  Microbiological etiology of severe pneumonia patients (n = 216).

Pathogen category Identified pathogen(s) example No. of cases Percentage (%)

Typical bacterial infections
Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas 

aeruginosa, Staphylococcus aureus
78 36.10%

Viral infections Influenza A/B, SARS-CoV-2, RSV 51 23.60%

Mixed bacterial-viral infections Klebsiella + Influenza A, etc. 27 12.50%

Atypical pathogens Mycoplasma pneumoniae, Legionella 12 5.60%

Fungal infections Candida albicans, Aspergillus spp. 5 2.30%

Unidentified/NO PATHOGEN 

DETECTED
— 43 19.90%

Total — 216 100%
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severe pneumonia, including older age, lower OI, elevated p(CO₂), 
reduced p(O₂), and p(A-a)O₂. The developed nomogram model 
incorporating these factors demonstrated strong predictive 
performance (AUC = 0.819), good calibration (C-index = 0.805), and 
substantial clinical benefit in decision curve analysis. Collectively, 
these findings highlight the potential utility of the nomogram as an 
effective clinical tool for early identification and targeted intervention 
in severe pneumonia patients at high risk for mechanical ventilation.

Our findings revealed that older age significantly increased the 
risk of requiring mechanical ventilation. Age-related susceptibility in 
pneumonia has been attributed to immune senescence and chronic 
comorbidities. Elderly patients frequently exhibit diminished 
physiological reserves, including decreased pulmonary function, 
reduced respiratory muscle strength, impaired cough reflex, and 
compromised mucociliary clearance. These factors collectively 
exacerbate respiratory distress, increasing the likelihood of acute 
respiratory failure necessitating ventilatory support (12, 13). 
Additionally, advanced age is often associated with increased disease 
severity at presentation, reflected in elevated APACHE II scores 
observed in our MV group. We observed that elevated p(CO₂) was 
significantly associated with a higher likelihood of requiring 
mechanical ventilation. Hypercapnia is indicative of impaired alveolar 
ventilation, commonly due to increased airway resistance, respiratory 
muscle fatigue, or diminished respiratory drive, all frequently 
encountered in severe pneumonia. Furthermore, hypercapnia can 
exacerbate respiratory acidosis, potentiating further impairment of 
respiratory drive, respiratory muscle dysfunction, and hemodynamic 
instability, thus leading to a rapid deterioration in respiratory status. 
As a result, p(CO₂) serves as a valuable predictor, reflecting both 
respiratory muscle fatigue and inadequate gas exchange (14, 15).

A decreased OI emerged as another important predictor of 
MV. The oxygenation index, a composite parameter incorporating 
arterial oxygen tension and inspired oxygen fraction (FiO₂), is widely 
used to assess the severity of hypoxemia. A reduced OI typically 
indicates severe hypoxemia refractory to supplemental oxygen 
therapy, necessitating invasive ventilatory support. The lower OI 
observed in patients requiring MV likely reflects profound pulmonary 
involvement, significant ventilation-perfusion mismatch, and 
diminished alveolar recruitment capacity, which underscores the 
severity of lung injury in this patient population. Unexpectedly, 
we observed a lower median PCT level in the MV group compared to 
the non-MV group, despite traditionally higher PCT levels being 
linked to severe infection. This discrepancy could potentially 
be  explained by heterogeneity in pathogen types or varying 
inflammatory responses among pneumonia subtypes (16, 17). It is 
plausible that some severe pneumonia cases with substantial 
respiratory compromise involve viral etiologies or atypical pathogens, 
conditions often associated with lower serum PCT concentrations. 
Thus, while elevated PCT is a well-established marker of bacterial 
infection severity, our results suggest that respiratory impairment 
severity, rather than systemic bacterial burden, predominantly dictates 
the need for mechanical ventilation. Additionally, the p(A-a)O₂, a 
well-established indicator of impaired pulmonary gas exchange, 
significantly differed between groups. Interestingly, while univariate 
analysis showed increased p(A-a)O₂ values in the MV group, the 
multivariable analysis indicated an inverse association with MV after 
adjusting for other predictors. This finding may reflect a complex 
interaction between p(A-a)O₂ and other respiratory parameters, such 

as OI and p(O₂). A potential explanation is that when considered 
independently, a higher p(A-a)O₂ denotes severe pulmonary 
impairment, yet once adjusted for OI and other gas-exchange 
parameters, its incremental predictive value diminishes or becomes 
inversely associated due to collinearity among parameters. Further 
research is necessary to clarify this unexpected relationship (18–20).

The predictive accuracy of the nomogram developed in our study 
was robust, as evidenced by an AUC of 0.819, a sensitivity of 76.58%, 
and a specificity of 88.15%. The high discrimination was confirmed 
via internal bootstrap validation, indicating a reliable and generalizable 
model. Additionally, calibration metrics, including a corrected 
concordance index of 0.805 and an excellent Hosmer–Lemeshow 
goodness-of-fit (p = 0.893), indicated the nomogram accurately 
estimates the probability of mechanical ventilation. The favorable 
decision curve analysis results further demonstrated that the model 
provides substantial clinical benefits by appropriately identifying high-
risk patients who might benefit from early and aggressive respiratory 
interventions. Clinically, these results have important implications. 
Early recognition of high-risk patients allows for timely initiation of 
interventions, including appropriate respiratory support strategies 
such as noninvasive ventilation, high-flow nasal cannula, or early 
intubation, potentially mitigating progression to respiratory failure. 
Additionally, the use of such a predictive tool can optimize ICU 
resource allocation, ensuring that critical care beds and respiratory 
support equipment are reserved for those patients most likely 
to benefit.

The observed inverse association between PCT levels and MV 
requirement may reflect underlying etiological heterogeneity rather than 
a direct pathophysiological relationship. Our microbiological analysis 
revealed that a substantial proportion of patients had viral or mixed 
infections, which are known to elicit lower PCT responses despite severe 
respiratory compromise. This highlights the necessity of incorporating 
pathogen profiles when interpreting inflammatory biomarkers in 
predictive models. To ensure the integrity of our multivariable logistic 
model, we conducted a formal assessment of multicollinearity. Pearson 
correlation coefficients and VIFs confirmed no severe collinearity (all 
r < 0.70; VIF < 5), supporting the statistical independence of retained 
predictors. The reversal of p(A-a)O₂’s association between univariate 
and multivariate analyses likely stems from its shared variance with OI 
and p(O₂), rather than modeling bias. Model performance was internally 
validated using 1,000-bootstrap resampling, a widely accepted method 
for assessing predictive stability and minimizing overfitting, particularly 
when external data are unavailable. Lastly, post hoc power analysis 
confirmed adequate sample size, with a weighted average power of 
80.0% and particularly strong discriminatory power for OI (>95%). 
Together, these findings reinforce the robustness, interpretability, and 
clinical applicability of our nomogram in early MV risk stratification.

Consistent with Niu’s study (21), who developed and externally 
validated machine-learning models for ICU mortality in severe 
pneumonia (AUC ≈ 0.74–0.77) and produced a logistic-based 
nomogram, our work likewise targets early risk stratification; however, 
we focused on the near-term need for MV within 24 h and achieved 
higher discrimination (AUC 0.819). Differences in endpoint definition, 
predictor sets (physiology-centric arterial blood gas indices vs. mixed 
clinical/laboratory features), and validation strategy (external vs. 
internal) likely account for performance differences and limit direct 
comparability. Viasus’ study (22) used inverse propensity score weighting 
to assess antibiotic de-escalation in severe CAP and found no 
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deterioration in mortality or length of stay, with reduced prolonged 
intravenous therapy. While their study estimates treatment effects rather 
than builds prediction models, our nomogram can complement 
stewardship by flagging patients at higher MV risk upon admission—i.e., 
informing clinical triage in parallel with antimicrobial optimization. Yan’s 
study (23) identified age, APACHE II, and prolonged MV as risk factors 
for refeeding syndrome in ICU enteral-nutrition patients, underscoring 
that respiratory support intensity is tightly linked to downstream 
complications. In contrast, our model predicts the imminent need for 
MV using gas-exchange metrics (OI, pO₂, pCO₂, p(A-a)O₂), potentially 
enabling earlier escalation of respiratory support and mitigation of 
subsequent morbidity. Physiologically, lower oxygenation index and pO₂ 
and higher pCO₂ and p(A-a)O₂ plausibly reflect impaired oxygenation, 
ventilation failure, and increased shunt/ventilation–perfusion mismatch, 
which are proximal determinants of MV initiation. Age may capture 
diminished respiratory reserve and comorbidity burden. Inflammatory 
biomarkers (PCT) and global severity (APACHE II) did not remain 
independent after adjustment, suggesting that gas-exchange variables 
more directly mediate the decision for early MV. Potential residual 
confounding (practice patterns, sedation/vasopressor use) and selection 
bias inherent to retrospective design remain, reinforcing the need for 
prospective, multicenter validation and head-to-head comparisons with 
established severity indices.

This study has several limitations that warrant consideration. 
First, the retrospective, single-center design may limit the 
generalizability of our findings due to potential selection bias and 
center-specific clinical practices. Although we  employed internal 
bootstrap resampling to mitigate overfitting and enhance model 
reliability, the absence of external validation remains a key limitation. 
Future prospective multicenter studies are essential to externally 
validate the model across diverse populations and healthcare settings. 
Second, due to the retrospective nature of data collection, patients 
with missing key clinical, laboratory, or imaging variables were 
excluded, and a complete case analysis was performed. While this 
approach ensured data integrity, it may have introduced selection bias. 
Third, although our model demonstrated adequate statistical power 
based on post hoc analysis, the relatively modest sample size may still 
limit the detection of less prominent predictors. Finally, this study did 
not evaluate longitudinal clinical outcomes following MV initiation. 
Future investigations should incorporate follow-up data to assess 
treatment responses, weaning success, and mortality, thereby 
providing a more comprehensive appraisal of clinical trajectories in 
patients requiring mechanical ventilation.

5 Conclusion

This retrospective study suggests that Age, OI, p(O₂), p(CO₂), and 
p(A-a)O₂ could be important predictors of MV in severe pneumonia. 
The derived nomogram might provide robust predictive accuracy, 
good calibration, and potential clinical utility. This tool could assist in 
the early identification of patients at higher risk, thereby supporting 
clinicians in making timely decisions to potentially optimize 
management strategies and patient outcomes. Further validation in 
large-scale, prospective, multicenter cohorts is essential to assess the 
model’s generalizability, refine its predictive performance, and 
determine its real-world applicability.
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