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Introduction: The pharmaceutical industry is undergoing a significant shift from

traditional paper-based processes to data-driven approaches. This transition

necessitates the adoption of structured data-exchange standards, such as

the IDentification of Medicinal Products (IDMP), to improve harmonization,

transparency, and interoperability across global regulatory landscapes. However,

transforming unstructured data, such as Summary of Product Characteristics

(SmPC) documents, into structured IDMP models presents considerable

challenges in data extraction and standardization.

Methods: We investigated the application of foundation Large Language

Models (LLMs), namely Claude 3.5 Sonnet and Gemini 1.5 Flash, combined

with Retrieval-Augmented Generation (RAG) techniques. We utilized various

embedding models (generalist, specialized, and hybrid) and rule-based retrieval

approaches. To improve the precision of the information extracted from the

medicinal product from the SmPC documents, we evaluated multiple prompting

strategies.

Results: Our investigation showed that Claude 3.5 Sonnet significantly surpassed

Gemini 1.5 Flash in performance. Additionally, RAG-type approaches with

semantic research using embedding models were superior to rule-based

methods overall. The choice of embedding models was essential depending

on the type of information being extracted. Prompts that incorporated context,

action, and examples were more e�ective than those based solely on role and

steps. The approach achieved a BERT F1 score of up to 0.98 for the medicinal

product section.

Conclusion: Our findings demonstrate that the proposed LLM-RAG approach

enables accurate and scalable extraction of structured data from SmPCs.

This supports the digital transformation of regulatory processes by promoting

standardization, interoperability, and harmonization. If implemented e�ectively,

the method could help pharmaceutical companies improve regulatory

compliance, streamline submissions, and improve data consistency.
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IDMP, SmPC extraction, pharmaceutical regulatory a�airs, LLM, RAG, NLP, data
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1 Introduction

The pharmaceutical industry is undergoing a significant

digital transformation, transitioning from traditional paper-based

processes to advanced digital methodologies. A key aspect of this

evolution is the implementation of the IDentification of Medicinal

Products (IDMP) standards introduced by the International

Organization for Standardization (ISO) (1). These standards aim

to digitize all medicinal product information into a structured and

harmonized data model, enhancing efficiency, interoperability, and

data quality across the industry.

Historically, medicinal product data have been stored in

unstructured, static documents such as PDFs, notably Summary of

Product Characteristics (SmPCs). SmPCs provide comprehensive

details on medicinal products, including composition, clinical

data, pharmacological properties, and therapeutic indications

(2). Although they ensure reliable information for healthcare

professionals, the nature of free natural language text of SmPCs

limits their adaptability, accessibility, and integration into digital

systems. This rigidity poses challenges in today’s fast-paced global

healthcare landscape, where timely and accurate information

exchange is crucial.

The application of artificial intelligence (AI) in healthcare

and pharmaceuticals has expanded rapidly in recent years (3,

4), transforming the way data are processed and analyzed.

This expansion has led to better decision-making and patient

care. AI technologies such as machine learning (ML) and large

language models (LLMs), like GPT, Claude, and Gemini, have

proven valuable in enhancing diagnostic accuracy (5), optimizing

treatment protocols, and expediting drug discovery processes.

However, the use of LLMs presents certain risks. Specifically, there

is a possibility that they may generate “hallucinations,” producing

inaccurate or misleading information (6, 7). Hallucinations can

have severe implications in critical fields such as medicine and

pharmaceuticals.

To mitigate these risks, approaches such as prompt engineering

and Retrieval-Augmented Generation (RAG) have been developed.

Prompt engineering involves crafting specific inputs to optimize

LLM performance, guiding the model to produce more accurate

and reliable outputs in tasks such as diagnosing conditions from

medical images or generating medical reports (8). RAG is a

technique that combines real-time data retrieval with LLM outputs

to enhance accuracy (9). Incorporating RAG into these tasks

provides an additional layer of accuracy by cross-referencing real-

world data, making LLM outputs more reliable for clinical and

pharmaceutical applications. This technique is crucial in healthcare

settings where the cost of inaccuracies can be extremely high. Using

both prompt engineering and RAG, LLMs can improve efficiency

and reliability across a range of tasks, from diagnosing diseases to

supporting personalized care and regulatory compliance.

This study aims to explore the capability to rebuild the IDMP

data model from regulatory affairs free text documents using LLM

applications. We especially aim to:

1. Build aminimal IDMP structure: represent essential data fields

to accurately identify medicinal products, ensuring alignment

with the EU IDMP implementation guide (IG) (10). The

concept of “minimal IDMP” refers to data fields that cannot

be consolidated or retrieved afterward from other structured

data sources. It is basically the unique key combination of

information that will allow us to cross-retrieve the rest of the

full IDMP model content.

2. Leverage LLM and RAG methods: employ models such as

Claude 3.5 and Gemini 1.5 to interpret complex medical

texts within SmPCs, combining them with RAG techniques to

enhance data extraction accuracy.

3. Evaluate effectiveness: assess the effectiveness of RAG LLM

strategies in processing SmPC data, focusing on their ability

to handle unstructured information, mitigate issues like

hallucinations, and maintain high precision. We compared

rule-based retrieval and semantic search with embedding

techniques to determine the best approach for extracting

relevant information from SmPC documents.

Given these challenges, this study addresses four

research questions:

• RQ1: Can an LLM-RAG system efficiently extract IDMP-

relevant data from unstructured SmPC files?

• RQ2: What is the optimal combination of LLM with retrieval

techniques, including rule-based retrieval and semantic

search with embedding techniques, in a RAG system

for extracting domain-specific information (IDMP) from

unstructured SmPCs?

• RQ3: Which embedding model type, generalist or specialized,

is more effective in a RAG system for extracting IDMP data

from unstructured SmPC files?

• RQ4: What are the most effective prompts for guiding an LLM

to extract IDMP-relevant data from unstructured SmPC files?

The rest of this paper is organized as follows. In Section 2,

we review related work on LLMs, prompt engineering, and RAG

specifically within the healthcare and pharmaceutical domains.

Section 3 outlines the material and methods used in this

study, including data collection, LLM and prompt selection, the

implementation of the LLM-RAG system architecture, and the

evaluation metrics. Section 4 presents the experimental results,

focusing on the performance of the LLM-RAG system in extracting

IDMP-relevant data from SmPCs. Section 5 provides an in-depth

analysis of the findings, addressing the research questions and

comparing our results with existing approaches in the healthcare

and pharmaceutical contexts. Finally, Section 6 concludes the paper

by summarizing the key contributions and suggesting directions for

future research in these critical domains.

2 Related works

2.1 Large language models in healthcare
and pharmaceutical

Generative AI (Gen AI) is transforming healthcare by

optimizing clinical workflows and enhancing patient care through

various impactful applications (11). These AI-driven models

empower healthcare professionals to extract valuable insights from

extensive datasets, such as medical literature and patient records,
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by leveraging advanced prompting techniques (8). Applications

like question-answering systems, text summarization, and machine

translation streamline the processing of information, enabling

more efficient data utilization.

In pharmacovigilance, Gen AI automates and refines processes

like aggregate reporting, signal detection, and safety surveillance

by handling large, complex datasets from sources like electronic

health records and social media, addressing traditional challenges

of labor-intensive data handling and delays in signal detection

(12). In drug development and regulatory science, AI enhances

pharmacovigilance, adverse event reporting, and drug design,

analyzing diverse data with remarkable speed and precision.

Developing transparent guidelines around data quality, model

interpretability, and ethical use is essential for regulatory agencies

to fully harness AI’s potential. Coordinated international standards

will support a balanced framework that advances drug safety,

innovation, and patient outcomes across all stages of drug

development (13).

Studies have shown the effectiveness of LLMs in various

healthcare applications. Gunes and Cesur (14) found that Claude

3 Opus outperformed other LLMs and general radiologists in

diagnostic accuracy for thoracic radiology cases. Rewthamrongsris

et al. (15) evaluated LLMs in answering questions on antibiotic

prophylaxis for infective endocarditis during dental procedures,

finding that pre-prompts generally enhanced accuracy. Tang et al.

(16) investigated LLMs in extracting key medical information from

research papers, with GPT-4.0 outperforming GPT-3.5. Silberg

et al. (17) presented UniTox, a dataset for drug-induced toxicities,

achieving high accuracy and clinician validation.

The adoption of LLMs and Gen AI in healthcare and

pharmaceutical fields is becoming indispensable. However,

challenges remain, such as refining prompting techniques,

enhancing model fine-tuning, and implementing advanced

approaches like RAG.

2.2 Prompt engineering in healthcare and
pharmaceutical

Automated prompts are generated using algorithms, enhancing

efficiency and adaptability, and are categorized into discrete

and continuous prompts. Prompt engineering is crucial for

optimizing LLM interactions with unstructured data. It involves

crafting queries to enhance the LLM’s ability to retrieve and

process information efficiently. Various prompt types include

cloze prompts, prefix prompts, manual prompts, automated

prompts, zero-shot prompting, and few-shot prompting, each

with unique benefits and limitations depending on the task’s

complexity (8).

Zero-shot prompting uses a well-designed prompt without

examples, relying on the model’s pre-trained knowledge. Few-shot

prompting includes a few examples to guide the model’s responses,

improving accuracy for specific outputs. Tang et al. (16) evaluated

GPT-3.5 and GPT-4.0 in extracting medical information, revealing

that prompt engineering strategies can positively influence model

performance but vary depending on the task and GPT version.

Combining multiple prompt strategies did not always yield

better results; simpler prompts sometimes outperformed complex

combinations. GPT-3.5 favored the persona strategy, while GPT-4.0

showed better results with few-shot prompting.

Nori et al. (18) explored whether generalist foundation models

like GPT-4 can outperform specialist models without intensive

domain-specific tuning. Their case study inmedicine demonstrated

that through innovative prompt engineering, generalist models

could not only match but surpass the performance of specialized

models such as Med-PaLM 2 on various medical question-

answering benchmarks. By introducing the Medprompt strategy

a composition of dynamic few-shot selection, self-generated

chain-of-thought reasoning, and choice shuffle ensembling they

achieved state-of-the-art results across nine benchmark datasets

in the MultiMedQA suite. This study highlights that prompt

engineering can unlock deeper specialist capabilities in generalist

models, reducing the need for extensive fine-tuning and expert-

crafted prompts.

Zhou et al. (19) introduced the LEAP Framework for clinical

relation extraction, integrating adaptive prompts to enhance LLM

performance in extracting clinical relationships frommedical texts.

This framework significantly improves relation extraction tasks

across multiple datasets and models, achieving superior F1 scores

compared to traditional methods. This work aligns with findings

from Tang et al. (16) and Nori et al. (18), highlighting the

importance of sophisticated prompt engineering in optimizing

LLM performance for complex tasks. Kartchner et al. (20) explored

zero-shot information extraction for clinical meta-analyses of

RCTs, demonstrating that models like ChatGPT can effectively

extract clinical data from RCT abstracts without prior task-specific

training. By using tailored prompt-based strategies, researchers

achieved high accuracy in identifying key clinical parameters. The

study also noted strengths and limitations of zero-shot approaches,

including the ability to recognize missing information and the

prevalence of errors like verbosity and hallucinations.

These studies collectively underscore the critical role of

prompt engineering in maximizing LLM potential for medical data

extraction and other specialized applications. Both the selection of

appropriate prompt strategies and the model’s inherent capabilities

are crucial for optimal performance.

2.3 RAG in medical and pharmaceutical
applications

RAG combines LLM capabilities with retrieval mechanisms

to enhance accuracy, relevance, and reliability in medical and

pharmaceutical applications. This is crucial in healthcare and

regulatory compliance, where incorrect information can have

serious consequences. Wang et al. (21) developed BioRAG, which

combines LLMs with domain-specific models like PubMedBERT

to improve the accuracy of medical information retrieval.

It dynamically incorporates external biomedical knowledge,

providing precise and contextually relevant outputs, particularly

useful in pharmacovigilance and regulatory submissions. BioRAG

minimizes hallucinations and improves real-time decision-making,

handling vast unstructured biomedical data such as clinical trial

results and adverse drug event reports.
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Jiang et al. (22) proposed TC-RAG, a Turing-complete system

that improves retrieval control by using memory stacks, thereby

mitigating the accumulation of outdated or irrelevant information.

It enhances data extraction accuracy and control, especially in

large, evolving healthcare datasets like clinical trials and patient

records. MedGraphRAG (23) is a graph-based extension of

RAG that improves the safety and reliability of LLM-generated

medical responses by linking medical entities to a hierarchical

graph structure grounded in credible sources. Kim and Min

(24) QA-RAG presented a dual-track retrieval system combining

queries with answers generated by a fine-tuned LLM, ensuring

accurate and contextually relevant document retrieval. Choi

et al. (25) demonstrated MALADE, showcasing the power of

multi-agent systems powered by RAG for ADE extraction. By

orchestrating multiple LLM agents, MALADE effectively extracts

and analyzes ADE data from large, unstructured sources such

as FDA drug labels and electronic health records, providing

both qualitative and quantitative insights for drug safety and

adverse event monitoring. TC-RAG (22) improves retrieval control

using memory stacks, enhancing data extraction accuracy in

healthcare datasets.

2.4 Generalist vs. specialized embedding
models in RAG systems

Embedding techniques are crucial for enhancing systems in

healthcare, pharmaceuticals, and regulatory compliance, where

accuracy and relevance are vital. Recent studies highlight the

importance of embeddings in optimizing semantic search and

retrieval, showing that tailored strategies significantly improve

performance. Amugongo et al. (26) reviewed RAG in healthcare

and emphasized the use of dense embeddings to enhance retrieval

accuracy and reduce hallucinations. Models like OpenAI’s ADA-

002 enhance the relevance of clinical information, supporting

applications such as clinical question-answering and diagnostics.

The review categorizes RAG techniques into “Naive,” “Advanced”

and “Modular,” each progressively using embeddings to provide

contextually relevant responses in healthcare.

Chen et al. (27) introduced PharmaGPT, which leverages

custom embeddings to improve retrieval for bio-pharmaceutical

and chemical tasks, excelling at bio-pharma benchmarks like

NAPLEX. These embeddings enhance retrieval precision for

specialized queries, highlighting their utility in RAG applications

within specialized fields. QA-RAG (24) uses dense embeddings in

regulatory compliance for the pharmaceutical industry, combining

FAISS indexing with dense embeddings to accurately retrieve

complex regulatory documents, such as FDA and ICH guidelines.

This approach reduces compliance risks and supports highly

accurate regulatory decisions by grounding responses in reliable

and current information. Wu et al. (28) proposed AskFDALabel,

a framework built for the FDA’s regulatory tasks, integrates a

semantic searchmodule based on sentence embeddings and aQ&A

generation module for drug labeling. Using Sentence Transformer

embeddings optimized with metadata for entity recognition,

AskFDALabel improves retrieval accuracy and transparency. This

framework improves decision making in drug review processes

by providing secure, computationally efficient, RAG-based support

tailored to regulatory requirements.

Excoffier et al. (29) compared generalist and specialized

embedding models in clinical semantic search tasks, such as

matching rephrased ICD-10-CM code descriptions. Evaluating

19 models on 1, 000 reformulated descriptions, they found

generalist models like jina-embeddings-v2-base-en and e5-small-

v2 outperformed specialized models like ClinicalBERT in short-

context tasks. The top generalist model achieved an 84.0% exact

matching rate, compared to 64.4% for the best specialized model.

Generalist models’ superior performance was due to training on

larger, more diverse datasets, enhancing robustness against text

variations. However, specialized embeddings may still excel in

tasks requiring deep contextual understanding of complex clinical

narratives. This research highlights the importance of selecting

embedding models based on the retrieval task’s characteristics, such

as input text length and complexity.

According to Setty et al. (30), embedding optimization through

refined chunking and metadata annotation significantly enhances

retrieval accuracy for finance-specific queries in RAG systems.

Financial RAG systems often face retrieval challenges due to the

specific jargon and context required, which dense embeddings

help address by enhancing the relevance and context in retrieved

information. These adjustments increase the system’s ability to

retrieve high-quality, targeted responses, supporting decision-

making in finance.

Finardi et al. (31) investigates RAG in Brazilian Portuguese,

evaluating sparse and dense retrieval methods, as well as chunking

strategies, to refine retrieval in multilingual settings. This study

illustrates how embedding-driven retrieval influences output

quality, demonstrating the effectiveness of dense embeddings

across language variations. By experimenting with naive and

advanced RAG techniques, this study underscores the adaptability

of dense embeddings for RAG in non-English applications,

contributing to language-specific model optimization.

Caspari et al. (32) explored best practices for embedding use

in RAG, showing that techniques such as query transformations,

hierarchical chunking, and multimodal retrievalimprove both

processing efficiency and response quality. By fine-tuning

embeddings within RAG workflows, this research shows how

balancing retrieval accuracy with processing efficiency can adapt

RAG to a variety of applications with different input types,

including visual and text-based content.

Across the reviewed studies, several strategies have been

explored to enhance the application of AI in healthcare and

pharmaceutical domains. Among these, three particularly

relevant and complementary approaches stand out: direct use of

LLM, prompt engineering, and RAG. Direct LLM applications

facilitate the extraction of information from unstructured data

and demonstrate strong diagnostic capabilities [for example,

Claude 3 Opus in thoracic imaging (14)], although they may

require fine-tuning and can yield variable outputs. Prompt

engineering, through approaches such as zero-shot, few-shot, and

chain-of-thought prompting, has been shown to improve model

performance without retraining (18). However, increasing prompt

complexity can sometimes reduce consistency and interpretability.
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RAG methods combine LLMs with external retrieval systems to

ground model outputs in verifiable sources, which helps reduce

hallucinations and improve domain-specific accuracy [as seen in

BioRAG for pharmacovigilance (21)]. These systems, however,

introduce added complexity and depend heavily on the quality

of the retrieval pipeline. Embedding strategies also play a critical

role. Generalist embeddings tend to perform well in short-

context semantic tasks [as shown by Excoffier et al. (29), where

models like jina-embeddings-v2 and e5-small-v2 outperformed

specialized models such as ClinicalBERT in matching rephrased

ICD-10-CM code descriptions], while domain-specific

embeddings may still be preferable for tasks requiring deeper

contextual understanding.

These insights highlight the importance of integrating

advanced prompting techniques, effective retrieval mechanisms,

and well-matched embedding models to sup.

3 Materials and methods

3.1 Building an extraction model

To effectively extract data from SmPC documents, we

developed an extraction model based on the notion of the minimal

IDMP, defined as a fundamental set of data fields essential for

accurately identifying medicinal products. Derived from Chapter 2

of the EU IDMP Implementation Guide [see (10)], these fields

establish the baseline for data extraction from SmPC. The root keys

of the minimal IDMP are directly derived from the section names

listed in the guide, namely:

• Section 1. Medical product (foundational fields are inherently

precise and therefore can be extracted from the SmPC

without complexity);

• Section 2. Marketing authorization information (regulatory

fields capture all the medicinal product information required

to comply with the regulatory requirements for market entry

and maintenance and ensure compliance across jurisdictions,

ensuring extraction aligns with EU-level and national-

level requirements);

• Section 3. Therapeutic indications (fields cover the known

therapeutic indications for which the medicinal product

is authorized. This defines the scope of clinical use and

compliance with approved indications as stated in regulatory

documents like the SmPC);

• Section 4. The packaged medicinal product (fields reflect

the hierarchy of packaging information from the overall

package description to the item components and materials

used. This nested structure captures the full configuration

of the packaged product, ensuring traceability of individual

packaging units);

• Section 5. The ingredients (this section details the chemical

composition of the medicinal product, including active

ingredients and excipients. The complexity of ingredient

information extraction arises from the varying ways

that pharmaceutical strengths are presented whether by

concentration, unit dosage, or overall presentation);

• Section 6. The pharmaceutical product (this section ensures

that all product configurations are well documented to align

with regulatory and clinical requirements. For instance, the

dose form can affect the efficacy of the medicinal product).

This information ensure adherence to the required data

elements for the electronic submission of medicinal product

information. Keys and nested keys within these root categories

are meticulously mapped to the necessary data elements,

comprehensively capturing each aspect of a product’s identity

and characteristics. Table 1 presents the fields constituting the

minimal IDMP, along with their corresponding levels of nesting

complexity. For more detailed explanation on the contain of the

fields see Annex 1. The notion of “Level” in this context reflects the

degree of abstraction required by a language model to extract the

relevant information.

• Level 1 includes fields that are explicitly stated and can be

directly extracted from the source text without contextual

interpretation. For example, the Product Name, such as

“Pixuvri 29 mg powder for concentrate for solution for infusion,”

appears in Section 1 (Name of theMedicinal Product), and the

ATC Code, such as “ATC Code: L01DB11,” is found in Section

5.1 (Pharmacodynamic Properties).

• Level 2 covers fields that contain multiple sub-elements

requiring basic structuring. A representative example is the

Marketing Authorization Holder in Section 7, where themodel

must segment components such as the company name (“Les

Laboratoires Servier”), address (“50, rue Carnot”), postal code

(“92284 Suresnes cedex”), and country (“France”) from a free-

text block.

• Level 3 involves semantic reasoning across multiple sections

and requires the model to differentiate between structurally

similar but semantically distinct fields. In particular, the

model must distinguish between Composition Active and

Composition Excipient, and further differentiate within the

active composition between Active Substance Salt and Active

Substance Base. For each, it must accurately extract both

the Value and the corresponding Dosage. These values

often appear in formulations spread across Sections 3

(Pharmaceutical Form) and 6.1 (List of Excipients). For

example, the model should align the text “Each tablet

contains 5 mg of aripiprazole” with the active substance

and link “Excipient with known effect: 28 mg of maltose

per tablet” to the correct formulation and role. This level

of complexity requires entity disambiguation, strength-based

association, and cross-reference between dosage forms and

their detailed composition.

• Level 4 represents the highest complexity, requiring the model

to interpret nested relationships from descriptive, unstructured

text. In Section 6.5 (Nature and Contents of Container), a

passage such as: “White opaque HDPE bottle with a child-

resistant polypropylene cap with an induction seal liner. Each

pack contains 1 bottle with 180 g of powder and three measuring

spoons. The green measuring spoon dispenses 100 mg. The

blue measuring spoon dispenses 150 mg. The purple measuring

spoon dispenses 1 g.” must be parsed to identify the container
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TABLE 1 The hierarchical organization of data elements aligned with the IDMP standards.

Field Section Level 1 Level 2 Level 3 Level 4

1 1 Product Name

2 ATC Code

3 Authorized Pharmaceutical Form

4 2 Marketing Authorization Number

5 Date Of First Authorization

6 Date Of Latest Renewal

7 Marketing Authorization Holder Name

8 Address

9 Postal

10 Country

11 3 Therapeutic Indications Information

12 4 Package Package Description

13 Package Composition Container Description

14 Container Type

15 Package Item Material

16 Package Component Value

17 Component

Material

18 Shelf Life Value

19 Special Precautions for Storage

20 5 Composition Active Active Substance Salt Value

21 Dosage

22 Active Substance Base Value

23 Dosage

24 Composition Excipient Excipient

25 Dosage

26 6 Administrable Dose Form

27 Unit Of Presentation

28 Route Of Administration

types (e.g., bottle, measuring spoons), materials (e.g., HDPE,

polypropylene), dosage values (e.g., 100 mg, 1 g), and the

association between color, function, and capacity. This level

requires the model to construct a deeply nested, semantically

aligned structure from narrative text.

We believe this classification provides a useful framework

for evaluating LLM-based systems in the efficient extraction of

structured data from SmPCs.

The data extraction process uses the principles outlined in the

EU IDMP Implementation Guide as follows:

1. Parsing mandatory conformance requirements: we parsed the

mandatory conformance requirements specified in the EU

IDMP Implementation Guide to identify essential fields.

2. Identification and extraction of mandatory fields: for each

chapter in the guide, mandatory fields were identified and

extracted to form the minimal configuration necessary to

comply with regulatory standards.

3. Systematic capture of key fields: this approach ensured

that all key fields essential for IDMP compliance were

captured systematically.

4. Iterative review and mapping: an iterative process of reviewing

each chapter’s mandatory conformance alongside their

interrelations led to the identification of a comprehensive set

of minimal IDMP fields, which collectively constitute the core

dataset of the EU IDMP data model.

The extraction model effectively breaks down the complex

IDMP structure into well-defined fields, each representing

critical aspects of the medicinal product information from

regulatory data to packaging and composition. By systematically

capturing data from regulatory documents such as SmPCs

and structuring the extracted information into the IDMP
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fields, the model ensures accurate representation of medicinal

products in accordance with regulatory requirements. The layered

approach allows for clear differentiation between each IDMP

section, from simple fields to intricate nested fields, providing a

comprehensive yet precise framework for data extraction, which

meets compliance requirements.

Complex SmPCs with multiple dosage forms and multiple

packaging configurations present significant challenges due to their

volatile structure. Such SmPCs require intricate management, as

each dosage form or packaging type may have unique attributes,

indications, administration routes, and safety information. This

complexity can lead to increased variability and challenges in

standardizing data across forms, making it difficult to conduct

streamlined analyses or comparisons.

The nested nature of the elements in the IDMP model

could present significant challenges for LLM when tasked with

extracting data in the structured format expected by the IDMP

framework. In free-form text, where explicit hierarchical markers

are often absent, it might not be straightforward for an LLM to

distinguish and reconstruct the precise nested structure required.

For instance, given the text: “Aluminum/Aluminum blister with

laminated desiccant (calcium oxide) containing 10 tablets. Each

pack contains 20 or 40 film-coated tablets. Not all pack sizes

may be marketed,” an LLM could identify components like

“Aluminum/Aluminum blister” and “laminated desiccant (calcium

oxide),” but it might struggle to infer and represent the hierarchical

relationships accurately. The model would need to recognize that

“blister” is a packaging type, “laminated desiccant” is a component

of the blister, and “Aluminum/Aluminum” is the material used

for the blister. Additionally, it could encounter difficulties in

replicating and organizing this structure across variations in pack

sizes (20 or 40 tablets). The implicit nature of such text might

also hinder the model’s ability to establish dependencies, such

as linking pack sizes with their respective materials. If these

challenges were not addressed, the limitations in interpreting

semantic nuances, reconstructing hierarchical relationships, and

mapping dependencies could prevent the accurate alignment of

free-form descriptions with the deeply nested expectations of the

IDMP model.

3.2 Data collection

We collected a dataset comprising 81 SmPC documents

sourced from the European Medicines Agency (EMA) website.

These documents represent a diverse array of medicinal products,

ensuring a comprehensive sample for analysis. The data collection

process involved selecting a representative mix of products in

various therapeutic areas, dosage forms, and administration routes

while excluding SmPCs that described multiple products or dosage

forms to maintain consistency. We chose to subset the data to

include simpler SmPCs with single dosage forms and packaging

types, as this choice enables easier and more accurate information

extraction by large language models. Working with simpler SmPCs

allows us to control for variability, ensuring more consistent

data interpretation and reliable findings, which can be crucial for

generating robust and actionable insights. The full set of SmPCPDF

documents used in the study is available at the following GitLab

repository.1

The initial data extraction was conducted using the Large

Language Model Claude 3 Sonnet2 with simple prompts and

formatting constraints, establishing a baseline dataset. To validate

and correct the data, a team of regulatory affairs specialists with

expertise in SmPC interpretation manually reviewed each extracted

element. The experts compared the LLM output with the original

SmPC PDFs to identify and correct errors such as misclassified

fields, incomplete values, or inconsistent terminology. A structured

review protocol was followed, incorporating predefined annotation

guidelines and decision rules for common ambiguity cases (e.g.,

distinguishing salt vs. base forms, resolving packaging hierarchies).

Each SmPC was reviewed by at least one expert, and unclear cases

were discussed collaboratively to ensure consistency. This expert-

validated dataset served as the reference standard for evaluating the

performance of our extraction models.

The final dataset comprised 5, 224 elements across key

sections: 243 entries for Medicinal Product, 729 for Marketing

Authorization Information, 81 for Therapeutic Indications, 1, 906

for Packaged Medicinal Product, 1, 538 for Ingredients, and 243 for

Pharmaceutical Product. The extraction process presented several

challenges. Distinguishing between salt and base forms of active

substances was difficult when the LLM did not clearly specify

them, necessitating reference to regulatory guidelines for accurate

classification. Additionally, interpreting container descriptions

and accurately identifying packaging compositions required strict

adherence to EMA guidelines. Some fields, such as ATC Codes and

specific excipient dosages, were frequently missing or misclassified,

and discrepancies in Marketing Authorization Holder details, like

partial address matches, required manual corrections.

3.3 Methodology

To address our proposed scientific questions, we designed

an experimental plan as follows : for each information field,

we formulated a specific question and extracted relevant context

from the SmPC using either a semantic similarity approach or

a rule-based method. This context, along with the question, was

then incorporated into a prompt template. If needed, examples

were added to the prompt template, sourced from the EU IDMP

Implementation Guide. The complete prompt was sent to the LLM,

which processed it to retrieve the information in the correct format.

Finally, the IDMP was reconstructed by assembling all extracted

information into a JSON structure. The Figure 1 illustrates the

pipeline for converting SmPC documents into structured IDMP-

compliant JSON. The SmPC is segmented into subsections, and

each subsection is processed using a retrieval method to extract

context. Questions generated for each context are fed into a LLM

via a prompt template, with optional example-based guidance. The

outputs are merged to form a complete IDMP JSON representation

of the medicinal product.

1 https://gitlab.com/hockadi/idmp-extraction

2 Available at: https://aws.amazon.com/about-aws/whats-new/2024/03/

anthropics-claude-3-sonnet-model-amazon-bedrock/.
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FIGURE 1

Workflow for extracting and structuring medicinal product data from SmPC to IDMP JSON.

3.4 Retrieval strategy

3.4.1 Semantic search-based method
For each field in the minimal IDMP structure, we aim to

retrieve relevant information from a specific section, paragraph,

or chunk of the SmPC. To achieve this, we employed a

Retrieval-Augmented Generation strategy, which involves two key

components: retrieval and generation. In the retrieval phase, each

SmPC is split into chunks, which are stored in an embedding

database for efficient querying (Figure 2).

We chose a chunk size of 500 characters with a 200-character

overlap after empirical testing to balance context retention and

minimize redundancy. During the retrieval phase, we used

ChromaDB3 to store the chunk embeddings and applied cosine

similarity to rank the relevance of the top k chunks (k =

20), ensuring that the most pertinent sections were retrieved for

LLM processing.

We experimented with generalist, specialized, and hybrid

clinical models:

• Generalist models: jina-embeddings-v2-base-en (33) and e5-

small-v2 (34): trained on a variety of text types, these

models demonstrate strong performance across a wide range

of domains.

3 https://python.langchain.com/docs/integrations/vectorstores/chroma/.

ChromaDB is an open-source embedding database integrated with

LangChain for storing and retrieving vectorized document chunks.

• Specialized models: ClinicalBERT (35) and Bio_

ClinicalBERT (36) offer deep insight into clinical and

biomedical texts). PharmBERT trained on drug labeling

documents (37).

• Hybridmodel: S-PubMedBERT-MS-MARCO (38) fine-tuned

on both clinical and generalist datasets. Versatile for mixed-

domain tasks.

This systematic approach, combining chunking, embedding,

and Semantic Search-based retrieval, ensures that the LLM has

access to the most relevant sections of the SmPC, thereby

improving the precision of information extraction for each IDMP

element. The Figure 2 depicts the Semantic Search-based strategy

used to extract relevant sections of SmPC for IDMP data.

3.4.2 Rule-based method
Our second retrieval strategy involves creating a predefined

mapping between the IDMP structure and specific chapters of the

SmPC. For each IDMP field, we formulated targeted questions

linked to specific sections within the SmPC. For example:

• Product Name: Mapped to SmPC Chapter 1. Name of the

medicinal product

• ATC Code: Mapped to SmPC Chapter 5.

Pharmacological properties

• Authorized Pharmaceutical Form: Mapped to SmPC Chapter

3. Pharmaceutical form
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FIGURE 2

A RAG-based workflow leveraging semantic search with embedding models for extracting IDMP elements from SmPC documents.

• Country/Continent of Marketing Authorization: Mapped to

SmPC Chapter 8. Marketing authorization number(s)

• Date of First Authorization: Mapped to SmPC Chapter 9. Date

of first authorization/renewal of the authorization

• Therapeutic Indication: Mapped to SmPC Chapter 4.

Clinical particulars.

By aligning each IDMP field with its corresponding SmPC

chapter, we ensure accurate retrieval of relevant text during the

information extraction process. This mapping relies on the EMA

guidelines for structuring SmPCs, as cited above, providing a

reliable framework for associating SmPC chapters with specific

IDMP data points (Figure 3).

3.5 Prompts selection

In extracting data from SmPC documents to populate IDMP

data objects, we employed three manual, few-shot prefix prompting

strategies: Context-Action-Result-Example (CARE), Role-Input-

Steps-Expectation (RISE), and a hybrid model Context- Input-

Action-Expectation-Example (CIAEE). These strategies were

carefully designed to potentially enhance the LLMs ability to

accurately extract and structure complex medical information.

The CARE pattern is a manual, few-shot prefix prompt that

may excel in scenarios requiring deep contextual understanding.

By establishing the context, defining specific actions, and providing

illustrative examples, CARE could significantly improve the

accuracy of data extraction. However, the creation of effective

examples might demand substantial time and expertise (19). To

address this, we utilized examples provided by the EU IDMP

Implementation Guide (20), which may ensure consistency and

reduce the manual effort required in prompt design. Conversely,

the RISE pattern emphasizes defining the input to be processed,

outlining the procedural steps, and specifying the expected

outcome. This structured approach might be particularly effective

for complex extraction tasks, providing a clear pathway from input

to output. Nevertheless, its detailed setup could potentially impede

efficiency in dynamic environments where data is frequently

changing (19).

To leverage the strengths of both CARE and RISE, we

developed the CIAEE model, a hybrid prompt that integrates

contextual depth with structured guidance. CIAEE combines

the contextual and example-driven elements of CARE with the

procedural clarity of RISE, potentially offering both precision and

flexibility for more effective data extraction.

3.6 LLM selection

We selected Claude 3.5 Sonnet by Anthropic and Gemini

1.5 Flash based on a balance of performance and cost-efficiency.

Claude 3.5 Sonnet demonstrates superior performance in complex

reasoning and knowledge-based tasks, and is accessible through

reliable platforms like Amazon Bedrock. Meanwhile, Gemini 1.5

Flash offers significantly lower token costs, making it an economical

choice for extensive usage. Both models are deployed via hosted

cloud solutions, providing seamless integration without the need

for dedicated infrastructure. Table 2 compares key attributes of the

Gemini 1.5 Flash and Claude 3.5 Sonnet LLMs.

3.7 Evaluation methods

3.7.1 Methodology
To ensure the accuracy and consistency of the extracted

data, we implemented an automated validation and comparison

process using advanced NLP techniques. Our validation approach
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FIGURE 3

RAG-based workflow for extracting IDMP elements from SmPCs using rule-based retrieval.

TABLE 2 Comparative overview selected LLMs.

Attribute Gemini 1.5 Flash Claude 3.5 Sonnet

Provider Google Anthropic

Input context window 1M tokens 200K tokens

Max output tokens 8192 tokens 4096 tokens

Release date May 14th 2024 June 20th 2024

Knowledge cutoff November 2023 April 2024

Open source No No

API providers Google Cloud Vertex AI Anthropic AWS Bedrocka

aAvailable at: https://docsbot.ai/models/compare/claude-3-5-sonnet-20240620/gemini-1-5-

flash-001.

comprises data structure normalization and similarity metrics

computation. Firstly, we standardized variations in data formats

to achieve consistency across different data sources, enabling

accurate comparisons. Secondly, we applied a range of NLP-based

similarity metrics to quantitatively assess the similarity between

corresponding data fields.

3.7.2 Data normalization
Robust data normalization processes were integral to

our validation strategy, ensuring that data comparisons were

meaningful and accurate.

3.7.2.1 Handling delimiters and ranges

For fields such as marketing authorization numbers, we

addressed variations due to different delimiters or range

representations. For example, before normalization an

authorization number like

["EU/1/22/1646/001," "EU/1/22/1646/002-004"]

would be expanded to include all numbers in the range,

resulting in

["EU/1/22/1646/001," "EU/1/22/1646/002,"

"EU/1/22/1646/003," "EU/1/22/1646/004"].

This expansion ensures that every individual

authorization number is explicitly represented for

accurate comparison.

3.7.2.2 Parsing JSON structures

Some data fields contained strings representing JSON lists

(e.g., [“value1,” “value2”]). We identified such cases and

converted these strings into actual list objects tomaintain structural

integrity. So, input string

’["ingredientA," "ingredientB"]’

after parsing becomes

["ingredientA," "ingredientB"]
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3.7.2.3 Ensuring uniqueness and cleanliness

We removed extraneous characters (such as brackets or quotes)

and duplicate entries to ensure that the data was clean and that each

item was unique. If we have

["value1," "value1," "value2"]

cleaning will give

["value1," "value2"]

3.7.2.4 Normalization of dictionary keys

A critical step in our approach was the normalization of all

dictionary keys to lowercase using the normalize_dict_keys

function. This recursive function ensures that key comparisons

are case-insensitive, addressing potential mismatches caused by

inconsistent capitalization. For example, original keys

"ProductName": "Aspirin," "productname": "Aspirin,"

"PRODUCTNAME": "Aspirin"

after normalization become

"productname”: "Aspirin".

3.7.2.5 Special handling of default values and empty

strings

Certain fields in the data structures may have default values

or be empty, which can imply the same semantic meaning. For

the field special_precautions_for_storage, an empty

string is considered equivalent to the default phrase. Suppose that

for the statement “This medicinal product does not require any

special storage conditions.” there exist two structures

• Data Structure A: “special_precautions_for_storage”:

“”

• Data Structure B: “special_precautions_for_storage”:

“This medicinal product does not require any

special storage conditions.”

In this case special handling gives

Interpretation: Both indicate no special storage precautions are needed.

Action: Assign full similarity scores for this field.

In the field shelf_life.type.value, empty strings are

treated as equivalent to standard shelf life values like “3 years”

or “6 years”.

3.7.2.6 Normalization and comparison of lists and sets

Data structures often contain lists of items where the

order is not significant. To accurately compare such lists, we

normalized and compared them as sets. It allows to introduce

set-based comparison

• List A: [“lactose,” “sucrose”]

• List B: [“sucrose,” “lactose”]

• Metric Similarity= 1.0

• Interpretation: Perfect match regardless of order.

andmatching items in lists of dictionaries

Ingredient Lists:

• Structure A:[“name”: “aspirin,” “quantity”: “500mg”,

“name”: “caffeine,” “quantity”: “50mg”]

• Structure B: [“name”: “caffeine,” “quantity”: “50mg”,

“name”: “aspirin,” “quantity”: “500mg”]

Matching Criteria: Normalize and compare the “name” field.

Result: Items are matched correctly despite different ordering.

3.7.2.7 Date field handling

For fields representing dates, listed in DATE_FIELDS, we

parsed the strings into date objects using the parse_date

function and compared the dates. It can be illustrated as follows

• Structure A: “date_of_first_authorization”: “2021-

05-01”

• Structure B: “date_of_first_authorization”: “May 1,

2021”

After parsing: both are recognized as the same date.

Action: assign full similarity scores.

3.7.3 Similarity metrics and statistics
We utilized a variety of NLP-based metrics to evaluate data

similarity, as each provides a different perspective on how well
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the extracted content aligns with the reference data. No single

metric serves as a definitive reference; rather, these metrics

are complementary, allowing for a more robust and nuanced

assessment of model performance across lexical, structural, and

semantic dimensions.

• Exact match: evaluates whether fields match exactly.

• Jaccard similarity: measures the overlap between sets of

tokens (39).

• Levenshtein similarity: computes character-level similarity

based on edit distance (39).

• Cosine similarity (token-based): measures the cosine of the

angle between TF-IDF text vectors (39).

• BERT-based similarity (BERTScore): captures semantic

similarity using contextual embeddings from pretrained

transformer models (40).

• BLEU score: focuses on the precision of n-gram overlaps,

commonly used in machine translation (41).

• ROUGE scores: recall-oriented measures capturing n-gram

overlaps (42).

• METEOR score: balances precision and recall with synonym

matching and stemming for unigram matches (43).

To assess the statistical significance of various experimental

parameters, such as the languagemodel, prompt design, embedding

model, and retrieval technique, on these similarity metrics,

we applied non-parametric Kruskal–Wallis tests, which are

appropriate for right-skewed or non-normally distributed

data (44).

4 Results

This section presents the results of our experiments. We begin

with a general comparison to identify the key elements that

influence the quality of extraction. In the next step, we analyze

each component LLM, prompt designs, embedding models, and

retrieval techniques in detail to understand its specific impact

on performance.

Figure 4 presents a comparative analysis of semantic similarity

scores, measured using the BERT-based semantic similarity metric

from the SentenceTransformer model (’all-MiniLM-L6-v2’). The

analysis is grouped by LLM (Claude3.5 Sonnet and Gemini 1.5

Flash), with eachmodel represented by a distinct color on the violin

plots. Each violin plot illustrates the spread and density of similarity

scores, showcasing how prompt templates, embedding models,

retrieval techniques, and embedding types impact the distribution

of these scores across the different LLM.

The analysis of semantic similarity results reveals a bimodal

distribution, with scores grouped around two distinct values: one

close to 1.0, indicating high similarity, and the other close to 0,

suggesting low similarity. The primary reason for the bimodal

distribution in semantic similarity scores appears to stem from

our prompt design. In the RAG approach, we explicitly instructed

the LLM to return an empty string if it found no relevant

information in the retrieved context. This design choice naturally

produces low similarity scores clustering around 0, as the model

signals an absence of relevant data whenever it fails to identify

useful information. However, the rule-based retrieval approach

is designed to ensure that relevant information is present in the

context. Here, we direct the LLM to extract information from a

specific section where we are certain it can be found. However,

despite this controlled setup, we still observe instances of low

similarity scores (near zero), which can only be explained by the

model’s inability to effectively extract the targeted information,

even when it is clearly available.

Furthermore, a clear difference in performance between the

models is evident: Gemini 1.5 Flash generally produces lower

similarity scores than Claude 3.5 Sonnet, particularly in the rule-

based retrieval context. This distinction is most pronounced in the

rule-based retrieval plot, where Gemini’s similarity scores tend to

cluster more frequently at the lower end compared to those of

Claude. Our analysis shows that the CARE prompt consistently

outperforms other prompt designs, followed by CIAEE and then

RISE. It appears that CARE and CIAEE utilize examples, which

effectively guide the large language models to produce more

accurate and contextually appropriate responses (Figure 4).

When evaluating embedding models, the e5-small-v2 model

proves to be the most efficient, followed by S-PubMedBERT-

MS-MARCO, PharmBERT, ClinicalBERT, Bio_ClinicalBERT,

and finally, jina-embeddings-v2-base-en. In comparing the

performance of the LLM, Claude 3.5 Sonnet consistently

delivers better results than Gemini 1.5 Flash across most

embedding models. An exception to this trend is observed with

jina-embeddings-v2-base-en, where Gemini performs better.

Additionally, our findings indicate that the rule-based retrieval

technique outperforms the Retrieval-Augmented Generation

approach on average. This superiority likely arises from the rule-

based method’s ability to consistently provide relevant context,

enabling more precise information extraction by the LLM.

We discuss some limitations to rule-based approaches below.

In addition to our primary analysis, we sought to determine

the statistical significance of each parameter’s effect on extraction

performance namely, the impact of LLMs, prompt designs,

embedding models, and retrieval techniques (Table 3). Given

that the data did not follow a normal distribution, we applied

the non-parametric Kruskal-Wallis test for comparing medians

across metrics.

These results underscore that each parameter LLM, prompt

design, embedding type, and retrieval technique has a statistically

significant impact on the various performance metrics, with all

p-values being less than 0.001 (p < 0.001). Notably, LLMs

and prompt designs show the highest H statistics across multiple

metrics, highlighting their substantial influence on both structural

and semantic similarity.

4.1 Performance of prompt structures

Now we will discuss the impact of prompt structure on model

performance, as illustrated in the two plots (Figure 5).

The radar chart compares the performance of the CARE,

CIAEE, and RISE prompts across key similarity metrics (e.g.,

BERT score F1, ROUGE Score, SBERT similarity). CARE shows

the largest area, indicating superior alignment with reference

text across metrics. This suggests that CARE’s example-based

structure provides clearer guidance for the LLM, resulting in
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FIGURE 4

Comparative analysis of semantic similarity scores across multiple experimental factors using the BERT-based semantic similarity metric from the

SentenceTransformer model (all-MiniLM-L6-v2). (a) Distribution of similarity scores by prompt. (b) Distribution by embedding model. (c)

Distribution by retrieval technique.
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TABLE 3 Statistical comparison of metrics across LLMs, prompt designs,

embedding types, and retrieval techniques.

Parameter Metric H-statistic

LLM ANLS 594.22

BERT score F1 606.86

BLEU score 595.83

METEOR score 485.50

ROUGE score 680.37

Prompt ANLS 516.24

BERT score F1 420.76

BLEU score 556.68

METEOR score 420.89

ROUGE score 609.94

Embedding model ANLS 230.25

BERT score F1 221.58

BLEU score 188.17

METEOR score 182.34

ROUGE score 247.67

Retrieve technique ANLS 51.67

BERT score F1 51.30

BLEU score 59.69

METEOR score 54.40

ROUGE score 79.31

This table presents the H-statistics from Kruskal–Wallis tests evaluating the impact of four

factors, LLM, prompt design, embedding type, and retrieval technique, on five performance

metrics: ANLS, BERT Score F1, BLEU Score, METEOR Score, and ROUGE Score. All tests

indicate statistically significant differences in distributions across groups, with p-values <

0.001.

more accurate, contextually relevant responses. CIAEE, though

effective, lags slightly behind CARE, while RISE consistently ranks

the lowest, highlighting the advantage of prompts with more

structured guidance. The bar chart further supports these findings,

comparing semantic similarity scores for each prompt across two

LLM, Claude 3.5 Sonnet and Gemini 1.5 Flash. CARE achieves the

highest scores on both models, with Claude 3.5 Sonnet generally

outperforming Gemini 1.5 Flash. This modest model difference

underscores that while model selection matters, prompt design

particularly example-based prompts like CARE plays a more

substantial role in achieving high semantic similarity.

4.2 Section-wise performance analysis

We conducted a section-wise performance analysis across

different parts of the minimal IDMP data model, focusing on

how embedding models and prompt structures affect semantic

similarity in various sections such as therapeutic indications,

product composition, and packaging. This detailed breakdown

helps us understand the strengths and weaknesses of each approach

in capturing domain-specific semantic information.

The radar chart provides a comparative view of semantic

similarity scores by section across different prompt types (CARE,

CIAEE, and RISE) within the IDMP model (Figure 6). This

visualization allows us to observe how prompt design impacts

performance across sections. CARE consistently shows the largest

area on the radar chart, followed by CIAEE, with RISE trailing.

This reinforces earlier findings that CARE’s example-based

approach leads to higher semantic similarity across all IDMP

sections, enhancing response accuracy and relevance. Semantic

similarity scores vary by section, with “Marketing Authorization

Information” and “Therapeutic Indications” showing higher scores,

while sections like “Ingredients composition” and “Packaged

Medicinal Product” have lower scores. This variation suggests

that certain sections may inherently support more straightforward

semantic alignment, possibly due to less complex language or more

explicit structure. The radar chart highlights the interplay between

LLM, prompt type, and section. The CARE prompt, in particular,

achieves higher similarity across most sections, demonstrating its

effectiveness in guiding the LLM to align better with the IDMP

model’s structure and content.

The bar chart in Figure 7 presents a comparative evaluation

of embedding model performance across different sections of

the IDMP data model, using BERT-based semantic similarity.

PharmBERT-uncased consistently performs well, particularly

in the Medicinal Product and Pharmaceutical Product sections.

e5-small-v2, ClinicalBERT, S-PubMedBERT-MS-MARCO, and

Bio_ClinicalBERT also achieve strong scores across most sections.

In contrast, jina-embeddings-v2-base-en shows the lowest

performance throughout.

For specific sections:

• e5-small-v2 achieves the highest scores in Marketing

Authorization Information and Therapeutic Indications.

• S-PubMedBERT-MS-MARCO performs best in Packaged

Medicinal Product and is among the top models in

Ingredient Composition.

• PharmBERT-uncased is among the most consistent top

performers overall.

These results highlight the section-specific variability in

performance across embedding models, underscoring the

importance of selecting embeddings tailored to the structure and

content of each regulatory section.

4.3 Comparison of semantic search and
rule-based methods

To assess the effectiveness of different retrieval techniques

in achieving semantic alignment within the IDMP data model,

we compared Semantic Search and Rule-Based approaches. The

radar chart in Figure 8 illustrates the average token-level similarity

scores across key IDMP sections: Therapeutic Indications,

Marketing Authorization Information, Ingredients Composition,

Pharmaceutical Product, Packaged Medicinal Product, and

Medicinal Product. This comparison highlights the relative

Frontiers inMedicine 14 frontiersin.org

https://doi.org/10.3389/fmed.2025.1598979
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kadi et al. 10.3389/fmed.2025.1598979

FIGURE 5

(a) Radar chart comparing the average performance of di�erent prompts across multiple similarity metrics. (b) Grouped bar plot showing the average

BERT-based semantic similarity scores achieved by each LLM across di�erent prompts.
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FIGURE 6

Section-wise performance analysis of BERT-based semantic similarity across IDMP model sections.

strengths of each method in capturing domain-specific content in

regulatory contexts.

The Rule-Based approach demonstrates stronger performance

in three sections, particularly Therapeutic Indications and

Ingredients Composition, where it achieves scores of ∼0.8 and

0.6, respectively. Conversely, Semantic Search outperforms in

sections like Medicinal Product (0.76) and Pharmaceutical Product

(0.51), suggesting better alignment in those areas. In Marketing

Authorization Information, both techniques perform similarly,

with scores around 0.51 (Rule-Based) and 0.53 (Semantic Search).

For Packaged Medicinal Product, Rule-Based again leads with a

score of 0.48 vs. 0.32 for Semantic Search.

4.4 In-depth analysis

4.4.1 Exact matching: “ATC Code” and “Marketing
Authorization Number”

The plot (Figure 9) provides a detailed view of the average

exact match proportions across various configurations, grouped

by “ATC Code” and “Marketing Authorization Number” sections.

For the ATC Code section, the top-performing configurations are

dominated by combinations involving the Gemini 1.5 Flash and

Claude 3.5 Sonnet models, especially when paired with the S-

PubMedBert-MS-MARCO and ClinicalBERT embedding models.

The highest exact match similarity score of 0.9753 was achieved

by Gemini 1.5 Flash with the CARE prompt, Seamantic Search

retrieval technique, and S-PubMedBert-MS-MARCO embedding.

Across configurations, a consistent trend appears where

S-PubMedBert-MS-MARCO embedding enhances performance

with both Gemini 1.5 Flash and Claude 3.5 Sonnet, achieving

similarity scores above 0.9 in multiple instances. e5-small-v2 and

Bio_ClinicalBERT also exhibit reliable performance, supporting

the idea that domain-specific embeddings play a pivotal role

in accurately capturing the semantics of ATC Code content.

Interestingly, rule-based techniques, when combined with the

CARE prompt (e.g., with Claude 3.5 Sonnet), reach relatively high

scores (0.95), which implies that manually engineered rules can

perform well under certain controlled contexts but may lack the

flexibility seen in high-performing embedding-driven approaches.

Frontiers inMedicine 16 frontiersin.org

https://doi.org/10.3389/fmed.2025.1598979
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kadi et al. 10.3389/fmed.2025.1598979

FIGURE 7

Performance of embedding models across IDMP data model sections.

The Marketing Authorization Number section presents

slightly different trends. Here, Claude 3.5 Sonnet combined

with CIAEE or CARE prompts and S-PubMedBert-MS-

MARCO or e5-small-v2 embeddings achieves the highest

similarity scores (0.96). This highlights a notable consistency,

where S-PubMedBert-MS-MARCO again ranks among the

best-performing embeddings, indicating its utility across diverse

biomedical contexts.

However, e5-small-v2 also achieves top scores in this section,

which may be due to its capacity for general-purpose embeddings

that still provide some adaptability to structured numeric or

alphanumeric identifiers, typical of authorization numbers. Unlike

the ATC Code section, the Marketing Authorization Number

section also sees Bio_ ClinicalBERT and ClinicalBERT perform

effectively, suggesting that these embeddings offer a balanced

approach for handling both structured and semi-structured content

in regulatory contexts. Notably, rule-based retrieval techniques and

simpler embeddings, such as jina-embeddings-v2-base-en, result in

mid-to-low similarity scores. This outcome highlights the challenge

of using generic or rule-based approaches in cases where identifier

recognition and validation require nuanced context understanding.

4.4.2 Therapeutic indication
Wewill now delve into the details of the Therapeutic Indication

section, comparing various combinations of Large LanguageModel

(LLM), Prompt, Retrieval Technique, and EmbeddingModel based

on two primary metrics: BERT Similarity and Token Similarity,

as well as additional metrics like Average Normalized Levenshtein

Similarity and ROUGE Score. This analysis aims to understand

the differences in semantic retrieval quality vs. word-level retrieval

quality, as well as the importance of the order of retrieved terms.

The results of these four metrics are plotted on a graph (Figure 10),

showing their values according to different combinations of LLM,

Prompt, Retrieval Technique, and Embedding Model.

We observe that the Claude and Gemini models perform

comparably, with a slight advantage for Claude. Additionally, the

four metrics exhibit similar trends across combinations, with the

semantic metric having the highest values, followed by token

similarity (measured via TF-IDF), then ROUGE Score, and finally

the Average Normalized Levenshtein Similarity. Interestingly, the

prompt does not appear to be a determining factor in these

results. However, when it comes to Embedding Models, we note

that specialized models, such as BioClinicalBERT, ClinicalBERT,

and PharmBERT, tend to perform better overall, with e5-small-

v2 also remaining competitive. We also observe that the retrieved

sequences closely align with the ground truth, showing minimal

differences between token similarity and the ROUGE metric

indicating that tokens are retrieved in the correct order. However,

the models tend to retrieve more text than the ground truth, as

reflected in the Average Normalized Levenshtein Similarity metric.

The two models that optimize performance across these four

metrics are, on average, ClinicalBERT and BioClinicalBERT. This

can likely be attributed to their training on medical terms, which

enhances their ability to handle domain-specific language.

4.4.3 Extraction of date-type information
In the Figure 11, we compare the distribution of Jaccard

similarity for dates found in two fields: Date of First Authorization
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FIGURE 8

Comparison of semantic search and rule-based methods across IDMP data model sections. The radar plot illustrates average token-level similarity

scores for each retrieval method across di�erent IDMP sections, highlighting performance variations between semantic and rule-based approaches.

and Date of Latest Renewal. We observe that, due to formatting

corrections applied before metric measurements and prompt

expectations, values are distributed between 0 and 1, indicating

that the models are not hallucinating. However, we note that

Gemini 1.5 Flash was unable to extract any dates. Additionally, we

observe that the prompt has no impact on date extraction. In terms

of embedding models, PharmBERT and e5-small-v2 achieved the

highest number of correct extractions.

4.4.4 Complex extraction level analysis
We will now analyze the quality of data extraction based

on the data level and degree of nesting, ranging from levels

1 to 4. At level 1, extraction is straightforward, such as

retrieving the medicinal product name, as outlined in Table 1. This

analysis considers various metrics, including average normalized

Levenshtein similarity, BLEU, ROUGE Score, METEOR, and

BERT score. The results are shown in the accompanying figure

(Figure 12).

We observe that extraction at level 4 yields very low scores,

averaging around 15%. Level 3 follows, with metrics ranging from

∼0.3 for BLEU to 0.5 for BERT score. Levels 1 and 2 show

comparable extraction quality, with the exception of BLEU, which

appears highly sensitive. These results indicate that models face

challenges in accurately retrieving and extracting data when it is

nested across multiple levels.

5 Discussion

We aimed to investigate the capability of using LLM, RAG,

and prompt engineering to rebuild the IDMP data model from

free text documents in regulatory affairs. Our study confirmed that

Claude Sonnet 3.5 can effectively extract IDMP-relevant data from

unstructured SmPC files, especially with well-designed prompts

like CARE and CIAEE. These prompts enhance the LLM’s ability to

extract exact tokens and capture semantic meaning from complex

medical texts. BERT-based metrics showed a bimodal distribution
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FIGURE 9

Exact matching performance for “ATC Code” and “Marketing Authorization Number” sections across configurations.

of semantic similarity scores, clustering around values close to

1.0 (high similarity) and 0 (low similarity). This pattern resulted

from prompt design and retrieval techniques. The RAG approach

instructed the LLM to return an empty string if no relevant

information was found, producing low similarity scores around

0. Rule-based retrieval ensured relevant information was present,
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FIGURE 10

Performance comparison of LLM, prompt, retrieval technique, and embedding model combinations in the therapeutic indication section.
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FIGURE 11

Distribution of Jaccard similarity for date extraction in “Date of First Authorization” and “Date of Latest Renewal” fields.

but low similarity scores still occurred, indicating occasional

extraction failures. Statistical analyses using the Kruskal-Wallis

test confirmed that LLM, prompt design, embedding model, and

retrieval technique significantly impacted performance metrics

(p < 0.001). LLM and prompt designs had the highest H

statistics, highlighting their substantial influence on structural and

semantic similarity. This underscores the importance of selecting

appropriate LLMs and designing effective prompts to optimize

extraction performance.

A clear difference in performance between the LLM was

evident: Claude 3.5 Sonnet generally produced higher similarity

scores than Gemini 1.5 Flash, particularly in the rule-based retrieval

context. This distinction was most pronounced in the rule-based

retrieval results, where Gemini’s similarity scores tended to cluster

more frequently at the lower end compared to those of Claude.

This suggests that while both models are capable, Claude 3.5

Sonnet has a superior ability to extract relevant information

when provided with appropriate prompts and retrieval contexts.
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FIGURE 12

Data extraction quality across di�erent levels of nesting.

Our analysis indicated that the CARE prompt might consistently

outperform other prompt designs, followed by CIAEE and then

RISE. The superior performance of the CARE prompt underscores

the potential significance of prompt engineering in optimizing

LLM outputs. Specifically, CARE could achieve higher accuracy

across key similarity metrics, suggesting that example-based

prompts may effectively guide LLM to produce more precise and

contextually appropriate responses. This is supported by radar

chart comparisons, where CARE demonstrated the largest area,

indicating better alignment with reference texts across various

metrics. In contrast, the RISE prompt, despite its structured

approach, might not perform as well due to the absence of example-

based guidance, which appears crucial for optimal performance in

this context.

These findings align with insights from related studies. Tang

et al. (16) and Nori et al. (18) highlighted that incorporating

examples and structured instructions can significantly enhance

LLM performance in medical information extraction tasks.

Zhou et al. (19) further validated that structured and adaptive

prompts could benefit clinical relation extraction, supporting our

approach. Additionally, Kartchner et al. (20) demonstrated the

utility of context-rich and example-based prompts in zero-shot

information extraction for clinical meta-analyses, reinforcing the

efficacy of our prompting strategies. The implications of our

findings suggest that carefully crafted, example-rich prompts like

CARE might substantially improve LLM performance in complex,

domain-specific tasks. This approach could reduce the reliance

on extensive fine-tuning and expert-crafted prompts, potentially

streamlining the deployment of LLM in real-world medical

applications. Moreover, the lower performance of RISE indicates

that while structured instructions are beneficial, they may not

suffice without the inclusion of contextual examples.

The comparison between Semantic Search and Rule-Based

methods revealed distinct strengths in different contexts. Rule-

based approaches achieved higher precision in structured data

extraction due to their reliance on predefined patterns. They

consistently retrieved relevant context, leading to precise outputs

by the LLM in predictable sections. However, they lacked

adaptability when dealing with unstructured text.

Addressing the second research question, whether combining

LLMs with rule-based methods can efficiently extract IDMP-

relevant data, our findings confirm their complementary strengths.
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To assess the effectiveness of different retrieval techniques, we

compared Semantic Search and Rule-Based approaches across key

IDMP sections, as shown in the radar chart in Figure 8. Rule-Based

retrieval demonstrated stronger performance in sections such as

Therapeutic Indications, Ingredients Composition, and Packaged

Medicinal Product, where information is typically localized within

short, well-structured SmPC chapters. In contrast, Semantic

Search outperformed in more semantically variable sections like

Medicinal Product and Pharmaceutical Product, where relevant

information is often implicit or scattered throughout longer

textual content. Marketing Authorization Information showed

comparable performance between bothmethods. This performance

pattern is consistent with our mapping between IDMP fields

and SmPC chapters. Many IDMP fields, such as Product

Name, Pharmaceutical Form fields, Shelf Life, and Marketing

Authorization Holder fields, are associated with short SmPC

sections, where rule-based retrieval ensures high recall by directly

mapping to the expected location. However, for fields like the

ATC Code or those found in the Qualitative and Quantitative

Composition chapter, which appear in longer and less structured

sections, rule-based retrieval can reduce extraction quality. This is

because entire chapters are passed to the LLM, potentially diluting

the relevance of the target information and overwhelming the

model’s attention. Semantic Search, on the other hand, provides

compact, contextually aligned chunks that maintain a balanced

input size and higher information density.

Our evaluation of embedding models reveals that the

generalist model e5-small-v2outperforms specialized models like

ClinicalBERT, Bio_ClinicalBERT, and PharmBERT across most

metrics. Its training on broader and more diverse datasets allows

it to handle a wide range of language patterns and phrasing

variations more effectively, making it more adaptable to the

complexities found in SmPCs. This observation aligns with the

findings of Excoffier et al. (29), who demonstrated that generalist

embedding models surpass specialized clinical models in short-

context clinical semantic search tasks due to their robustness

against input variations.

However, in specific sections rich in medical terminology,

such as “Therapeutic Indications,” specialized models performed

comparably or even better than the generalist models. This suggests

that while generalist models offer greater flexibility and extensive

linguistic coverage, specialized models trained on medical terms

enhance the ability to handle domain-specific language effectively.

The specialized models’ focused training on medical corpora

enables them to capture subtle nuances and specific terminology

that generalist models might overlook.

An in-depth analysis of exact matching in sections like

“ATC Code” and “Marketing Authorization Number” further

highlights the importance of embedding model selection based

on content type. In the “ATC Code” section, the highest

exact match similarity score was achieved by combining the

Gemini 1.5 Flash LLM with the CARE prompt, using the

Semantic Search retrieval technique and the S-PubMedBERT-

MS-MARCO embedding model. This combination underscores

the effectiveness of specialized embeddings in capturing the

semantics of structured, domain-specific content where precise

retrieval is critical. Conversely, in the “Marketing Authorization

Number” section, the generalist model e5-small-v2 paired with

the Claude 3.5 Sonnet LLM and the CARE prompt achieved

high similarity scores. This indicates that generalist embeddings

can be highly effective in contexts that require handling diverse

language patterns and less specialized terminology. These findings

emphasize that both generalist and specialized embedding models

have their merits, and the optimal choice depends on the specific

requirements of the content being processed. Generalist models

like e5-small-v2 are advantageous for sections where linguistic

diversity and adaptability are crucial. In contrast, specialized

models excel in sections dense with medical terminology,

benefiting from their focused training on domain-specific language.

Our study underscores the importance of selecting appropriate

embedding models based on the characteristics of the retrieval task.

Aligning with prior research [see (23), (25), or (32)], embedding

choice significantly affects retrieval outcomes, especially in

specialized fields like healthcare and pharmaceuticals where

precision is paramount. The integration of both generalist and

specialized embeddings, tailored to specific sections of the

SmPCs, can enhance the overall performance of retrieval systems,

ensuring both adaptability and precision in handling complex

medical documents.

Our analysis also showed that the CARE prompt consistently

outperforms other prompt designs, followed by CIAEE and then

RISE. The use of examples in CARE and CIAEE effectively guides

the LLM to produce more accurate and contextually appropriate

responses. The radar charts comparing prompt performance across

key similarity metrics and IDMP sections highlighted that CARE’s

example-based structure provides clearer guidance, resulting in

higher semantic similarity across metrics. Moreover, the section-

wise analysis indicated that semantic similarity scores varied

by section, with “Marketing Authorization Information” and

“Therapeutic Indications” showing higher scores, while sections

like “Pharmaceutical Product” and “Packaged Medicinal Product”

had lower scores. This variation suggests that certain sections

may inherently support more straightforward semantic alignment,

possibly due to less complex language or more explicit structure.

We further analyzed the quality of data extraction based on

the data level and degree of nesting, ranging from levels 1 to

4. The findings indicate a clear trend: as the level of nesting

increases, the models’ performance in accurately extracting and

retrieving data decreases. This suggests that while LLM are adept

at handling simple extraction tasks, they encounter significant

challenges when dealing with deeply nested or complex hierarchical

data. The implications of these results are critical for the application

of LLM in domains requiring precise data structuring, such as the

IDMP framework. The nested elements within the IDMP model

necessitate not only the identification of individual data points

but also the accurate reconstruction of hierarchical relationships

between them. To mitigate these challenges, we employed prompt

engineering techniques by incorporating examples in the CARE

and CIAEE prompts to guide the LLM. Including examples was

intended as part of the solution to enhance the models’ ability to

understand and extract nested information. Despite the additional

support from the prompts, the models still struggled to interpret

implicit information and establish dependencies among different

elements. This indicates that while including examples in prompts

is beneficial, it alone is not enough to address the inherent

challenges posed by deeply nested data structures.
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Looking ahead, a promising strategy would involve developing

an adaptive orchestration framework that dynamically selects

the optimal combination of LLM, prompt, retrieval technique,

and embedding model tailored to the specific characteristics of

each SmPC section. Our findings demonstrate that no single

configuration performs best across all sections. While our current

analysis focused on evaluating fixed combinations per experiment,

we implicitly explored a hybrid strategy by analyzing performance

variation across configurations and sections. However, a fully

hybridized pipeline, capable of making real-time configuration

decisions based on sectionmetadata, content structure, or observed

performance trends, was not implemented. In future work, we

propose implementing a meta-controller or policy model trained

on section-specific performance metrics to guide this selection

process. Given the domain of regulatory affairs, where human

validation is mandatory, this controller would operate within

a human-in-the-loop framework. Extraction outputs would be

systematically reviewed by regulatory experts, and their feedback

used to iteratively refine the routing logic and improve extraction

quality over time. An initial version of this framework could

be prototyped using the gold standard dataset described in

this study, serving as a foundation for testing different routing

strategies. Over time, real-world usage data and expert feedback

might allow for more sophisticated adaptation mechanisms. This

conditional, feedback-driven approach would help balance the

need for automation with the strict validation and accountability

requirements of regulatory settings.

6 Conclusion

This study demonstrates the viability of integrating LLM,

specifically Claude 3.5 Sonnet, with RAG to automate the extraction

of IDMP-relevant data from unstructured SmPC documents.

The findings underscore the importance of prompt engineering:

example-rich prompts like CARE significantly enhance the

LLM’s ability to extract accurate and context-aware information.

In comparative evaluations, Claude 3.5 Sonnet consistently

outperformed Gemini 1.5 Flash, particularly when guided by well-

crafted prompts and retrieval contexts. Our analysis also highlights

the performance advantages of generalist embedding models in

the semantic retrieval phase. In particular, e5-small-v2 delivered

strong results across most metrics, demonstrating broad linguistic

adaptability. However, specialized models such as ClinicalBERT

and Bio_ClinicalBERT proved more effective in sections dense

with medical terminology. These findings suggest that a hybrid

strategy, combining generalist and domain-specific embeddings,

can help tailor retrieval to the complexity of different content areas

within SmPCs.

Future research should explore strategies for handling the

challenges posed by complex SmPCs, especially those involving

multiple dosage forms or intricate packaging configurations.

Addressing the limitations of extracting deeply nested data

structures may require hierarchical parsing techniques or the

incorporation of richer contextual signals to support the LLM’s

reasoning. Evaluating open-source LLMs, enhancing RAG with

re-ranking strategies, and experimenting with ensemble methods

that combine multiple LLMs and embedding models could further

improve accuracy and scalability. In addition, developing an

adaptive pipeline that selects the optimal combination of models,

prompts, and retrieval strategies for each section could significantly

boost overall performance and reliability. Ultimately, the successful

integration of Claude 3.5 Sonnet with RAG represents a significant

advancement in automating the extraction of IDMP-relevant data

from unstructured regulatory documents. By enabling accurate,

context-aware, and scalable data extraction from SmPCs, this

approach contributes meaningfully to the informatization of

pharmaceutical regulatory affairs. It not only streamlines data

standardization and harmonization but also supports regulatory

compliance and interoperability across global health authorities.
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7 Annex

7.1 Annex 1. Fields constituting the
minimal IDMP

Section 1.—Medical Product—contains foundational

fields, namely:

• Product Name: identifying the medicinal product.

• ATC Code: Provides the Anatomical Therapeutic Chemical

classification system name, ensuring clear identification of the

drugs therapeutic group and its usage.

• Authorized Pharmaceutical Form: the marketed form of the

medicinal product.

Section 2.—Marketing authorization information— captures

all the medicinal product information required to comply with the

regulatory requirements for market entry and maintenance. This

section focuses on regulatory fields such as:

• Country or Regulatory Region: specifies if it is a Centralized

Authorized Product (EU-level) or National Authorized

Product (National level) medicinal product;

• Marketing Authorization Number: a unique identifier for

regulatory approval at the product or package level;

• Date of First Authorization: represents the regulatory

milestone marking the product’s initial approval for

market entry;

• Marketing Authorization Holder (MAH): the entity

responsible for the medicinal product, including

• MAHAddress: street name, postal code, city, and country;

• MAHName.

Section 3. Therapeutic indications it cover the known

therapeutic indications for which the medicinal product

is authorized.

Section 4. The packaged medicinal product section—is

inherently complex due to its multiple nested levels, reflecting the

hierarchy of packaging information from the overall package

description to the item components and materials used.

It includes:

• PackageDescription: details of the overall physical packaging;

• Package Composition:

• Container Type: specifies the type of packaging.

• Container Description: specifies the container description.

• Package Item Material: material of the overall

physical packaging.

• Package Component:

• Material: the specific material used for the

container type.

• Value: details of quantity or material attributes.

• Shelf life:

• Value: specifies the shelf-life value (in years, months, hours)

with respect to storage type.

• Special precautions for storage: specifies the special

conditions for storage of the medicinal product.

Section 5.—The ingredients—details the chemical composition

of the medicinal product, including active ingredients

and excipients:

• Composition Active:

• Active Substance Salt: specifies the salt composition of the

active ingredient, with a value and its dosage.

• Active Substance Base: the main component of the

medicinal product, distinguished from the salt form, with

a value and its dosage.

• Composition excipient: lists excipients and their dosage.

Section 6.—The pharmaceutical product—ensures that all

product configurations are well documented to align with

regulatory and clinical requirements. For instance, the dose form

can affect the efficacy of themedicinal product. The fields include:

• Administrable Dose Form: specifies the form in which the

product can be administered.

• Route of Administration: specifies how the product should

be administered.

• Unit of Presentation: specifies how the medicinal product is

presented in a measurable form.
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