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Nanomedicines are nanoscale, biocompatible materials that offer promising 
alternatives to conventional treatment options for brain disorders. The recent 
technological developments in artificial intelligence (AI), particularly machine 
learning (ML) and deep learning (DL), are transforming the nanomedicine field 
by improving disease diagnosis, biomarker identification, prognostic assessment 
and disease monitoring, targeted drug delivery, and therapeutic intervention as 
well as contributing to computational and methodological developments. These 
advancements can be achieved by analysis of large clinical datasets and facilitating 
the design and optimization of nanomaterials for in vivo testing. Such advancement 
offers exciting possibilities for the improvement in the management of brain 
disorders, including brain cancer, Alzheimer’s disease, Parkinson’s disease, and 
multiple sclerosis, where early diagnosis, targeted delivery, and effective treatment 
strategies remain a great challenge. This review article provides an overview of 
recent advances in AI-based nanomedicine development to accelerate effective and 
quick diagnosis, biomarker identification, prognosis, drug delivery, methodological 
advancement and patient-specific therapies for managing brain disorders.
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1 Introduction

Brain disorders are an umbrella term used to describe a set of serious illnesses that affect 
brain structure, functions, and often result in severe mental, emotional, and physical 
disabilities. Over the past several decades, brain related disorders have accounted for around 
13% of all disease-related deaths worldwide, surpassing cardiovascular and cancer conditions. 
Additionally, brain disorders represent most of the all-cause mortality in Europe, defined by 
disability-adjusted life years (DALYs) (1). Also, Borlongan et al., reported that the incidence 
of neurological disorders is becoming more prevalent and common in the United States (2). 
Certain brain disorders such as brain cancer, Alzheimer’s disease (AD), Parkinson’s disease 
(PD), and multiple sclerosis significantly contribute more to the global disease burden and are 
responsible for larger healthcare expenditures compared to other neurological conditions (3). 
Thus, we focus this narrative review on those brain disorders.

Each brain disorder is characterized by its unique pathophysiology, clinical symptoms, 
and treatment challenges. These challenges include unavailability of accurate, reliable and 
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early diagnostic methods, treatment gaps, and corresponding patient 
costs (4–6). Thus, it is important to get better insight into these 
challenges and limitations for the development of effective 
management strategies to improve disease conditions. The most 
important challenge in treating Alzheimer’s and Parkinsons disease is 
ambiguity in diagnosis due to complicated etiology and pathological 
symptoms, prevent the early diagnosis and treatment (6). Apart from 
this, the development and release of new drugs into the market are 
affected due to lack of knowledge regarding specific biomarkers and 
molecular targets associated with these conditions. Thus, it is difficult 
to develop effective diagnosis and treatment strategies for the better 
management of brain related pathologies (7, 8). Another problem 
associated with such disorders is high-cost expenditures in their 
management. Previously, a research group conducted a study on 
Denmark based population to examine the trends of treatment 
expenditure on brain related disorders. Surprisingly, researchers 
found that the treatment cost is drastically increased in the case of 
comorbid patients dealing with brain related disorders. Also, the 
demand of healthcare resources is increased because patients having 
brain related disorders experience severe psychological distress that 
results into anxiety and depression (9). Additionally, anatomical 
structures such as blood–brain barrier (BBB) prevents the entry of 
large molecules and biologics, reduced the effectiveness of therapeutic 
drugs and makes treatment more challenging (10, 11).

Nanomedicines provide effective solutions to the above discussed 
challenges regarding management of brain related disorders. The 
nanomedicine exploits the concept of nanotechnology that can apply 
to manage different domains of disease including drug delivery, 
treatment, diagnosis and disease monitoring using nanostructures or 
nanomaterials (12). The selective nature of blood–brain-barrier, limit 
the delivery of large molecule biologics or therapeutic drugs into the 
affected regions of the brain. This problem can be  addressed by 
utilizing nanocarriers to deliver the drugs that can easily cross the 
blood brain barrier (12). Also, the use of engineered nanoparticles 
enhances the bioavailability of drugs without any immune rection and 
cellular or tissue toxicity (10, 11).

In addition to this, the development of powerfully engineered 
multifunctional nanomaterials that offers the use of single smart 
nanomaterial to perform multiple functions including site specific 
drug delivery, conjugation of proteins or antibodies for detection and 
tagging with imaging molecules offers real time monitoring in in vitro 
and in vivo systems (13). Also, the nanocarriers are not only used for 
target delivery of drugs but also improving their pharmacokinetics 
that allows slow release of drug for extended periods and improved 
the therapeutic response in both Parkinson’s and Alzheimer’s patients 
(14). Moreover, the development of advanced neuro-imaging 
techniques such as functional MRI (f-MRI) and their integration with 
nanomedicines improves the diagnosis and treatment response. 
Although, standardization of their operating procedure in different 
environments, analysis and interpretation of produced complex 
images is another ongoing challenge (15, 16). Additionally, the 
technical limitations associated with the development of 
nanomedicines includes time consuming synthesis of nanomaterials 
or nanoparticles, lack of molecular understanding of their cellular or 
tissue toxicity and safety concern, clinical applications and challenge 
in manufacturing and commercialization (17). The technical 
challenges for the development and production of nanomedicine can 
be tackled through the application of artificial intelligence (AI) based 

approaches including machine learning and deep leaning 
methods (18).

Machine learning (ML) is a subset of artificial intelligence (AI) 
uses large volume of datasets to train the system and perform different 
task based on the training (19). The recent advancement in the 
machine learning algorithms and computing systems has widened 
their application in different disciplines including nanomedicine (20). 
The integration of AI and nanomedicine led to the transformation in 
different domain of disease management, starting from early diagnosis 
to therapeutics or treatment. Moreover, scientific community and 
pharma-based companies used machine learning based algorithms for 
the standardization and optimization of experimental conditions for 
the synthesis of novel nanoparticle or nanomaterial, prediction of 
drug delivery efficiency, and analysis of large clinical data to identify 
new targets that speed up manufacturing and commercialization of 
newly developed therapeutics (21, 22). Additionally, researchers used 
these complex algorithms to predict the behaviors of newly 
synthesized nanoparticles in in vitro and in vivo conditions to avoid 
or reduce the off-target effects by increasing targeting efficiency (23). 
Also, these models can potentially to analyze and extract the patterns 
from the complex images derived from advanced neuroimaging 
technique including functional magnetic resonance (fMRI). The 
analysis is helpful in identifying the minute changes in inner brain 
architectures critical for detection and classifying specific neurological 
disease conditions, identification of specific biomarkers, early disease 
diagnosis, personalized therapy, and prediction the clinical outcome 
(24–26).

Similarly, deep learning (DL) is a subset of machine learning that 
utilizes artificial neural network (ANN) with hidden multiple layers 
connected, and it can analyze text and image data to identify the 
patterns and perform different kinds of tasks such as prediction, 
classification and representations. The convolutional neural network 
(CNN) is capable of automatic processing and analysis of complex 
neuroimaging data that could be helpful for improving the diagnosis 
of brain cancer and other neurodegenerative diseases (92, 93). Also, it 
is very effective in the extraction image features that can be used for 
identifying minor alterations in brain regions and associated affected 
functions. Thus, this extraction features might be useful for predicting 
the disease progression, identification of disease-specific signatures 
(biomarker) for early diagnosis and personalized therapies for brain 
related pathologies (24, 27, 28).

In summary, applying AI-based methods including machine 
learning and deep learning advances the field of nanomedicine. 
These advancements have immense potential to improve different 
aspects of disease management ranging from diagnosis to 
treatments. The continuous evolution of these emerging 
technologies has led to the treatment of complex brain diseases 
of varying severity through the development of new therapeutics 
by exploiting the unique properties of nanomaterials. This review 
explores the applications of various AI based approaches that are 
currently used for the advancement of nanomedicine in the 
context of brain disorders and how adoption of these technologies 
improves the different aspects of disease management including 
diagnosis, biomarker identification, prognosis and disease 
monitoring, drug delivery and therapeutics and computational 
methodological advancements. Also, it will cover the technical 
challenges and limitations associated with them and lastly 
concluding remarks and prospects of this emerging technology.
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2 Materials and methods

We conducted a comprehensive literature review to gather 
relevant studies for evidence synthesis and the detailed methodology 
employed for the search is described in the following sub-sections.

2.1 Study design

To ensure methodological rigor and transparent reporting, this 
comprehensive review was conducted following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 
guidelines. This review explores the emerging field of integrating 
machine and deep learning techniques into nanomedicine. The 
primary focus is to synthesize evidence regarding the application of 
these techniques for the diagnosis, prognosis, biomarker 
identifications, and treatment of brain disorders, including brain 
cancer (glioblastoma and glioma), Alzheimer’s disease, Parkinson’s 
disease, and multiple sclerosis.

2.2 Inclusion and exclusion criteria

A comprehensive literature search was performed using the 
keywords and related MeSH (Medical Subject Headings) terms for 
“machine learning,” “deep learning,” and “nanomedicine” in the 
context of brain disorders. The inclusion criteria included original 
research on nanomedicine, machine learning, deep learning, and 
brain disorders. The detailed inclusion and exclusion criteria for the 
included studies are described in the subsequent section.

2.2.1 Inclusion criteria
Included studies were original research focused on nanomedicine, 

machine learning, deep learning, and brain disorders. Below, 
we further describe the eligibility criteria for the included studies.

Population characteristics: Studies involving children and adults, 
with no restriction on gender, age, race, or ethnicity, were included. 
Studies that did not involve human participants, such as those utilizing 
murine models or molecular simulations, were also included.

Intervention/Exposure: Studies were included that show the 
application of machine and deep learning techniques in 
advancements of nanomedicine, theragnostic nanomedicine, and 
photothermal theragnostic for the management of Brain disorders 
(Brain cancer, Multiple sclerosis, Parkinson’s, and Alzheimer’s 
disease), but traditional, alternative, or complementary therapy-
related studies are excluded. Computational modeling studies, 
including docking and molecular simulations, were incorporated if 
there was a direct relationship between machine learning/deep 
learning and nanomedicine.

Outcome: Studies that examined improving nanomedicine 
applications such as diagnosis, drug delivery, treatment, prognosis, 
disease monitoring, biomarker identification and diagnosis, and 
computational and methodological development by using machine 
learning, deep learning, or artificial intelligence were included.

Study Characteristics and Design: We included studies from all 
settings, such as communities, hospitals, specific healthcare facilities, 
and geographic locations. We  included peer-reviewed original 
research articles.

2.2.2 Exclusion criteria
The articles or studies are excluded if they were editorials, case 

reports, or interventions treatments that did not involve nanomedicine 
such as traditional or alternative or complementary therapies. 
Additionally, conference abstracts and dissertations, grey literature 
and non-English language articles were excluded from 
evidence synthesis.

2.3 Sources database and search strategy

The comprehensive literature search was conducted across 
electronic databases, including PubMed, Scopus, EMBASE, and Web 
of Science (Core Collection). Supplementary Table  1 describes 
detailed search strategies for each database. The search was limited 
to peer-reviewed articles published in English between 2014 
and 2024.

2.4 Study selection

Two independent reviewers conducted title-and abstract-based 
screening for the relevant studies. The eligible records were then 
accessed for full-text screening. Disagreements or conflicts were 
resolved through discussion. A PRISMA flow diagram displays the 
studies identified, screened, included, and excluded at each stage 
(Figure 1).

2.5 Data extraction

Data were extracted independently by two reviewers using a 
standard extraction template form with the following headings: 
general information (Title, Aim of Study), Methods (Study design, 
AI-based methods), Target disease, Participant Characteristics 
(population description), Study Results, and Study Implications. Any 
discrepancies in data extraction were resolved through consensus. 
EndNote 21.5 citation management tool was used to import and 
export citations and retrieve the full text of articles. Finally, Covidence 
software was used to remove duplicates and map the number of 
records identified, included, and excluded for the evidence synthesis.

3 Results

3.1 Selection of citations

A total of 687 articles were retrieved from different databases 
(PubMed = 43, Embase = 418, Scopus = 166, and Web of Science: 
Core collection = 60). After removing duplicates manually, only 507 
records remained. Next, title and abstract screening was conducted, 
and 249 records were excluded due to ineligibility, and one record 
could not be retrieved. The remaining 257 records were assessed via 
full-text review to check eligibility, with 181 exclusions with different 
reasons mentioned in the PRISMA flowchart. Consequently, out of 76 
studies, only 39 original research articles were used for data extraction 
and the remaining records comprising review articles and studies with 
insufficient data and lacking adequate quality or relevance were 

https://doi.org/10.3389/fmed.2025.1599340
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Dipankar et al. 10.3389/fmed.2025.1599340

Frontiers in Medicine 04 frontiersin.org

excluded (Supplementary Table  2). The results of the search and 
eligibility screening process are presented in Figure 1.

3.2 Historical evolution of AI powered 
strategies in nanomedicine for brain 
disorder management

In the early 2000s, conventional machine-learning techniques 
were developed based on classical statistical methods. However, this 
ML model could not process multidimensional and complex 
neuroimage datasets. Several methods, such as SVM, have been used 
to analyze brain images or classify brain conditions. For example, 
several studies have employed SVMs to classify psychiatric conditions 
using input and neuroimage data generated from structural MRI (7, 
8). In recent years, advanced neuroimaging techniques, such as 
diffusion tensor imaging (DTI). Moreover, functional MRI (fMRI) has 
made it possible to generate data in which ANN models have focused 
on processing images such as CNNs and transformer variants. This 
opens the possibility that these technological advances may identify 
biomarkers for pathologies such as Parkinson’s disease (PD), 
Alzheimer’s disease (AD), and Schizophrenia (29) (Figure 2).

Moreover, in the 2010s, introducing deep learning techniques was 
an important milestone. In general, the initial structures of the DL 
models resembled information processing in the brain, with neurons 
and layers of neurons processing different information. Now, the 
models are more complex and can identify and extract patterns from 
medical imaging (MRI), thus facilitating the detection of relevant 
features associated with the pathology under study (30). It is the case 
that CNNs can be  used to analyze brain MRI images to identify 
structural and functional losses in Alzheimer’s disease and brain 
tumors. In addition, the feasibility of the existing multiple methods 
favors the use of different strategies, such as ensemble models, 
mixtures of experts, or hybrid models that combine the benefits of 
different models, for example, GAN and CNN (Figure 2).

Concurrently, scientists started applying the ML and DL 
techniques in the field of nanomedicine to design and optimize 
nanocarriers that could cross the selective blood–brain barrier to 
deliver the therapeutics to treat CNS-related disorders (31, 32). Also, 
advanced ML models are used to identify biomarkers for psychiatric 
conditions such as depression and anxiety using resting-state fMRI 
neuroimaging data (33). Others have employed transfer learning 
strategies to improve the diagnosis and classification of brain 
pathologies such as autism spectrum disorder. However, repositories 

FIGURE 1

PRISMA 2020 flow diagram. This diagram depicts the flow of information through different stages of a literature review and maps the number of 
records identified, included, and excluded with detailed justifications.
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of brain images and signals are sources of large-scale neuroimaging 
datasets with which ML/DL models can be trained and validated. 
Another field of action of ML models is deciphering mechanisms 
involved in brain disorders. For example, ML models have been used 
to understand brain connectivity associated with specific neurological 
conditions to identify specific therapies (34). These methods can help 
to predict more accurate clinical outcomes based on specific 
neuroimage signatures, making interventions more effective and 
personalized. Graph-based models and network analysis methods can 
be  used to study brain networks and alterations related to CNS 
pathologies (35, 36).

In the case of personalized medicine, clinicians have used ML 
models to predict treatment responses in patients dealing with 
depression, maximizing their treatment efficacy (37). Recently, the focus 
on adopting ML/DL has become very interesting due to the benefits of 
using large volumes of data. Incorporating machine learning and deep 
learning models in the clinical setting enhances the diagnostic, 
prognostic, and treatment processes (38, 39). However, these 
implementations face several critical challenges, such as data privacy, 
mitigation of algorithmic biases, and limited interpretability of emerging 
machine learning models. Their implementation requires building trust 
among clinicians and establishing conditions that favor the large-scale 
adoption of deep and machine-learning technologies in diagnosing and 
treating neurological disorders (40, 41). Healthcare professionals know 
little about of the rationale behind the ML and DL-based prediction for 
disease prognosis and treatment strategies. Therefore, researchers from 
different backgrounds are trying to develop and implement an 
explainable AI system to generate universal and transparent models. On 
the other hand, using these models requires clear ethical guidelines to 
guarantee transparency and the correct development for their 
responsible use in neuroscience (42). The following sections discuss how 

integrating nanomedicine with machine and deep learning models has 
driven accelerated advances in the field. Nanotechnology enables 
detection at the nanometer scale, while the datasets generated by the 
various methodologies employed in nanomedicine benefit from the use 
of ML/DL models, which facilitate the identification of complex patterns 
and elevate the potential of nanomedicine to a new level.

3.3 Applications of advanced AI integrated 
nanomedicine for the management of 
brain disorders

The previous reports suggest that conventional treatment 
strategies are not effective for the management of brain disorders. The 
recent development in nanotechnology combined with AI based 
approaches has potential to overcome the challenges associated with 
traditional methods and has positive impact on the management of 
various brain disorders including, brain cancer, Alzheimer’s, 
Parkinson’s disease, and multiple sclerosis. These developments are 
observed in different disease management domains, including 
biomarker discovery for early diagnosis, prognosis and disease 
monitoring, therapeutics and drug delivery, and computational 
methodological developments. The following sub-section covers the 
detailed applications of AI based approaches in propelling 
nanomedicine forward and how they transform the various facets of 
brain disorders management (Figure 3).

3.3.1 Biomarker identifications and diagnosis of 
brain disorders

The proper management of brain disorders depends on 
identifications of early biomarkers and diagnosis for timely 

FIGURE 2

Timeline of important events related to research and development of nanomedicine, AI-based methods, and their applications in advancements of 
nanomedicine. This timeline (1930–2024) illustrates the progression of advancements in machine learning and deep learning methods as highlighted 
in blue boxes in the left upper panel. Additionally, the most relevant milestones in nanomedicine are highlighted in green boxes in the left lower panel. 
Since 2014, a growing integration between the two disciplines has been observed, especially in key areas such as biomarker identifications and 
diagnosis, methodological or computational development, prognosis, and therapy or drug delivery for the management of brain disorders are 
highlighted in orange box in the right upper and lower panel. AD, Alzheimer’s Disease; ANN, Artificial Neural Network; CNN, Convolutional Neural 
Network; DL, Deep Learning; EEG, Electroencephalogram; EGFR, Epidermal Growth Factor Receptor; EV, Extracellular Vesicles; GAN, Generative 
Adversarial Network; KNN, K-Nearest Neighbors; LDA, Linear Discriminant Analysis; ML, Machine Learning; MRI, Magnetic Resonance Imaging; MS, 
Multiple Sclerosis; NP, Nanoparticle; OPLS-DA, Orthogonal Partial Least Squares Discriminant Analysis; PD, Parkinson’s Disease; RF, Random Forest; 
SEM, Structural Equation Modeling; SERS, Surface-Enhanced Raman Spectroscopy; SVM, Support Vector Machine.
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interventions. The recent advancements in AI based nanomedicines 
revolutionize biomarker discovery and enable early diagnosis at a 
rapid pace and enable personalized healthcare for brain disorders. 
Surprisingly, there are no reliable biomarkers for Parkinson’s disease 
(PD) related cognitive decline or dementia. In this context the study 
done by Chung et al., demonstrated that plasma derived extracellular 
vesicle (EVs)-borne tau and β-amyloid have the potential to be used 
as a biomarker for Parkinson’s disease (PD). In this study, researchers 
isolated EVs from the blood (plasma) of PD patients of varying 
severity of disease ranging from mild to moderate stages and from 
control individuals and performed immunomagnetic reduction-based 
immunoassay to quantify the level of α-synuclein, tau, and Aβ1-42 
proteins. Further, patient’s datasets considering attributes such as age, 
gender and differential expression of these EV markers were used to 
train the artificial neural network (ANN) model. Interestingly, this 
supervised model can predict the cognitive dysfunction related to 
Parkinson’s disease with an accuracy of 91.3%. Consequently, blood-
plasma derived EV tau and Aβ1-42 emerged as important predictive 
biomarkers for early diagnosis and monitoring of PD derived cognitive 
decline or dementia (43) (Table 1).

Similarly, the conventional diagnostic methods lack early 
detection of Alzheimer’s disease (AD) because of the absence of 
reliable biomarkers. In this context, Resmi et al., proposed solution for 
early detection of Alzheimer’s Disease (AD) using an ultrasensitive 
SERS-based immunoassay integrated with machine learning 
approach. This technique utilized an aluminum SERS substrate to 
detect key AD based biomarkers such as Aβ40, Aβ42, p-tau and t-tau 
in the blood plasma with sensitivity of attomolar levels. Next, the 
author used these biomarkers-based datasets and feeds to different 
machine learning models (MLP, Radial Basis Function, SVM, LDA) 

to classify and differentiate between mild cognitive impairment 
(MCI), AD patients, and healthy individuals (44). In conclusion, the 
development of this AI integrated SERS technique enables the early 
diagnosis of Alzheimer’s disease by detecting these biomarkers with 
high precision and accuracy. Like the previous report, Yu et al., suggest 
that combining SERS with deep learning model (CNN) to analyze 
cerebrospinal fluid to identify new biomarkers for Alzheimer’s disease 
(AD). The CNN models are used to analyze CSF based datasets and 
they can distinguish AD patients with healthy individuals with an 
overall performance of 92% while 100% for normal individuals, and 
88.9% for AD patients. Interestingly, The CNN based classifications 
are strongly corelated with the clinical dementia rating (CDR) (45). 
Therefore, this new hybrid technique (SERS and CNN) has potential 
to identify biomarkers of Alzheimer’s disease with high precision and 
accuracy detection (Table  1). Thus, the integration of AI with 
nanotechnology is promising development for the discovery of new 
biomarkers associated with brain disorders, which is critical for early 
diagnosis and timely intervention for better disease outcomes.

Furthermore, the integration of AI-inspired machine and deep 
learning techniques with nanomedicines transforms the diagnosis of 
neurodegenerative diseases like Alzheimer’s and Parkinson’s, multiple 
sclerosis and brain cancer. Importantly, AI-based models can 
be trained by feeding large clinical datasets and these models have 
potential to analyze large datasets, identifying patterns, and perform 
extraction of these patterns to make predictions leading to earlier and 
more accurate diagnoses, crucial for timely interventions and 
improved patient outcomes. For instance, Corbo et al., developed a 
non-invasive diagnostic platform for the early detection of Alzheimer’s 
disease. Notably, this platform utilized a multi-nanoparticle protein 
corona signature is used to detect a minute change in human plasma 

FIGURE 3

Summary of machine and deep learning methods and their applications in nanomedicine targeting brain disorders. This schematic diagram illustrates 
machine learning (ML) and deep learning (DL) applications in biomarker identification and diagnostics (Blue), prognosis and disease monitoring (Peach), 
therapeutic and drug delivery (Green) and computational and methodological development (Pink). Each column represents the workflow starting with 
different types of biological samples obtained from invasive to noninvasive methods, the latter being preferred because of their lower risk and greater 
accessibility. The use of nanoparticles allows high-sensitive detection levels and incorporating ML and DL methods lead to advancement of different 
facets of disease management. ANN, Artificial Neural Network; AUC, area under the ROC curve; CART, Classification and Regression Trees; CNN, 
Convolutional Neural Network; EEG, Electroencephalography; GAN, Generative Adversarial Network; IoU, Intersection over Union; k-NN, k-nearest 
neighbors; LDA, Linear Discriminant Analysis; MLP, Multi-Layer perceptron; MRI, Magnetic Resonance Imaging; MS, Multiple Sclerosis; PLGA, Poly 
(lactide-co-glycolide); PLS-DA, Partial Least Squares Discriminant Analysis; PLSR, Partial least squares regression; SVM, Support Vector Machine; USPIO, 
Ultrasmall superparamagnetic iron oxide.
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TABLE 1 Summary of biomarker identifications and disease diagnosis based studies for the management of brain disorders.

S.N. Study Objective Target 
disease

Body 
fluids

Core method Nanomaterial AI model

Biomarker identification

1.
Chung et al. 

(43)

Use plasma EV-borne tau/

amyloid to identify 

cognitive dysfunction in 

Parkinson’s disease

Parkinson’s 

disease
Blood (Plasma)

Immunomagnetic 

reduction-based 

immunoassay

Extracellular vesicles (EVs)
Artificial Neural 

Network (ANN)

2.
Resmi et al. 

(44)

Ultrasensitive, multiplexed 

SERS-immunoassay for 

detecting multiple 

Alzheimer’s Disease 

biomarkers (Aβ, tau)

Alzheimer’s 

disease
Blood (Plasma)

Multiplexed SERS-

immunoassay 

platform

Spiky Star-shaped chitosan-

coated gold nanoparticles 

(Cs-AuNPs)

Multilayer 

Perceptron (MLP), 

Radial Basis 

Function, Support 

Vector Machine 

(SVM), and Linear 

Discriminant 

Analysis (LDA)

3. Yu et al. (45)

High-sensitivity 

cerebrospinal fluid 

approach combining SERS 

with a convolutional neural 

network for Alzheimer’s 

Disease (AD) detection

Alzheimer’s 

disease

Cerebrospinal 

fluid (CSF)

Surface-enhanced 

Raman spectroscopy 

(SERS)

Gold nanopyramid 

structure

1D - 

Convolutional 

Neural Network 

(CNN)

Disease diagnosis

4.
Corbo et al. 

(46)

Develop a multi-

nanoparticle protein corona 

approach to distinguish AD 

vs. healthy plasma samples 

for early AD detection

Alzheimer’s 

disease
Blood (Plasma)

Multi-nanoparticle 

protein corona 

profiling

Nano-platform (6 NPs) 

were 100 nm Silica (S) or 

Polystyrene (P) 

Nanoparticles with either 

Plain (P and S), amino-

conjugated (P-NH2 and 

S-NH2), or carboxyl-

conjugated (P-COOH and 

S-COOH)

Random Forest 

Classifier

5.

Etxebarria-

Elezgarai et al. 

(47)

Surface-Enhanced Raman 

Spectroscopy (SERS) of 

cerebrospinal fluid to detect 

Alzheimer’s at preclinical/

prodromal stages

Alzheimer’s 

disease

Cerebrospinal 

fluid (CSF) 

fractions

Surface-enhanced 

Raman spectroscopy 

(SERS)

Gold nanoparticles (Au 

NPs) substrates

Partial Least 

Squares 

Discriminant 

Analysis (PLS-

DA)

6.
Meehan et al. 

(48)

Identify aptamer-based 

plasma markers 

(Aptamarkers) for brain 

amyloid deposition 

associated with AD

Alzheimer’s 

disease
Blood (Plasma) Neomer library Aptamer

Extra Trees, 

Random Forest, 

Gradient 

Boosting, and 

Logistic 

Regression

7.
Ryzhikova 

et al. (49)

A SERS-based blood test for 

AD, distinguishing mild/

moderate AD and other 

dementias from healthy 

controls

Alzheimer’s 

disease
Blood (Serum)

Surface-Enhanced 

Raman Spectroscopy 

(SERS)

Silver colloidal nanoparticle 

(Ag NPs)

Artificial Neural 

Network (ANN) 

with Genetic 

Algorithm Feature 

Selection

8.
Wang et al. 

(50)

GO/Au-based SERS 

detection of Aβ1–42 for 

early AD diagnosis

Alzheimer’s 

disease

Blood (serum) 

(synthetic 

Aβ1–42 

solutions)

Surface-enhanced 

raman spectroscopy 

(SERS)

Graphene oxide/gold 

nanohybrids

1D Convolutional 

Neural Network 

(1DCNN), and 

Support Vector 

Machine (SVM)

(Continued)
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TABLE 1 (Continued)

S.N. Study Objective Target 
disease

Body 
fluids

Core method Nanomaterial AI model

9.
Wang et al. 

(61)

Ultrasound-enriched 

colorimetric lateral flow 

assay (LFA) for tau-protein 

detection in AD

Alzheimer’s 

disease

Plasma or 

serum

Colorimetric lateral 

flow assay (LFA) with 

ultrasound 

enrichment

Colloidal gold nanoparticles 

(AuNPs)

k-Nearest 

Neighbor (KNN), 

and Gaussian 

Process 

Regression (GPR)

10. Xu et al. (52)

ML-assisted dendrimer-

based fluorescent sensor 

array to identify different 

aggregation states of Aβ for 

AD diagnosis

Alzheimer’s 

disease
Serum/CSF

Fluorescent sensor 

array

Pyrene modified fifth 

generation polyamidoamine 

(G5-PAMAM) dendrimers

Linear 

Discriminant 

Analysis, Decision 

Tree, SVM, and 

Logistic 

Regression

11. Xu et al. (54)

Machine learning–assisted 

dual-enzyme sensor array 

(nanoenzyme and 

bioenzyme) to classify 

amyloid species relevant to 

AD

Alzheimer’s 

disease
Blood (Plasma)

Dual-enzyme 

(Nanoenzyme + 

Bioenzyme) 

Fluorescent Sensor 

Array

Nonoenzyme (AuNPs) and 

Bioenzyme (Horseradish 

Peroxidase)

Linear 

Discriminant 

Analysis and 

k-Nearest 

Neighbor (KNN)

12. Xu et al. (53)

Saliva metabolic 

fingerprinting for 

Parkinson’s Disease 

diagnosis via nanoparticle-

enhanced LDI-MS

Parkinson’s 

disease
Saliva

Laser desorption–

ionization mass 

spectrometry (LDI-

MS)

Nanoparticle-enhanced 

laser desorption–ionization 

mass spectrometry

LASSO, XGBoost, 

SVM, Random 

Forest, and 

Specialized 

“Stroke Network”

13. Eid et al. (55)

ML-powered, lead-free 

piezoelectric nanoparticle-

based DBS system for 

diagnosing/evaluating PD

Parkinson’s 

Disease
Brain Tissue

Deep brain 

stimulation (DBS)

Lead-free piezoelectric 

nanoparticle

Transformer 

Networks + 

Hybrid Simulated 

Annealing–

Particle Swarm 

Optimization 

(SA-PSO), and 

Federated 

Learning

14. Li et al. (56)

Identify plasma EV-derived 

miRNA biomarkers to 

distinguish idiopathic REM 

sleep behavior disorder vs. 

PD vs. healthy controls

Parkinson’s 

disease
Blood (Plasma)

Next Generation 

Sequencing (NGS)
Plasma EV-derived miRNA

Support Vector 

Machine (SVM)

15.
Broza et al. 

(57)

Develop a rapid, 

noninvasive breath test 

using nanomaterial-based 

sensors for diagnosing 

Multiple Sclerosis (MS)

Multiple 

sclerosis
Exhaled Breath

Gas 

Chromatography–

Mass Spectrometry 

(GC–MS)

Nanomaterial-based sensor 

array

Multilayer 

Perceptron–type 

(MLP-type), and 

ANN

16.
Eyraud et al. 

(58)

Plasma nanoDSF 

denaturation profiles for 

EGFR classification in 

glioblastoma (GBM)

Brain cancer Blood (Plasma)

Nano differential 

scanning fluorimetry 

(nanoDSF)

Plasma nanoDSF 

denaturation profile

SVM, Random 

Forest, and 

AdaBoost, 

Logistic 

Regression (with 

LOOCV)

17.
Rani et al. 

(59)

Nanoscale imaging 

technique combined deep 

learning for rapid MRI-

based brain tumor 

detection

Brain cancer Brain tissue
Nanoscale MRI 

imaging

Nanotechnology based 

detection scheme (NBDS) 

(gold nanoparticle and 

quantum dots)

Deep Neural 

Network

(Continued)
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protein signatures. Further, these datasets are analyzed by machine 
learning model including random forest to distinguished plasma 
samples of healthy and disease subjects with >92% specificity and 
≈100% sensitivity, demonstrating its potential for of Alzheimer’s 
disease (46). Similarly, Etxebarria-Elezgarai et  al., used Surface-
enhanced Raman Spectroscopy (SERS) with gold nanoparticles 
(AuNPs) to analyze cerebrospinal fluid samples from Alzheimer’s 
disease (AD) patients. Combining SERS with AI-based partial least 
square discriminant analysis (PLS-DA) achieved 100% accuracy in 
classifying early-stage AD patients compared to 85% for the healthy 
control group (47) (Table 1).

Importantly, brain amyloid deposition is the hallmark of 
Alzheimer’s disease, which can be used for diagnosis of Alzheimer’s 
disease (AD). A newly developed aptamer-based plasma test identifies 
brain amyloid deposition and, when integrated with a machine 
learning model, the ExtraTreeClassifier improved the accuracy and 
predictive power with sensitivity of 0.88, specificity of 0.76 and AUC 
of 0.79. the overall reports suggest that this method is capable of 
diagnosis and monitoring the progression of Alzheimer’s disease (48). 
Interestingly, another scientific group utilized a modified SERS 
technique with the combination of multivariate statistical methods for 
the diagnosis of Alzheimer’s disease by analyzing blood serum. In this 
method researchers used colloidal silver nanoparticles (Ag NPs) as an 
active SERS substrate.

Furthermore, artificial neural networks (ANNs) were used to 
analyze SERS spectra to differentiate Alzheimer’s disease (AD) 
subjects from healthy control in binary model with sensitivity of ≈ 
96% and achieved diagnostic sensitivity of 98% for differentiating 
Alzheimer’s disease (AD) individuals, Healthy control (HC), and 
Other Dementia (OD) samples in a tertiary model. This study 
highlights that combination of SERS and ANN models has potential 
for accurate and early Alzheimer’s disease detection (49). Also, 
another group used similar concept for the development of modified 
SERS technique, which involves, combining SERS with AI-based 
models to enhance detection of Aβ 1–42 monomers, which is 
important pathological biomarker of Alzheimer’s disease. This SERS 
platform contains graphene oxide/gold nanohybrids (GO/AuNPs) for 
the detection of Aβ 1–42 monomers and fibrils form with detection 
limits of 0.0232 and 0.0192 ng mL−1, respectively.

Next, scientist applied support vector machine (SVM) and 
one-dimensional convolutional neural network (1D-CNN) algorithms 
to analyze fibril orientation for accurate diagnosis of Alzheimer’s 
disease (50). Conventional colorimetric lateral flow assay (LFA) 

utilizes colloidal gold nanoparticles (AuNPs) for the diagnosis of 
Alzheimer’s disease, which exhibits low specificity and sensitivity. 
Importantly, the study led by Wang et  al., proposed an advanced 
method that exploits the machine learning algorithms with optimized 
colorimetric LFA, and ultrasound enrichment led to detection of tau 
proteins in undiluted blood serum samples with improved sensitivity. 
Various machine learning algorithms were used for different purposes 
such as k-nearest neighbor (KNN) for classification as well as Gaussian 
process regression (GPR) for accurate quantification of tau protein 
with enhanced classification, prediction accuracy of 98.11 and 99.99%, 
respectively, and a limit-of-detection (LOD) of 10.30 pg. mL−1. Thus, 
this improved method has potential to detect tau protein for clinical 
diagnosis of Alzheimer’s disease (AD) with greater sensitivity and 
precision (51) (Table 1).

Additionally, another research group advanced methods 
involving fluorescent sensor arrays through the integration of 
machine learning based algorithms including linear discriminant 
analysis (LDA) for the diagnosis of Alzheimer’s disease (AD). 
Notably, the sensor array consists of pyrene modified fifth generation 
poly-amidoamine (G5-PAMAM) dendrimers that allow parallel 
detection of 11 Aβ40/Aβ42 aggregates including monomer, oligomer 
and fibril forms present in different interferants, serum media and 
cerebrospinal fluid (CSF) with enhanced accuracy of 100%. The 
integration of LDA with fluorescent sensor array has tremendous 
potential for the early Alzheimer’s disease diagnosis with greater 
accuracy and precision (52). Similarly, Xu et al., developed another 
fluorescent sensor array with dual coupling of nonoenzyme (AuNPs) 
and bio enzyme (horseradish peroxidase) for the detection of 
ultralow β-amyloid (Aβ) proteins (monomer, oligomer and fibril 
form) in blood plasma of Alzheimer’s induced mouse model. Further, 
machine learning algorithms such as k-nearest neighbor (KNN) and 
linear discriminant analysis (LDA) were employed to identify various 
β-amyloids aggregates and can distinguish Alzheimer’s induced 
mouse model and healthy mice with 100% accuracy (53).

The following section explores how the recent synergy of AI 
driven methods with nano-diagnostic techniques led to the 
advancements in the diagnosis of Parkinson’s disease. Recently, Xu 
et al., developed a non-invasive diagnostic method using human saliva 
samples analyzed with deep learning-based nanoparticle-enhanced 
laser desorption–ionization mass spectrometry. This approach 
successfully mapped the saliva metabolic fingerprint helps to 
differentiate between healthy subjects and Parkinson’s disease 
participants with an AUC of 0.8496 (54). Moreover, deep brain 

TABLE 1 (Continued)

S.N. Study Objective Target 
disease

Body 
fluids

Core method Nanomaterial AI model

18. Sun et al. (60)

Ratiometric SERS approach 

to quantify glioma cells 

intraoperatively and guide 

surgical resection

Brain cancer Glioma cell

Surface-enhanced 

raman spectroscopy 

(SERS)

Silver nanoparticles 

(AgNPs)

Polynomial 

Regression Model, 

and Artificial 

Neural Network

19.
Wang et al. 

(51)

SERS-based distinction of 

gliomas at cellular and 

tissue levels

Brain cancer
Glioma tumor 

cells

Surface-enhanced 

Raman spectroscopy 

(SERS)

Gold Nanoshell (SiO2@Au) 

particles and Gold 

Nanoisland (AuNI)

SVM, and 

Orthogonal Partial 

Least Squares 

Discriminant 

Analysis (OPLS-

DA)
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stimulation (DBS) has been used to treat Parkinson’s disease, but the 
traditional use of lead electrode poses a risk of metal toxicity. To 
address this, scientist have developed a new approach called Lead-free 
piezoelectric nanoparticle-based DBS (LF-PND-DBS). This innovative 
method utilizes lead free piezoelectric nanoparticle to deliver electrical 
stimulation and thus eliminating the risk of metal toxicity (Table 1).

Recently, Eid et  al., further advanced this technology by 
incorporating machine learning techniques such as transformer 
networks, hybrid simulated annealing–particle swarm optimization 
(SA-PSO), federated learning using an optimized LF-PND-DBS 
system. In a cohort patients study this optimized system achieved high 
accuracy (99.1%) and specificity (98.2%) for diagnosis and 
demonstrating its potential for precise diagnosis and personalized 
treatment delivery (55). Furthermore, another interesting study done 
by Li et  al., developed a non-invasive method for diagnosing 
Parkinson’s disease using plasma blood samples. The authors have 
analyzed small molecule miRNA associated with extracellular vesicles 
(EVs) in the plasma of healthy and diseased patients by applying 
support vector machine (SVM) model. This algorithm can effectively 
identify EVs miRNA signatures and has potential to distinguish 
between plasma samples from healthy control and those with 
Parkinson’s disease individuals with an AUC of 0.916 (56). In 
conclusion the integration of AI driven techniques with nano-
diagnostic tools substantially improved the accuracy, specificity, 
sensitivity, and predictive abilities leading to precise classification and 
early detection of the Alzheimer’s and Parkinson’s diseases pave the 
way for timely intervention and improved patient outcomes (Table 1).

Multiple sclerosis is a chronic neurodegenerative disease and it is 
conventionally diagnosed with the help of invasive methods. To 
overcome these challenges researchers are actively pursuing 
non-invasive solutions, particularly through the integration of AI and 
nano-diagnostic techniques. In this context, the study led by Broza 
et al., developed a rapid, non-invasive technique analyzing volatile 
organic compounds (VOCs) in breath samples using gas 
chromatography–mass spectrometry (GC–MS) and a nanomaterial-
based sensor array and built a predictive model with an artificial 
neural network (ANN). GC–MS was used for analyzing distinct VOC 
profiles in MS patients compared to controls. The combination of 
sensor array and artificial neural network can easily differentiate 
between MS patients from heathy control group with accuracy of 90%. 
Also, the blind validation was carried out and it can differentiate other 
studied groups with great accuracy such as 95% PPV for MS remission 
versus control group with 100% sensitivity and 100% NPV for MS 
non-treated versus control groups, and 86% NPV for relapse versus 
controls (57). In conclusion, AI powered GC–MS methods have 
potential to diagnose multiple sclerosis with improved accuracy 
(Table 1).

Furthermore, the integration of AI based models with core 
techniques utilizing nanoparticle or nanomaterial has improved the 
diagnosis of brain cancer. In this context, Eyruad et al., utilized nano 
differential scanning fluorimetry (nanoDSF) to generate plasma 
denaturation profiles (PDPs) from the blood plasma of brain cancer 
patients and healthy individual’s subjects. PDPs are further analyzed 
by AI based algorithms to detect altered EGFR expression profile and 
perform automated classification with accuracy of 81.5% (58). Thus, 
this technique can be useful for the better diagnosis of brain cancer 
associated with alteration of epidermal growth factor receptor 
(EGFR). Importantly, Rani et al., utilized nanoscale imaging with deep 

neural network-based segmentation to locate tumor in precise manner 
in MRI based images, which cannot be possible by using conventional 
methods. The integration of neural networks with MRI can easily 
locate tumors with a high accuracy of 97.3% (59). Moreover, the 
complete surgical removal of brain tumors is essential to prevent the 
risk of glioma recurrence, but the invasive nature of tumor cells makes 
surgery challenging due to limitations in identifying tumor boundaries 
or margins.

To address this limitation Sun et al., introduced modified surface-
enhanced Raman scattering (SERS) technique for detection of glioma 
cells using silver nanoparticles (AgNPs). Further, the SERS produced 
spectral peaks are analyzed using artificial neural networks and 
polynomial regression modeling. The peak around 655 and 717 cm−1, 
correspond to glioma cell proportion and can estimate the glioma cell 
percentages in simulated sample and frozen sample with R2 of 0.98 
and 0.85, respectively. Therefore, the integration of AI based 
algorithms with SERS would be useful for identification of tumor 
margins in fresh tissue samples and it could be helpful for real time 
visualization of tumor boundaries during intraoperative brain tumor 
surgery (60).

Similarly, Wang et al., introduced the concept of differentiating 
glioma at both cellular and tissue levels. To make a distinction at the 
cellular level between normal astrocytes and non-central nervous 
system (CNS) tumor cells, the researchers used a modified SERS 
technique utilizing gold nanoshell (SiO2@Au) particles and support 
vector machine (SVM) algorithms. Subsequently, gold nanoisland 
(AuNI) SERS substrates used for detection of glioma tumor tissue and 
further employing support vector machine (SVM) and orthogonal 
partial least squares discriminant analysis (OPLS-DA) to distinguish 
glioma and trauma tissues, identification of various tumor grades, and 
determination of IDH mutation with great accuracy and precision. 
These findings indicate the feasibility of SERS-based methods for both 
single-cell and tissue-level GBM detection, with potential for real-time 
intraoperative diagnosis (61). In conclusion the integration of AI 
driven techniques with nano diagnostic tools significantly improved 
the accuracy, predictive abilities leading to precise classification and 
detection of the glioma Versus normal cells demonstrating the 
revolution of the field of brain cancer diagnosis (Table 1).

3.3.2 Prognosis and disease monitoring
The management of brain related disorders also depends on 

prognosis and monitoring the severity of disease in regular intervals 
of time. Currently, the recent developments and progress in AI based 
nanomaterials are used to track the disease by monitoring the 
expression level of specific biomarkers, neurotransmitters release, and 
analyzing image datasets (Table  2). This section will explore how 
different nanomaterials and AI based approaches are used for 
prognosis and disease monitoring of brain related pathologies.

In both Alzheimer’s and Parkinson’s diseases, it is evident that the 
accumulation of oligomers plays a critical role in the 
neurodegeneration process. Aβ and α-synuclein are the key proteins 
involved in these conditions. Therefore, it is essential to develop high-
throughput methods for quantitatively estimating these oligomers 
with high accuracy and precision. To address this problem Sandler 
et al., proposed a method that combined solid-state nanopores and 
DNA barcoding to detect and quantify α-synuclein oligomers. 
Additionally, researchers developed a multiplexed detection system to 
detect and analyze multiple samples or different conditions within a 
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single experiment. The nanopore sensing detection systems measured 
change in ionic current based on the analyzed proteins size, shape, and 
charge. Also, it allows the testing of drugs that inhibit oligomer 
agglomeration. Researchers employed the combination of molecular 
docking and iterative active learning to identify small molecule 
inhibitors for α-synuclein aggregation. Furthermore, these potential 
drugs were identified using machine learning models that 
continuously updated and refined their predictions as new 
experimental data were generated. As a result of this the two potential 
inhibitors (Anle-138b and I3.08) were identified, which can inhibit 
α-synuclein’s secondary nucleation (62) (Table 2).

Another strategy for studying the aggregation of these oligomers 
is to develop methods capable of early detection of this process. 
Tahirbegi et al., proposed a single-molecule photobleaching (SMP) 
technique to detect early-stage aggregation of Aβ40 and α-synuclein. 
This method outperforms conventional techniques that struggle to 
identify the transition from monomer to low-order oligomer at low 
physiological protein concentrations. Typically, proteins are 
immobilized on a solid surface to ensure single-molecule resolution. 
In the case of α-synuclein samples, these samples were collected after 
12 h of incubation with various concentrations of gold nanoparticles. 
These nanoparticles function as aggregation modulators, exhibiting 
inhibitory and promotional effects depending on their concentration. 
Subsequently, Total Internal Reflection Fluorescence microscopy 
recorded fluorescence intensity over time. The data obtained from the 
fluorescence was used to train SVM and MLP models. Overall, the 
MLP model achieved an accuracy of 83.5%, with a relaxed true 
positive rate (TPR) of 98.9% (63). The AI-driven advancements in 
nano diagnosis methods enable the potential to monitor the 
progression of Alzheimer’s and Parkinson’s diseases (Table 2).

The study, by Chan et al., utilized a peptide-encapsulated droplet 
micro laser and a 3D deep learning strategy such as multi-convolution 
architectures (2D + 1D), along with fully connected layers to detect 
minute nano structural spectral shifts during amyloidogenesis and to 
monitor their progression. Interestingly, this multimodal approach 
achieved high accuracy of over 95% for all kinds of datasets including 
training, validation, and test sets and demonstrating AI based 
nanomaterials have the potential to its potential for the progression of 
these neurodegenerative diseases (64). Furthermore, the integration 
of AI and nanotechnology enables us to develop strategies to detect 
and track the changes in neurotransmitters. In this context, Hozhabr 
et al., developed a multicolor sensor using gold nanorods to detect and 
monitor dopaminergic drugs (L-DOPA, carbidopa, benserazide). 
Researchers employed the linear discriminant analysis (LDA) and 
partial least squares regression (PLSR) to process high-dimensional 
data for enhanced detection with achieved 100% accuracy in 
classification and quantification tasks and detection limits ranging 
from 0.03 micromolL−1 to 0.9 micromolL−1 (65).

Moreover, other methods have integrated the detection of 
neurotransmitters in brain tissue which is demonstrated by Komoto 
et al., who report that nanogaps and XGBoost are used to measure 
tunneling currents to detect specific neurotransmitters. XGBoost 
served as a qualifier for differentiating neurotransmitters. Although 
the metrics were not satisfactory (F1-score 0.52), the single-molecule 
measurement enabled high-resolution monoamine neurotransmitter 
detection in both solutions and mouse brain tissue (66). One type of 
nanoscale biomarker is extracellular vesicles (EVs), which are 
implicated in Alzheimer’s and other tauopathies. These vesicles have 

been found to transport tau and amyloid-beta oligomers between 
brain cells. In the Muraoke et al., study, plasma samples were collected 
from NFL players and age-matched controls to isolate EVs using size-
exclusion chromatography, followed by proteomics analysis with mass 
spectrometry. The study also evaluated total tau (t-tau) and 
phosphorylated tau (p-tau181) levels using a modified, ultrasensitive 
immunoassay. These protein levels were used to train models, 
including linear discriminant analysis, Naive Bayes, and SVM, to 
differentiate between NFL players and the control group with achieved 
accuracy of 85% and AUC of 0.85. The finding suggests that these EVs 
contained tau proteins are associated with the progression of 
Alzheimer’s disease (67) (Table 2).

Besides detecting proteins, imaging is also utilized to track the 
biomarkers in neurodegenerative diseases such as multiple sclerosis 
and Parkinson’s. Similar to this concept, Crimi et  al., introduced 
machine learning-based classification framework to identify 
spatiotemporal patterns of lesions observed in multiple sclerosis. In 
this study, the author used ultrasmall superparamagnetic iron oxide 
(USPIO)-enhanced MRI to highlight the macrophages activity. 
Further different clustering methods such as K-means, hierarchical 
clustering, Gaussian mixture models (GMM), and spectral clustering 
were applied for a two-tier classification framework, including lesion 
classification and for patient classification.

Furthermore, scientists developed a tremor sensor to monitor the 
Parkinson’s disease (PD) severity and treatment response by tracking 
tremor patterns of patients in a real-time manner (68). The study led 
by Kim et al., worked on this concept and introduced a stretchable and 
self-healable catechol-chitosan-diatom hydrogel (CCDHG) as a novel 
biocompatible electrode for triboelectric nanogenerators (TENGs) 
which can be utilized as a tremor sensor to detect low-frequency 
vibrations in PD patients. Additionally, scientist applied machine 
learning algorithms such as linear SVM and KNN that enables sensor 
to classify the tremors based on different tremor intensities with an 
accuracy of 100% (69). Similarly, monitoring disease progression of 
multiple sclerosis by employing nanomaterial is reported by Morris 
et  al., in this study authors implanted microporous poly 
(ε-caprolactone) (PCL) scaffolds subcutaneously in SJL/J mice to 
examine the immune cell activity and gene expression pattern at 
different stages of the disease (pre-symptomatic, symptomatic, 
remission, relapse). Further, a Bagged tree algorithm was used to 
predict the disease state and relapse by analyzing changes in gene 
signatures. This minimally invasive method allows us to study both 
the disease’s mechanism and the responses to treatments in MS and 
other immune diseases (70) (Table 2).

3.3.3 Therapeutics and drug delivery
This section explores the recent development in AI based 

nanomedicine led to transformational changes in drug delivery 
methods and treatment strategies for the management of brain 
disorders. Also, covers different machine and deep learning strategies 
that improves pattern recognition and extraction from the 
different datasets.

The conventional machine learning approaches used input features 
as a static value, but the study done by Munteanu et al., presents a novel 
approach using perturbation theory machine learning (PTML), which 
dynamically adjusts molecular descriptors, such as logP, by incorporating 
perturbations observed across different experimental conditions (e.g., cell 
types) and then uses these values as input to train the ML model. The 
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TABLE 2 Summary of Prognosis and Disease Monitoring Based Studies for the Management of Brain Disorders.

S.N. Study Objective Target 
disease

Sample/
Analytes/

Symptoms

Core method Nanomaterial AI model

1.
Sandler et al. 

(62)

Single molecule 

nanopore approach to 

detect misfolded 

protein oligomers, 

aiding PD drug 

discovery

Parkinson’s 

disease

Misfolded protein 

oligomers

Solid-state 

nanopores and DNA 

barcoding

DNA nanostructure

Active Learning–

Based Docking 

Simulations for 

Small Molecule 

Inhibitor 

Optimization

2.
Tahirbegi 

et al. (63)

High-throughput 

single-molecule 

method with ML to 

detect oligomers of 

alpha-synuclein and 

amyloid beta

Alzheimer’s 

disease and 

Parkinson’s 

disease

Amyloidogenic 

proteins

Single-molecule 

photobleaching 

(SMP) and total 

internal reflection 

fluorescence 

microscopy

Gold nanoparticles (Au 

NPs)

SVM, and 

Multilayer 

Perceptron (MLP)

3.
Chan et al. 

(64)

3D deep-learning 

strategy to track 

amyloidogenesis 

(applicable to AD or 

PD) using microlaser 

imaging

Alzheimer’s 

disease and 

Parkinson’s 

disease

Amyloidogenic 

proteins

Protein-based 

microdroplet laser 

array

Amyloid nanostructure 

conformation

Multi-convolution 

architecture 

(2D + 1D), plus 

fully connected 

layers

4.
Hozhabr 

et al. (65)

A colorimetric sensor 

with gold nanorods to 

discriminate 

dopaminergic agents 

relevant to PD 

progression 

monitoring

Parkinson’s 

disease

L-DOPA, Carbidopa, 

Benserazide
Colorimetric Sensor Gold nanorods

Linear 

Discriminant 

Analysis (LDA), 

and Partial Least 

Squares Regression 

(PLSR)

5.
Komoto et al. 

(66)

Time-resolved 

detection of 

neurotransmitters in 

mouse brain tissue for 

PD diagnostics

Parkinson’s 

disease

Dopamine, 

serotonin, 

norepinephrine

Multicolor sensor Nanogap electrodes

XGBoost, and 

Random Forest 

Classifiers

6.
Muraoka 

et al. (67)

Proteomic profiling of 

plasma EVs to 

identify potential 

CTE biomarkers in 

former NFL players

Alzheimer’s 

disease
Blood (Plasma) EVs Proteomic profiling

Extracellular vesicles 

(EVs)

Linear 

Discriminant 

Analysis (LDA), 

Naive Bayes, and 

SVM

7.
Crimi et al. 

(68)

Imaging markers in 

early multiple 

sclerosis for disease 

prognosis and better 

treatment

Multiple 

sclerosis

Monoamine 

neurotransmitter
MRI scan

Ultrasmall super 

paramagnetic iron oxide 

(USPIO) and 

gadolinium (Gd)

XGBoost

8.
Kim et al. 

(69)

Self-powered tremor 

sensor classifying 

Parkinson’s disease 

tremor severity.

Parkinson’s 

disease
Tremor Tremor sensor

Catechol-chitosan-

diatom hydrogel 

(CCDHG)

Linear SVM, and 

KNN

9.
Morris et al. 

(70)

Biomaterial-based 

“immunological 

niches” for real-time 

monitoring of 

multiple sclerosis 

relapse/treatment 

efficacy

Multiple 

sclerosis
T-cells

Adoptive transfer of 

encephalitogenic 

T-cells

Antigen encapsulating 

PLG nanoparticles

Bagged Tree, and 

Singular Value 

Decomposition 

(SVD)
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authors used molecular descriptors of the drug, the nanoparticles, 
experimental conditions, and the perturbations to which the system is 
exposed. Despite testing approximately 800,000 drug-nanoparticle 
complexes, no pair of clinical interest is mentioned; however, among the 
relevant features that were found, given that the best model was a decision 
tree-based method, are Perturbation of Polar Surface Area in different cell 
types, perturbation of logP (lipophilicity) in other cells, nanoparticle 
surface area of acceptor atoms, nanoparticle size in various experimental 
conditions, Van der Waals volume of nanoparticles in different situations, 
and nanoparticle polarizability in other conditions. This shows that drug 
solubility and nanoparticle physicochemical properties in predicting 
cytotoxicity are essential in predicting a cytotoxic complex and collaborate 
in the design of new treatments (71) (Table 3).

Additionally, advances in glioblastoma and glioma have 
increasingly focused on identifying specific molecular targets for 
therapeutic intervention. The epidermal growth factor receptor, or 
EGFR, is a tyrosine kinase receptor widely studied in cancer. The 
mutation in EGFR gene is responsible for dysregulated protein 
expression results in abnormal cellular functions including survival, 
proliferation, differentiation and migration. In this context, Chandra 
Kaushik et al., conducted in silico study that applied deep learning, 
molecular docking, time course simulation and synthetic biology to 
identify the nanoparticle which has synergistic antitumor activity with 

anti-EGFR-iRGD protein. In this study, author employed deep 
learning models were used to predict potential nanoparticle which has 
higher binding affinity with maximum inhibitory potential against 
EGFR-iRGD protein using PubChem chemical compound library. The 
predictions suggest that Gold Nanoparticles (AuNPs) were the most 
effective inhibitors of EGFR. Further, to validate this finding 
researcher performed molecular docking study to determine the 
binding affinity and found that AuNPs and EGFR have a binding 
affinity of (−3.5 kcal/mol). Additionally, the authors applied synthetic 
biology to examine the effects of EGFR and AuNPs interaction in 
downstream signaling pathways including Ras/Raf/mitogen-activated 
protein kinase pathway, the PI3K/Akt pathway, the PLCγ pathway, and 
the STAT3 pathway by applying Boolean circuit analysis. Through this 
analysis, the researchers validated the impact of AuNPs (0.45 mmol) 
on EGFR downstream signaling pathways over time, and found that 
AuNPs gradually diminish EGFR activation, which results in 
inactivation of downstream players leads to tumor suppression. 
Overall, results suggest that antitumor efficiency of anti-EGFR-iRGD 
protein with gold nanoparticles (AuNPs) complex is effective against 
EGFR driven tumors (72). Thus, this study opened the door to 
predicting and validating nanoparticle-based therapies that target 
specific downstream molecular pathways, providing a new basis for 
developing effective precision medicine (Table 3).

TABLE 3 Summary of therapy and drug delivery based studies for the management of brain disorders.

S.N. Study Objective Target 
disease

Therapeutics 
agent

Application Nanomaterial AI model

1.
Munteanu 

et al. (71)

Predict anti-glioblastoma 

efficacy of drug-decorated 

nanoparticles using 

molecular descriptors

Brain cancer
Drug–nanoparticle 

combinations

Anti-glioblastoma 

efficacy

Drug-decorated 

nanoparticles (DDNPs)

Perturbation Theory 

Machine Learning 

(PTML), and 

Multiple Classifiers 

(Random Forest, 

Bagging, AdaBoost)

2.

Chandra 

Kaushik et al. 

(72)

Investigate the synergistic 

antitumor efficiency of 

anti-EGFR-iRGD protein 

with gold nanoparticles 

(AuNPs) for glioma

Brain cancer
Anti-EGFR-iRGD 

and AuNP complex

Anti-tumor 

efficiency

Gold nanoparticles 

(AuNPs)

Deep Neural 

Networks (DNN)

3.
Karthik et al. 

(73)

Combine quantum dots 

(QDs) with a real-time 

imaging-guided 

therapeutic system to 

refine radiotherapy 

targeting

Brain cancer

Real-time imaging-

guided therapeutics 

(RIGT)

Advanced tumor 

segmentation

Combine quantum dots 

(QDs)
Hybrid CNN–GAN

4.
Kakulade 

et al. (74)

Formulate an intranasal 

selegiline HCl–loaded 

cubosomal gel to enhance 

bioavailability and brain 

targeting

Parkinson’s 

and 

Alzheimer’s

Selegiline HCl–

loaded cubosomal 

thermoreversible 

mucoadhesive gel

Controlled drug 

release
Cubosomes

Artificial Neural 

Network (ANN)

5.
Sun et al. 

(75)

Explore 1 T-MoS2 

nanosheets to enhance 

neuronal cell fate and 

therapy, modulating 

biomolecular interactions 

for potential PD 

treatments.

Parkinson’s 

disease

1 T-MoS2 (octahedral 

coordination) and 

2H-MoS2 (triangular 

prism coordination) 

with fibronectin and 

liposomes

Neuronal cell fate 

therapy
1 T-MoS2 nanosheets

Polynomial 

Regression Model 

and Artificial Neural 

Network
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Moreover, there is a significant advancements in imaging techniques 
are also reported, which is evident from the study conducted by Karthik 
et al., who introduced a hybrid CNN-GAN model to improve tumor 
segmentation and refine radiotherapy targeting through quantum dots 
(QDs). In this approach the quantum dots provide high-resolution 
contrast at varying tissue depths, thereby improving the performance of 
real-time MRI while CNN-GAN hybrid model substantially improved 
the extraction and segmentation of brain tumors. CNN contributes to 
feature identification by recognizing distinct patterns in healthy and 
tumor tissue while determining characteristics such as size, shape, and 
heterogeneity. Meanwhile, GAN utilizes a generator-discriminator 
framework that refines the segmented images to capture specific tumor 
details. The researchers used high-resolution 3D MRI brain scans to 
segment the tumors and compare their findings with the ground truth, 
achieving a Dice Coefficient of 0.95, which confirms high segmentation 
precision. The results indicate a notable advancement in neuro-
oncology, as it allows for the proposal of real-time and accurate patient 
treatment (73) (Table 3).

While nanomedicine and AI have made significant strides in 
cancer treatment by optimizing drug delivery and imaging precision, 
similar approaches have also been directed toward Parkinson’s and 
Alzheimer’s diseases. This field focuses on enhancing drug 
bioavailability, penetrating the blood–brain barrier, and targeting 
neuromodulation. Specifically, machine learning and deep learning 
models are utilized to improve drug treatments and brain stimulation. 
In the realm of neuromodulation, as discussed in the Diagnostic/
Biomarkers section, Eid et al., proposed integrating machine learning 
methods to diagnose and evaluate treatment efficacy using lead-free 
piezoelectric nanoparticle-based deep brain stimulation 
(LF-PND-DBS). They trained machine learning models using EEG 
datasets from Kaggle and clinical records of Parkinson’s to optimize 
DBS stimulation parameters. In this instance, the best-performing 
model was based on transformers hybridized with Simulated 
Annealing and Particle Swarm Optimization, producing very 
promising metrics; for example, the F1 score achieved a value of 99.2. 
This study paves the way for advancements in neuromodulation 
without requiring invasive techniques, minimizing adverse effects, 
and integrating personalized treatment (55) (Table 3).

Among the treatments for the symptoms of Parkinson’s disease, 
there are also drugs such as selegiline HCl, which works alongside 
levodopa to slow the progression of Parkinson’s symptoms. Many 
drugs have difficulty crossing the blood–brain barrier (BBB), making 
it essential to find different dosage forms that enhance drug 
bioavailability. In this context, Kakulade et  al., developed, 
characterized and evaluated the pharmacokinetics of selegiline HCl 
(SGH)-loaded cubosomal thermoreversible mucoadhesive gel for 
nose-to-brain drug delivery. The formulations utilized cubosomal gel 
as a drug delivery vehicle which can transpassing the blood brain 
barrier (BBB) and carrying both hydrophobic and hydrophilic drug. 
In this study, artificial neural network was used to optimize 
formulation by considering various parameters including formulation 
variables (glycerol monooleate, Poloxamer 407, Tween 80) and output 
variables (particle size, entrapment efficiency (EE), and drug release). 
The study showed this AI based approach optimized nanoparticle size 
with controlled drug release for up to 6 h, and a cumulative drug 
delivery rate in the cubosomes exceeding 70% with 1.90-fold increase 
in pharmacokinetic performance in brain compared to the drug 
solution alone (74). Similar study done by Sun et al., explore the effect 

of molybdenum disulfide (MoS₂) nanosheets and MoS₂ crystal 
structure on cellular functions including adhesion, differentiation, and 
neuroprotection. These findings revealed that the octahedral 
conformation of 1 T-MoS₂ nanosheets can to regulate biomolecular 
interactions, resulting in enhanced neuroprotection. Further, 
researchers employed random forest analysis to determine the 
important variables to quantify the relationship between the nano 
structural architectures. Lastly, structural equation modeling (SEM) 
confirmed a causal relationship, showing that neurite outgrowth 
directly related with increased cell survival. Finally, the researchers 
discovered that MoS₂ laminas can alter the folding of alpha-synuclein, 
thus preventing its aggregation. Molecular dynamics simulations 
showed that 1 T-MoS₂ interacts with α-synuclein fibrils, destabilizing 
β-sheet structures and facilitating fibril disaggregation. In a Parkinson’s 
disease mouse model, direct striatal injection of MoS₂ nanosheets 
enhanced memory retention and reduced neuroinflammation. 
Therefore, this nanosheet has therapeutic potential against Parkinson’s 
disease (75) (Table 3).

3.3.4 Methodological and computational 
development

Applying machine learning and deep learning models in 
nanomedicine permeates different fields beyond the clinical area. 
Advances in brain disorders include the nanoscale study of other 
molecular components, image analysis in the study of tissues, and 
even molecular interactions. By combining AI and nanomedicine, 
researchers are overcoming traditional methods, challenges and 
limitations, offering more accurate and cost-effective solutions. This 
section explores recent computational advances in nanoparticle 
interactions, imaging analysis, and molecular sequencing. As we have 
observed up to this point, integrating AI and nanotechnology drives 
throughput clinical precision, increases data granularity, and improves 
diagnostic accuracy. AI methods’ ability to extract patterns from data, 
be it images or tabular data, allows processing of large amounts of data 
and increases temporal and spatial resolution.

In the case of brain tumors, these advancements also allow for the 
segmentation of intricate tissue architectures and the integration of 
multimodal data to improve diagnostic accuracy. One of the most 
pressing challenges in brain tumor research is understanding intra-
tumoral heterogeneity (ITH), the dynamic and spatially variable 
nature of tumor populations that evolve rapidly and respond 
differently to treatment. Traditional biopsy-based molecular 
characterization tests are biased by sampling bias, missing critical 
regions of genetic diversity. Thus, creating a non-invasive method to 
characterize ITH across space and time is even more challenging. The 
Parker et al., study proposed a multimodal integration method of 
multiparametric magnetic resonance to map tumor properties across 
multiple spatial scales, from macro to micro and nano levels. The idea 
was to decode molecular and cellular behaviors from macro scales as 
provided by MRI. For this, incorporating genetic markers (e.g., IDH1 
mutation, MGMT promoter methylation) with imaging features (e.g., 
signal intensity, diffusion metrics, perfusion parameters) was 
proposed, which provided a more accurate and dynamic measurement 
of tumor heterogeneity (76). The proposed model is a good example 
of the synergy between deep learning models; the authors propose to 
use convolutional neural networks for feature extraction from MRI 
images for tumor segmentation, while with generative adversarial 
networks, researchers can perform data augmentation, improve the 
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quality of the images, and improve the generalization of the model. 
Beyond deep learning, a Random Forest was used to classify tumors 
based on molecular and imaging features. Support Vector Machine 
was used to identify the most informative imaging features linked to 
molecular subtypes. Although this study primarily serves as a 
roadmap review, the authors propose a pipeline that allows predictions 
to help classify treatment-resistant tumor subpopulations.

Additionally, drug perfusion in brain tumors is often very complex 
due to irregular vascularity and uneven passage through the 
BBB. Current methods, such as transcardial perfusion, cannot 
accurately determine drug extravasation because many remain in the 
vasculature, leading to potentially overestimated measurements. The 
study by Kostrikov et al., 3D deep tissue imaging with optical tissue 
clearing was used to capture three-dimensional images of the tumor 
vasculature. TRITC-dextran, a fluorescent marker that permeates 
tissues but not cells, was utilized to investigate extravasation. Further, 
the CNN model (VGG-19) was used for feature extraction or specific 
patterns in the tumor images while random forest was applied for 
classification particularly to identify extravasation points in the 
images. Moreover, to get better insight into the drug distribution 
within the tumor tissue, the researchers calculated the surface area and 
volume of the extravasation zones based on the number of identified 
spots and interestingly, found that the surface area and volume of 
extravasation zones were greater in more permeable areas of the 
tumor vasculature (77) (Table 4).

Apart from image-based analysis, molecular interactions are also 
studied at nanoscale resolutions. The study done by Liu et al., suggests 
that the catalytic activity of acetylcholinesterase (AChE) enzymes is 
inhibited by surface-functionalized gold nanoparticles (f-GNPs). This 
inhibition results in increased acetylcholine (ACh) release, which is 
responsible for neuroprotection against cholinergic neuron death in 

Alzheimer’s disease. In this study, a set of 47 f-GNPs was screened and 
experimental analysis showed that allyl-functionalized nanoparticles 
with fewer Hydroxyl group (-OH) showed maximum inhibition 
efficiency. Moreover, researchers trained a Bayesian neural network 
model to enhance the results and predict AChE inhibition by the 
f-GNPs. Thirteen molecular descriptors derived from quantitative 
structure–property relationship (QSPR) analysis were used as training 
data. Since nanoparticles can interact with AChE through various 
mechanisms including specific and nonspecific binding, lipophilic 
interactions, hydrogen bonding, and charge/dipole interactions these 
studies help identify the binding affinity and inhibition potential of 
different nanoparticle designs (78) (Table  4). Consequently, these 
results represent a significant advance in screening nanomaterials for 
treating cognitive disorders in Alzheimer’s disease, as they enable early 
prediction of nanoparticle efficacy and toxicity before synthesis. In the 
same line as the previous research, Zhang et al., developed a copper 
(II)-functionalized Mycobacterium smegmatis porin A (MspA) 
nanopore to interact with proteins; they intended to generate a 
detection method of 20 proteinogenic amino acids. The authors used 
machine learning methods for the classifier, including Random Forest, 
Naïve Bayes, Neural Networks, and Ensemble methods as input data, 
they used blockade signals of amino acids passing through the 
nanopore and achieved a 99.1% classification accuracy with a 30.9% 
signal recovery rate. Also, this method is utilized for peptide 
sequencing associated with Alzheimer’s disease and cancer. 
Importantly, the sequencing of amyloid-beta (Aβ) peptides could 
be performed through this approach which is an important biomarker. 
Importantly, this new approach has detection limit in nanoscale which 
is less than 100 nM. It has potential to identified all amino acids, two 
post-translational modifications (PTMs), and one unnatural amino 
acid with 99.1% accuracy. Although this method is applicable for 

TABLE 4 Summary of methodological and computational development based studies for the management of brain disorders.

S.N. Study Objective Target 
disease

Sample Core method Nanomaterial/
Nanoscale

AI model

1.
Parker et al. 

(76)

Provide a “roadmap” for 

imaging genomics of brain 

tumors from multiparametric 

MRI signals, addressing intra-

tumoral heterogeneity

Brain cancer
Brain tumor 

tissue
MRI scan

Nanoscale intra-tumoral 

heterogeneity (ITH)

Multiple (CNNs, 

GANs, SVMs, 

Random Forests, and 

AdaBoost)

2.
Kostrikov 

et al. (77)

Develop ML-based workflows 

for analyzing compound 

extravasation and tumor 

vasculature in large 3D 

cleared tissue datasets

Brain cancer
Brain tumor 

tissue
Optical imaging

Tramethylrhodamine 

(TRITC)-labeled 

dextran (hydrodynamic 

radius ~27 nm)

Deep Convolutional 

Neural network 

(VGG-19) and 

Random Forest

3. Liu et al. (78)

Investigate nanoparticle–

enzyme interactions 

(inhibition, binding) using a 

combinatorial gold 

nanoparticle library

Alzheimer’s 

disease

Protein–

Nanoparticle 

complex

Quantitative 

Computational 

methods and 

molecular modeling

Combinatorial gold 

nanoparticles (Au NPs) 

library

Bayesian-

Regularized Artificial 

Neural Network, and 

Multiple Linear 

Regression

4.
Zhang et al. 

(79)

Real-time detection of 20 

amino acids using a copper 

(II)-functionalized MspA 

nanopore, enabling direct 

protein (or peptide) 

sequencing.

Parkinson’s 

disease

Pathological 

protein or peptide

Single Molecule 

Detection /Protein 

Sequencing

Copper (II)-

functionalized MspA 

Nanopore

Random Forest, 

Naive Bayes, Neural 

Network, and k-NN
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peptide sequencing but not for whole proteins sequencing. Thus, it 
offers a promising pathway toward nanopore-based proteomics (79) 
(Table 4).

4 Technical challenges, limitations and 
proposed solutions for AI driven 
nanomedicine in the management of 
brain disorders

The use of AI-based methods in nanomedicine has shown potential 
to advance various aspects of brain disorders management, including 
biomarker identification, diagnosis, prognosis and disease monitoring, 
drug delivery, therapeutics and computational and methodological 
advancements. Despite these developments and advancements, the 
included studies in this narrative review have some common technical 
challenges and limitations related to sample size, data sources, validation 
techniques, selection bias, methodological gaps, and overestimating of 
outcomes. One of the important limitations is the lack of large, high 
quality clinical datasets. Since the field of nanomedicine is in its 
development stage, the data requirements for complex AI-based learning 
and training models are not met (80, 81). For example, many studies relied 
on small sample sizes of patient cohorts (less than 100) or few animals or 
biological replicates (e.g., one mouse strain or 4–8 mice per group), that 
limit the statistical power and generalizability (Table 5). Additionally, some 
studies used simulated or synthetic data which lack the real-world 
biological variation (63). While few studies reported unusual deviation in 
sample size, e.g., Munteanu et al., used a large library of chemical drugs-
nanoparticles pairs (855,129 drug-nanoparticle pairs) which, nonetheless, 
lacked diversity in chemical classes of drugs (71). Thus, while some studies 
were conducted on very small sample size (under 50 samples), they 
reported high diagnostic performance of AI based models, which raise 
overfitting concerns (46, 49). To address this, we  must prioritize the 
development of high-throughput synthesis and characterization 
techniques, which is currently lacking. These platforms will enable the 
generation of the large, well-defined datasets like real biological datasets 
critical for advancing AI-driven nanomedicine research (82) (Table 5).

Apart from this, other limitations are associated with data sources 
and validation techniques employed by the researchers to advance AI 
based nanomedicine. Most of the extracted studies are highly 

dependent on controlled laboratory or in vitro data, clinical datasets 
without cross-validation may limit the translational potential of 
AI-driven nanomedicines. Importantly, few studies showed noteworthy 
deviations because scientists relied upon on datasets derived from in 
silico or in vitro experiments (72, 78), while some studies utilized real 
human cohorts without multi-center validation (48, 58). The absence 
of external test sets, higher dependency on internal validation methods, 
and lack of comparison to baseline or alternative models were common 
in most of the extracted studies. For instance, one study utilized used 
1,000 random splits but no independent dataset, while another study 
used diverse biophysical validation techniques but lacked clinical 
replication (46, 75). Additionally, selection biases are observed due to 
use of pre-selected features or homogeneous cohorts and model biases 
results because of idealized lab conditions or limited sensor variability. 
Also, most of studies do not consider demographic diversity, age, sex 
and comorbidities (56, 83) (Table 5).

Furthermore, other methodological gaps included limited model 
comparisons or hyperparameter tuning and lack of ablation studies, 
error analysis, or stratified performance metrics. For instance, one 
study used multimodal learning but did not benchmark against other 
ML models (64), and another report was solely based on ANN 
classifiers but had poor specificity in blinded tests (57). Moreover, 
some studies reported challenges regarding outcome-related 
limitations which are related to overstatement of performance metrics 
(e.g., 100% accuracy in small), outcomes being based on surrogate 
markers or non-clinical endpoints (e.g., fluorescence shift instead of 
patient diagnosis), and unevaluated outcomes if they remain reliable 
indicators over time (67, 69, 75) (Table 5). These limitations highlight 
the need for rigorous methodology and outcome assessment in 
AI-driven nanomedicine research for the management of brain 
related disorders.

Another key hurdle is the parametric optimization of complex 
nanostructures to produce effective nanotherapeutics. However, 
traditional methods struggle with this complexity which hinders the 
development of efficient nanostructures (84). To address this, AI based 
approaches such as machine learning algorithms are being employed. 
These methods enable the exploration and identification of optimal 
and effective nanostructure designs, ultimately leading to improved 
patient outcomes and reduced side effects (85, 86). Currently, health 
care professionals used AI-based nanorobot for controlled and 

TABLE 5 Summary of major limitation categories and proposed solution across various extracted studies.

S.N. Category Key concern Proposed solution

1. Sample size
Underpowered studies, risk of overfitting and lack of external 

validation

Using multi-center cohorts or datasets, and pooled data from multiple 

origins

2. Data sources

Single-center data, over-controlled setups, limited participant 

diversity, and questionable quality when merging data from 

multiple sources

Using multi-center cohorts or datasets, and including inclusive 

recruitment

3.
Validation 

techniques

Absence of external test sets, lack of benchmark comparisons, 

limited cross-validation, lack of hyperparameter tuning, lack of 

confidence intervals, and overstating performance

Using multi-center external test cohorts or datasets, using robust 

cross-validation (nested CV for tuning)

4. Potential biases
Selection bias, model bias and lack of control for confounding 

variables

Stating explicitly the confounder variables, using multi-center cohorts 

or datasets

5.
Outcome 

limitations

Overgeneralization, missing clinical outcomes and lack of error 

analysis

Focusing on multiple performance metrics, using larger and more 

varied cohorts and datasets, including error analysis
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targeted drug delivery for the managing brain disorders but, faces 
different challenges including precise control and maneuvering of 
nanorobots within the complex biological environment of the brain, 
as well as optimizing drug delivery across biological barriers (87).

To overcome these problems further advancements and 
implementations of complex ML based models are required. 
Additionally, another challenge is to understand increasing complexity 
of different AI based approach such as machine and deep learning 
model and how these models interpret data and make decisions to 
have safe and reliable applications in the development of advanced 
nanomedicine (88). Therefore, it is critical to understand how these 
AI models interpret the data and make the decisions to ensure safety 
and efficacy of these emerging technologies (89). Moreover, another 
problem is the translation of nanomedicine based in vitro and in vivo 
studies into effective clinical therapies. The major factors are toxicity, 
pharmacokinetics of nanomedicines as well as of their complex 
interactions with the immune systems (90). These problems can 
be addressed at some extent by applying machine learning, that offers 
some predictive capabilities, but the development of sophisticated AI 
methods is crucial for comprehensive analysis to ensure better safety 
and efficacy of nanomedicine (91). In conclusion, the future of brain 
disorder treatment strategies depends on the promising synergy 
between AI and nanomedicine. By overcoming various challenges and 
encouraging interdisciplinary collaboration, researchers and health 
professionals can develop innovative AI-driven nanomedicine that 
will revolutionize the different aspects of brain disorder management 
and improve the disease outcomes.

5 Conclusion and future prospects

The recent advancement in AI based nanomedicines leads to the 
improved management of brain disorders including brain cancer, 
Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. This 
innovative synergy improves disease diagnosis, biomarker 
identification, prognostic assessment and disease monitoring, targeted 
drug delivery, and therapeutic intervention as well as contributing to 
computational and methodological developments. One of the 
important advancements is being made in diagnosing brain disorders 
using AI-driven Nano diagnostics. The extracted studies demonstrated 
that these diagnostics have high accuracy, specificity and sensitivity in 
detecting Alzheimer’s, Parkinson’s, multiple sclerosis, and brain 
cancers through advanced biomarker analysis (SERS, EV detection, 
VOC analysis) and imaging techniques (MRI, nanoDSF). Further, 
prognosis is also improved, particularly ML/DL uses advanced 
imaging and single-molecule techniques to enable real-time disease 
monitoring by tracking oligomer aggregation, neurotransmitter 
fluctuations, and immune responses.

Additionally, other therapeutic advancements in brain disorder 
management utilize the computational models to identify effective drug-
nanoparticle complexes, optimize drug delivery across the blood–brain 
barrier, and personalize neuromodulation through AI-enhanced deep 
brain stimulation. Furthermore, AI-based analysis of complex nanoscale 
interactions, improved image segmentation for tumor characterization, 
and facilitated molecular sequencing for peptide identification drive 
methodological advancements. Looking to the future, the continued 
advancements in the integration of AI driven methods in nanomedicine 
for brain disorders holds immense promise. However, researchers are 

focused on advancing the multimodal data integration, which will 
combine diverse data sources, including genomics, proteomics, and 
imaging to develop more comprehensive and predictive models. 
Furthermore, the development of explainable artificial intelligence (AI) 
is crucial for in-depth interpretability of AI models, thereby increasing 
clinical trust and facilitating translation. Additionally, personalized 
medicines which tailor’s treatments based on individual patient data and 
disease characteristics, is expected to improve therapeutic outcomes. 
Moreover, the current development in the field of nanopore-based 
sequencing and detection techniques advances the proteome-based 
diagnosis. In addition to this, scientists around the globe is looking for 
the development of robust models which can map and predicts the 
intra-tumoral heterogeneity (ITH) that enables the clinicians for 
providing effective treatment to brain cancer patients. Also, expanding 
data diversity by incorporating more diverse datasets from in  vivo 
validation studies to train the AI model is essential to bridge the gap 
between in  vitro and in  vivo findings. In conclusion, the recent 
development of AI models and their integration with nanomedicine has 
advances different aspects brain disorders management and further, 
more research is needed to yield more innovative and transformative 
solutions for the management of brain related pathologies.
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