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Objective: This study aims to develop a machine learning (ML) model that

integrates computed tomography (CT) radiomics with clinical features to predict

the progression of pulmonary interstitial fibrosis in patients with coalworker

pneumoconiosis (CWP).

Methods: Clinical and imaging data from 297 patients diagnosed with CWP

at The First Affiliated Hospital of Chongqing Medical and Pharmaceutical

College between December 2021 and December 2023 were analyzed. Of

these patients, 170 developed pulmonary interstitial fibrosis over a 3-year

follow-up and were classified as the progression group, while 127 patients

showed stable conditions and were classified as the stable group. The

patients were divided into a training cohort (n = 207) and a test cohort

(n = 90). Radiomic features were extracted from CT images of lung fibrosis

lesions in the training cohort. These features were reduced in dimensionality

to construct morphological biomarkers. ML methods were then used to

develop three models: a clinical model, a radiomics model, and a multimodal

joint model. The performance of these models was evaluated in the test

cohort using receiver operating characteristic (ROC) curves and decision

curve analysis (DCA).

Results: In the training cohort, the area under the curve (AUC) for the clinical,

radiomics, and joint models were 0.835, 0.879, and 0.945, respectively. In the

test cohort, the AUC values for these models were 0.732, 0.750, and 0.845,

respectively. The joint model demonstrated the highest predictive performance

and clinical benefit in both the training and test cohorts.
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Conclusion: The multimodal model, combining CT radiomics and clinical

features, offers an effective and accurate tool for predicting the progression of

pulmonary fibrosis in CWP.

KEYWORDS

coalworker pneumoconiosis, pulmonary interstitial fibrosis, CT radiomics, clinical
features, machine learning, predictive model, multimodal joint model, ROC curve

1 Introduction

Pneumoconiosis is a chronic, progressive fibrotic lung disease
caused by the prolonged inhalation and deposition of occupational
dust particles, resulting in diffuse pulmonary fibrosis. It includes a
spectrum of conditions linked to exposure to airborne particulates
such as asbestos fibers, coal mine dust, and respirable crystalline
silica (1, 2). Although pneumoconiosis is recognized as a global
occupational health issue, its incidence remains disproportionately
high in industrialized nations, where environmental dust exposure
is endemic (3). China continues to report the highest number
of pneumoconiosis cases annually, with a steadily increasing
disease burden despite the implementation of occupational health
regulations (4).

Among the various subtypes, coalworker pneumoconiosis
(CWP) is one of the most common, attributed to prolonged
coal dust exposure in mining environments (5). While CWP
shares certain clinicopathological features with other dust-induced
lung diseases-such as asbestosis and silicosis-its fibrogenic
mechanisms differ due to the unique properties of coal dust (6).
For instance, while asbestosis and silicosis involve interstitial
lung damage triggered by asbestos fibers and crystalline silica
particles, respectively, CWP is marked by the accumulation
of coal dust, often compounded by silica contamination,
leading to a distinct fibrotic response (7, 8). Despite their
etiological differences, all types of pneumoconiosis converge
on a common pathological trajectory: progressive pulmonary
fibrosis (9).

Pulmonary fibrosis represents the principal driver of morbidity
and mortality in advanced pneumoconiosis. It is characterized
by the relentless accumulation of extracellular matrix proteins in
lung parenchyma, which distorts the normal alveolar architecture
and results in irreversible impairment of pulmonary function
(10, 11). As fibrosis advances, patients often experience a
marked decline in lung function, leading to complications such
as pulmonary hypertension, cor pulmonale, and ultimately,
respiratory failure (12, 13). Given these severe outcomes, early
identification and continuous monitoring of fibrotic progression
are essential to improving clinical prognosis and guiding
therapeutic intervention (14).

However, early-stage fibrosis in pneumoconiosis typically lacks
overt clinical symptoms or radiological markers, making it difficult
to diagnose using conventional methods (15). Pulmonary function
tests and chest X-rays, though routinely employed in occupational
health surveillance, have limited sensitivity for detecting subtle
interstitial changes (16). High-resolution computed tomography
(CT), on the other hand, provides greater diagnostic accuracy, but

its interpretation relies heavily on radiologist expertise, introducing
subjectivity and variability in clinical assessments (17, 18).

In recent years, radiomics-a technique involving the extraction
of high-dimensional features from medical imaging-has emerged
as a promising tool to enhance diagnostic precision and capture
latent imaging biomarkers not discernible by the human eye (19).
In the context of lung disease, CT-based radiomics has been shown
to reflect underlying pathophysiological alterations, including
fibrotic remodeling, thereby enabling risk stratification and disease
prediction (20). When combined with machine learning (ML),
radiomic analysis can be further optimized to create predictive
models that identify disease progression with improved accuracy
and objectivity (21, 22).

The present study focuses on patients with CWP and aims
to develop an interpretable, multimodal ML model to predict
pulmonary fibrosis progression. By integrating CT radiomics with
clinical parameters, we seek to enhance predictive performance
beyond what is achievable with either modality alone. Three
distinct models were constructed: a clinical model based solely on
laboratory and demographic features; a radiomic model derived
from CT feature sets; and a multimodal joint model that fuses
both clinical and imaging data. These models were systematically
trained, internally validated, and evaluated to determine their
relative performance in predicting fibrosis progression.

The clinical significance of this study lies in its potential to
offer a non-invasive, reproducible, and objective tool for the early
identification of pulmonary fibrosis in CWP. Such an approach
could facilitate timely clinical interventions, reduce disease burden,
and ultimately improve patient outcomes. Furthermore, this
methodological framework may be extended to other occupational
lung diseases and interstitial lung conditions, underscoring its
broader applicability in respiratory medicine.

2 Materials and methods

2.1 Demographic data

The present study retrospectively analyzed data from the
Pneumoconiosis Diagnosis Center at The First Affiliated Hospital
of Chongqing Medical and Pharmaceutical College. A total of
297 male patients with confirmed CWP were enrolled. The
diagnosis of CWP was established by a certified expert panel at
the Chongqing Prevention and Treatment Center for Occupational
Diseases, in accordance with national diagnostic criteria for
occupational pneumoconiosis.
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All included patients were initially diagnosed with CWP
without radiological evidence of pulmonary interstitial fibrosis and
were followed for a period of 3 years. During the follow-up, 170
patients developed imaging features consistent with pulmonary
fibrosis and were categorized into the progression group, while
the remaining 127 patients exhibited no significant radiological
progression and were assigned to the stable group.

To facilitate model development and validation, the entire
cohort was randomly divided into a training cohort (n = 207) and
a test cohort (n = 90). The training cohort was used for feature
selection and model construction, while the test cohort served as
an independent validation set. The overall study design, including
inclusion criteria and cohort allocation, is summarized in Figure 1.

Inclusion criteria comprised: (1) male patients with a diagnosis
of CWP based on the GBZ 70-2015 guidelines, a national Chinese
standard titled "Diagnosis of Occupational Pneumoconiosis",
which defines diagnostic criteria for pneumoconiosis using chest
radiographs; (2) availability of baseline high-resolution computed
tomography (HRCT) imaging and complete clinical data; and (3)
no evidence of pulmonary fibrosis at initial presentation. Diagnosis
of pulmonary fibrosis during follow-up was based on HRCT
criteria outlined in the 2022 American Thoracic Society guidelines
for idiopathic and progressive pulmonary fibrosis in adults.
Exclusion criteria included incomplete biomarker or imaging data,

low-quality CT scans, or co-existing interstitial lung diseases (ILDs)
such as tuberculosis-related fibrosis or connective tissue disease-
associated pneumoconiosis.

Clinical variables collected for analysis included patient age,
cumulative dust exposure time (in hours), pulmonary function test
results [forced vital capacity (FVC), forced expiratory volume in the
first second (FEV1), FEV1/FVC ratio], and key laboratory indices.

2.2 Feature extraction and data
pre-processing

Lesion identification: a HRCT images were independently
reviewed by a senior thoracic radiologist (over 20 years of
experience in occupational lung disease). Radiological signs
indicative of fibrotic progression-such as interlobular septal
thickening (± subpleural lines), ground-glass opacities (GGOs),
reticular patterns (± parenchymal bands), honeycombing with
or without traction bronchiectasis, and pleural plaques-were
documented. ROI segmentation: lung window images were
standardized in grayscale intensity. Target lesions were manually
segmented to create regions of interest (ROIs) by a second
radiologist with more than 10 years of experience in chest imaging.
The segmented volumes were reconstructed into three-dimensional

FIGURE 1

Workflow of the CT radiomics and clinical feature-based machine learning (ML) model for predicting pulmonary fibrosis progression in coalworker
pneumoconiosis (CWP). Overview of the workflow for constructing and validating a ML model based on CT radiomics and clinical features,
including: (A) image segmentation: Regions of interest (ROIs) were segmented from high-resolution CT images, including lung parenchyma and
fibrotic regions. (B) Feature extraction: radiomics features were extracted and categorized into first-order (intensity-based), second-order
(texture-based), and higher-order features. (C) Feature selection: relevant features were selected using statistical analysis, correlation heatmaps, and
importance ranking to optimize the model’s performance. (D) Image model construction: ML algorithms were applied to selected features, and
performance was evaluated using metrics such as ROC and PR curves. (E) Multimodal combined model: clinical features (e.g., gender, age, FVC, OH,
FEV1, and WBC) were integrated with radiomics features to construct a multimodal prediction model, achieving enhanced predictive performance.
(F) Validation model: the model was validated with independent datasets, assessing metrics such as sensitivity, specificity, and calibration curves.
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ROIs using 3D Slicer software (version 5.2.2)1. A third senior
radiologist independently validated the segmentations to ensure
reproducibility and anatomical accuracy.

Radiomic feature extraction: a total of 851 radiomic features
were extracted from each ROI using the Pyradiomics extension in
3D Slicer. Extracted features included first-order statistics, shape
descriptors (2D and 3D), and texture-based metrics, including
gray-level co-occurrence matrix (GLCM), gray-level run length
matrix (GLRLM), gray-level size zone matrix (GLSZM), and
neighboring gray-tone difference matrix (NGTDM).

Data pre-processing: to address sample imbalance in the
training set, oversampling techniques (random replication) were
applied. All radiomic features were normalized to a range of [0, 1]
using the MinMaxScaler function in R (v3.4.1).

2.3 Feature dimensionality reduction and
construction of radiomic biomarkers

To reduce overfitting risk and enhance model interpretability,
dimensionality reduction was performed using the least absolute
shrinkage and selection operator (LASSO) regression. This
technique imposes an L1 penalty to shrink coefficients of irrelevant
or collinear features, thereby improving model generalizability.
The initial pool of 851 radiomic features underwent LASSO-
based feature selection, yielding a subset of features with the
highest predictive value. These features were subsequently used
to construct radiomic signatures, referred to as “psychoradiomic
signatures” (PS), which encapsulate multi-parametric image
information reflective of microstructural changes in lung
parenchyma associated with fibrotic progression.

To build the PS, two ML classifiers-logistic regression (LR) and
support vector machine (SVM)-were employed. The classification
performance was evaluated using the area under the receiver
operating characteristic (ROC) curve (AUC), sensitivity, specificity,
and calibration plots. A calibration curve was generated to assess
agreement between predicted probabilities and observed outcomes,
thus evaluating model reliability and potential overfitting.

2.4 Construction and validation of the
joint model

An integrative model incorporating both radiomic and clinical
variables was subsequently developed. The rationale was to
exploit the complementary diagnostic information provided by
HRCT-derived radiomics and conventional clinical indicators,
e.g., pulmonary function metrics (FVC, FEV1, FEV1/FVC). The
combined model was trained using an SVM algorithm, given
its proficiency in high-dimensional and non-linear classification
problems. Prior to training, five-fold cross-validation was employed
within the training set to fine-tune hyperparameters, including the
kernel function and the regularization coefficient (denoted as C).
Model complexity was balanced against predictive performance to
prevent overfitting.

1 https://www.slicer.org/

Following optimization, the final model was tested on the
independent validation cohort (n = 90). Model performance
was assessed using AUC, sensitivity, specificity, and overall
classification accuracy. Calibration curves were again used to
verify consistency between predicted risk and actual outcome.
Furthermore, decision curve analysis (DCA) was conducted to
evaluate clinical utility by quantifying the net benefit of model-
assisted decisions compared with treat-all or treat-none strategies.

2.5 Statistical analysis

Statistical analyses were conducted using SPSS version
26.0 (IBM Corp., Armonk, NY, USA), R software version
3.4.1, and DecisionLinnc (version 1.0, Nov 2023)2. Continuous
variables conforming to normal distribution were analyzed using
independent-sample t-tests, while non-normally distributed data
were assessed via the Mann-Whitney U test. Categorical variables
were compared using chi-square or Fisher’s exact tests as
appropriate. Model diagnostic performance was quantified through
ROC-derived metrics including AUC, sensitivity, and specificity.
All statistical tests were two-tailed, with a P < 0.05 considered
statistically significant.

3 Results

3.1 Comparison of clinical characteristics
and CT imaging findings

In the training cohort, a comparative analysis of clinical
parameters between the fibrosis progression group and the stable
group revealed statistically significant differences in dust exposure
duration (DCH), FVC), FEV1, and FEV1/FVC ratio (all P < 0.05).
These findings suggest that both occupational exposure and lung
function metrics serve as important clinical indicators of fibrosis
progression in patients with CWP. In contrast, no significant
intergroup differences were observed for age or WBC count
(P > 0.05), indicating limited prognostic value of these variables
in this context.

Consistent results were observed in the test cohort: FVC, FEV1,
and FEV1/FVC ratio remained significantly different between the
progression and stable groups (P < 0.05), whereas age and DCH
did not reach statistical significance (P > 0.05). A comprehensive
comparison of clinical variables for both cohorts is presented
in Table 1.

HRCT findings demonstrated excellent inter-observer
agreement between two experienced thoracic radiologists in
identifying key radiological features associated with pulmonary
fibrosis. Principal imaging signs-including interlobular septal
thickening, ground-glass opacity (GGO), reticular patterns (“grid
shadows”), honeycombing, and pleural plaques-were consistently
observed across both patient groups (Figure 2).

Cohen’s kappa coefficients for inter-observer agreement were
as follows: 0.786 for interlobular septal thickening, 0.769 for

2 https://www.statsape.com/
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TABLE 1 Comparative analysis of clinical characteristics between the training and test cohorts in coalworker pneumoconiosis (CWP) patients.

Characteristics All cohort
(297)

Training cohort (n = 207) Test cohort (n = 90) Training vs.
Test

P-value

Stable
(n = 86)

Progress
(n = 121)

P-value Stable
(n = 42)

Progress
(n = 48)

P-value

AGE 53.97 ± 7.80 53.94 ± 6.00 54.15 ± 5.99 0.800 53.12 ± 5.23 55.49 ± 6.34 0.0554 0.412

DCH 13.86 ± 7.41 11.15 ± 5.55 15.24 ± 8.61 0.0001* 13.73 ± 5.65 15.31 ± 7.26 0.2508 0.0001*

FVC 90.02 ± 13.10 92.91 ± 7.03 88.50 ± 15.56 0.0066 92.84 ± 7.06 86.35 ± 16.84 0.0168* 0.003*

FEV1 81.52 ± 17.59 89.54 ± 6.21 76.18 ± 20.90 0.0001* 88.10 ± 6.75 75.14 ± 21.09 0.0001* 0.0001*

FEV1/VCMAX 95.69 ± 17.10 107.13 ± 8.66 87.61 ± 17.77 0.0001* 105.85 ± 10.22 87.55 ± 15.79 0.0001* 0.0001*

WBC 7.38 ± 1.69 7.54 ± 1.59 7.28 ± 1.80 0.2673 7.40 ± 1.56 7.52 ± 2.16 0.7751 0.458

Note: *Represent statistically significant.

FIGURE 2

Comparison of HRCT images between progressive and non-progressive CWP patients. (a) Coronal HRCT image of a patient with progressive
pulmonary fibrosis showing extensive fibrotic lesions and lung structural distortion. (b) Axial HRCT images of the same progressive case reveal
pronounced interstitial fibrosis with diffuse irregular opacities and honeycombing. (c) Coronal HRCT image of a patient with non-progressive
pulmonary fibrosis demonstrating relatively preserved lung architecture and limited fibrotic changes. (d) Axial HRCT images of the same
non-progressive case illustrate minor fibrotic features with a predominance of nodular or reticular patterns and no evidence of honeycombing.

GGO, 0.828 for reticular pattern, 0.814 for honeycombing,
and 0.792 for pleural plaques, all demonstrating substantial to
excellent agreement (P < 0.05). These results, detailed in Table 2,
underscore the robustness and reproducibility of the radiological
assessment process.

Importantly, specific HRCT features such as honeycombing,
reticular patterns, and interlobular septal thickening were more
prevalent in the progression group, aligning with more advanced
fibrotic changes. Although GGO and pleural plaques were
present in both groups, their frequency was higher in the
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TABLE 2 Comparative analysis of CT imaging features between stable
and progression groups in coalworker pneumoconiosis.

Feature Stable (127) Progress
(170)

Statistical
test value

X2

P-value

Interlobular septal thickening

Yes 72 (56.69%) 95 (55.88%) 0.0849 0.7711

No 55 (43.31%) 75 (44.12%)

Ground glass opacity

Yes 69 (54.33%) 76 (44.70%) 1.9775 0.1608

No 58 (45.67%) 94 (55.30%)

Grid shadow

Yes 74 (58.26%) 103 (60.59%) 0.3909 0.4876

No 52 (41.74%) 67 (39.41%)

Honeycomb shadow

Yes 46 (36.22%) 48 (28.23%) 1.9405 0.1616

No 81 (63.78%) 122 (71.76%)

Pleural plaques

Yes 31 (24.40%) 56 (32.94%) 1.0986 0.2949

No 96 (75.60%) 114 (67.05%)

progression group, suggesting a potential association with early
fibrotic evolution (Figures 3, 4). These observations highlight
the complementary diagnostic value of HRCT in conjunction
with clinical indicators for the early detection and monitoring of
pulmonary fibrosis progression in CWP.

3.2 Feature selection and machine
learning model development

A total of 851 quantitative radiomic features were extracted
from the manually segmented HRCT images of the 297
enrolled CWP patients. These features encompassed first-order
statistics, three-dimensional shape descriptors, and multiple texture
matrices (GLCM, GLRLM, GLSZM, and NGTDM), enabling a
comprehensive representation of parenchymal tissue heterogeneity
and fibrotic alterations.

To address the high dimensionality and potential
multicollinearity of the dataset, feature selection was performed
using the LASSO regression, a robust method for identifying
informative predictors while preventing overfitting. Through
LASSO penalization, 19 radiomic features with the highest
predictive value for fibrosis progression were retained (Figure 5).

These selected features were subsequently used to construct
predictive models using two ML algorithms: LR and SVM. LR
was chosen for its interpretability and probabilistic output, while
SVM was employed for its robustness in handling non-linear
decision boundaries. Model performance was evaluated based on
the area under the receiver operating characteristic curve (AUC),
complemented by calibration curves to assess the agreement
between predicted and observed outcomes (Figure 6). Both LR and
SVM models demonstrated satisfactory predictive performance,
with minimal evidence of overfitting.

These findings affirm the utility of radiomics as a non-
invasive biomarker strategy for tracking fibrotic progression
in CWP. The ability to extract and apply high-dimensional
image-derived information-coupled with ML -based classification-
provides a promising approach for risk stratification and early
intervention planning.

3.3 Model construction and performance
evaluation

Following the feature selection and radiomic biomarker
construction, three different models were developed for predicting
pulmonary fibrosis progression in CWP patients: the clinical
model, the radiomic model, and the joint model. The clinical
model relied solely on clinical features such as DCH, lung function
measures (e.g., FVC, FEV1, FEV1/FVC ratio), and other clinical
biomarkers. The radiomic model, in contrast, used only the
selected radiomic features derived from the CT images. Finally,
the joint model integrated both clinical and radiomic features
in an attempt to combine the strengths of both data types for
more accurate predictions. The performance of these models was
assessed using ROC curves for both the training cohort and
test cohort. As shown in Figure 7, the joint model consistently
outperformed both the clinical and radiomic models in terms of
predictive accuracy.

In the training cohort, the AUC for the ROC curve was
0.835 for the clinical model, 0.879 for the radiomic model,
and 0.945 for the joint model. These results indicate that while
both clinical and radiomic models demonstrated satisfactory
performance, the joint model achieved the highest predictive
accuracy, suggesting that the integration of clinical and radiomic
data provides superior results. Similarly, in the test cohort,
the clinical model had an AUC of 0.732, the radiomic model
had an AUC of 0.750, and the joint model reached an AUC
of 0.845. These findings further validate the robustness of the
joint model across different cohorts, demonstrating its potential
for reliable prediction of pulmonary fibrosis progression in
CWP patients. The AUC values for all three models are
detailed in Table 3, providing a comprehensive overview of
their performance.

In addition to ROC curve analysis, DCA was performed to
assess the clinical utility of the models by evaluating the net
benefits of using each model at different threshold probabilities.
In the training cohort, DCA showed that the clinical model
performed better than the radiomic model, but the joint model
outperformed both, demonstrating the highest net benefit. This
trend was consistent in the test cohort, where the joint model
continued to show superior performance over the clinical and
radiomic models. The results of the DCA are illustrated in Figure 8,
reinforcing the clinical relevance of the joint model for guiding
treatment decisions in CWP patients.

Overall, these results demonstrate that combining radiomic
signatures with clinical indicators yields more accurate and
clinically meaningful predictions of pulmonary fibrosis progression
than either approach alone. The joint model offers a promising tool
for early risk assessment, potentially enabling timely therapeutic
intervention in high-risk CWP patients.
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FIGURE 3

Progression of Pulmonary Lesions in a Stage I Pneumoconiosis Patient: A 1-Year Follow-Up CT Study. (a) and (b): Initial CT scans show multiple
small high-density nodular opacities and linear fibrotic streaks distributed in the bilateral upper and middle lung fields, primarily affecting the upper
lobe segments and lower lobe dorsal segment. (c) and (d): Follow-up CT images taken 1 year later reveal an increased number of nodular and
fibrotic lesions in the same lung regions, indicating progression of fibrosis. The findings suggest disease advancement over time.

4 Discussion

4.1 Integration of radiomics and clinical
features enhances prediction

High-resolution computed tomography remains central to the
diagnosis and monitoring of ILDs, including pneumoconiosis-
related pulmonary fibrosis. Owing to its excellent spatial resolution
and sensitivity to fibrotic changes, HRCT allows accurate
assessment of disease extent and progression (23, 24). Quantitative
image analysis, enabled by radiomics, further augments this
process by extracting high-dimensional features that capture tissue
heterogeneity, structural alterations, and fibrotic remodeling not
readily discernible by human readers (25, 26).

In our study, we extracted 851 radiomic features from
baseline HRCT images of coalworkers, and employed a LASSO-
based feature selection strategy to reduce redundancy and
identify 19 predictive features. These were combined with
pulmonary function indicators (FVC, FEV1, FEV1/FVC) to

build a multi-modal ML model, which demonstrated strong
predictive performance for fibrosis progression. The joint model
achieved an AUC of 0.945 in the training cohort and 0.845 in
the test cohort, outperforming radiomic-only and clinical-only
models. DCA further confirmed its clinical net benefit across a
wide range of threshold probabilities. These results suggest that
integrating radiomics with clinical features can enhance early
risk assessment in pneumoconiosis, providing a non-invasive
and scalable tool to support individualized monitoring and early
intervention strategies.

4.2 Clinical and biological interpretability
of selected features

To enhance the transparency and clinical relevance of
our predictive model, we further explored the interpretability
of the radiomic features selected during model construction.
Among the 19 features retained after LASSO selection,
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FIGURE 4

Progression of pulmonary fibrosis in a stage II pneumoconiosis patient: a 1-Year Follow-Up CT Study. (a,b) Initial CT scans show large patchy
opacities in the apical-posterior segment of the bilateral upper lobes, with a long-axis diameter >2 cm and a short-axis diameter>1 cm. Additionally,
multiple scattered high-density nodular opacities are observed in all lung lobes, indicating severe fibrosis. (c,d) Follow-up CT images taken 1 year
later demonstrate significant progression of fibrotic lesions, with an increase in lesion size and density, suggesting further disease advancement.

FIGURE 5

Selection of optimal lambda parameter for LASSO regression in predicting pulmonary fibrosis progression. (Left) Coefficient profile plot for the
LASSO regression model, showing the trajectory of feature coefficients as the regularization parameter (log Lambda) changes. As the penalty
increases, more coefficients shrink toward zero, emphasizing feature selection for model sparsity. (Right) Cross-validation curve for the LASSO
model, with the mean squared error (CVM) plotted against log Lambda. The vertical dashed lines indicate the optimal Lambda values: the minimum
error (left line) and the largest Lambda within one standard error of the minimum (right line). These Lambda values guide feature selection, balancing
model complexity and predictive performance.
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FIGURE 6

Comparative performance of logistic regression and SVM models. (Left) ROC curves illustrate the discrimination performance of the Logistic
Regression and SVM models. The AUC for the Logistic Regression model was 0.728, indicating moderate predictive capability, whereas the SVM
model achieved a significantly higher AUC of 0.879, demonstrating superior predictive accuracy and robustness. (Right) The calibration plot
evaluates the agreement between predicted probabilities and observed outcomes. The SVM model calibration curve aligns closely with the ideal
diagonal line, reflecting excellent calibration with no evidence of overfitting and reliable predictive performance.

FIGURE 7

Comparative predictive performance of clinical, radiomic, and joint models. (Left) ROC curves demonstrate the predictive performance of the
clinical, radiomic, and joint models in the training cohort. The AUC values were 0.835, 0.879, and 0.945 for the clinical, radiomic, and joint models,
respectively, highlighting the superior performance of the joint model. (Right) In the test cohort, the ROC curves show AUC values of 0.732 for the
clinical model, 0.750 for the radiomic model, and 0.845 for the joint model, further validating the enhanced predictive capability of the joint model
compared to the individual models.

TABLE 3 Comparative predictive performance of clinical, radiomic, and joint models in training and test cohorts.

Training cohort Test cohort

Metric Clinical model Radiomic
model

Joint model Clinical model Radiomic
model

Joint model

AUC (95% CI) 0.835 (0.753∼0.918) 0.879 (0.809∼0.948) 0.945 (0.889∼1.000) 0.732 (0.627∼0.838) 0.750 (0.650∼0.850) 0.845 (0.765∼0.925)

Accuracy 76.3% 70.8% 92.1% 88.3% 68.4% 80.9%

Sensitivity 67.3% 79.6% 87.8% 53.1% 85.7% 79.6%

Specificity 90.2% 85.4% 97.6% 92.6% 56.1% 78.0%

many were texture-related metrics derived from GLCM,
GLSZM, and first-order statistics. These features quantify
intrapulmonary heterogeneity, density distribution, and spatial

arrangement-attributes known to correlate with pathological
alterations in fibrotic lung diseases (27, 28). For instance, features
such as GLCM entropy, cluster shade, and GLSZM small area
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FIGURE 8

Decision curve analysis (DCA) curves of the training and test cohorts. (Left) DCA curves for the training cohort illustrate that the clinical model
consistently outperformed the radiomic model, while the joint model provided the highest net benefit across a range of threshold probabilities,
demonstrating its superior predictive utility. (Right) Similarly, in the test cohort, the clinical model surpassed the radiomic model, with the joint
model achieving the highest net benefit, further reinforcing its robust performance and practical value in decision-making scenarios.

emphasis reflect increased structural complexity and textural
irregularity, which are characteristic of fibrotic remodeling in
pneumoconiosis (9). First-order features like skewness and
kurtosis may reflect asymmetric density distribution, potentially
related to the uneven deposition of fibrotic tissue and alveolar
collapse (29).

Although these quantitative features do not directly correspond
to conventional radiological signs, their patterns are consistent
with the fibrotic processes observed in histopathology and high-
resolution imaging studies (30). Their selection suggests that the
model captures biologically meaningful signals beyond what can be
perceived visually, offering potential non-invasive biomarkers for
disease progression. Moreover, the combination of radiomics with
clinical indicators such as FVC, FEV1, and FEV1/FVC enhances
the robustness and interpretability of the model (31). Pulmonary
function tests reflect physiological impairment due to restrictive
ventilation, while radiomic features reflect structural deterioration.
Their joint use aligns with the multidimensional nature of fibrosis
progression (32).

This interpretability not only reinforces confidence in the
model’s predictions but also promotes clinical acceptance by
providing insight into the underlying biological rationale (33). In
a broader context, our study demonstrates the feasibility of using
explainable radiomic signatures to supplement functional metrics,
potentially improving early detection, treatment planning, and
monitoring in occupational lung diseases (34).

4.3 Calibration and threshold
optimization for clinical use

To ensure the clinical applicability of our ML models,
we conducted a detailed evaluation of calibration performance
and optimized the decision threshold for risk stratification
(35). Calibration analysis, which assesses the agreement between
predicted probabilities and observed outcomes, revealed that the
SVM-based radiomic model demonstrated excellent alignment
with the ideal calibration line in the test cohort, indicating

reliable probability estimates and minimal overfitting (36). This
is visually supported by the calibration curve (Figure 6, right),
which confirms the model’s strong probabilistic performance and
its potential to inform clinical decision-making. Furthermore,
threshold optimization was performed to determine a clinically
relevant decision cutoff for distinguishing high-risk patients with
likely fibrosis progression from those with stable disease (37, 38).
Using Youden’s Index derived from ROC analysis, the optimal
threshold was identified for the joint model, which achieved
the highest predictive accuracy among all models (39). At this
threshold, the model balanced sensitivity and specificity, providing
a practical decision point for early intervention planning (40).

Although Brier scores were not explicitly reported in the results,
the close calibration of the SVM and joint models suggests a
low average prediction error, further supporting their utility in
real-world settings (41). These findings underscore the model’s
readiness for integration into routine risk assessment workflows,
offering clinicians a non-invasive, data-driven tool to support
personalized surveillance strategies in patients with CWP (42).

4.4 Addressing potential confounders
and sampling bias

Despite the promising performance of our integrated
radiomics-clinical model in predicting radiological progression
in patients with CWP, several potential confounders and biases
must be acknowledged (43). Firstly, this study was conducted
retrospectively at a single institution with a limited sample size,
which may have introduced selection bias. Patients included
had relatively complete follow-up data and high-quality HRCT
imaging, potentially excluding more severe or comorbid cases and
thus limiting the generalizability of the model to the broader CWP
population (44).

Secondly, although our model incorporated key clinical
predictors-such as age, LDH, and pulmonary function indices
(FEV1/FVC and FVC% pred)-there may be unmeasured
confounders that also influence disease progression. For example,
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occupational exposure intensity, smoking status, and comorbid
pulmonary conditions (e.g., COPD, silicosis) were not fully
accounted for due to data constraints (45). Additionally, manual
segmentation of the lungs and lesions, while performed by
experienced radiologists with good interobserver agreement,
introduces some subjectivity that could affect the consistency
of radiomic feature extraction, especially in borderline cases or
early-stage disease.

Lastly, the class imbalance between progression and stable
groups, though addressed by down-sampling and cross-validation,
could still bias the model’s learning process (46). Furthermore,
the lack of external validation in independent cohorts remains
a key limitation (47, 48). Nevertheless, this study represents
an important step toward integrating quantitative imaging
biomarkers and clinical parameters to non-invasively assess early
progression in CWP. Future multicenter, prospective studies
with standardized imaging and a broader spectrum of clinical
variables are needed to validate and refine this predictive approach
(49, 50).

4.5 Conclusion and future directions

The present study constructed a combined predictive model
based on HRCT radiomic features and pulmonary function
indicators, which showed high accuracy, good calibration,
and favorable clinical utility in identifying patients at risk of
pulmonary fibrosis progression. These findings provide a novel
and non-invasive approach for risk stratification in occupational
pulmonary disease. However, several limitations should be
acknowledged. Firstly, the study was conducted at a single
center, which may restrict generalizability due to variations
in CT acquisition protocols and population characteristics
(51). Secondly, the model has not yet undergone external
validation on an independent dataset. While internal validation
yielded consistent results across training and test sets, future
work should involve multi-center, prospective validation
to confirm robustness (52, 53). Thirdly, the retrospective
nature of the study may introduce bias in data collection
and outcome classification. Although image acquisition
was standardized, longitudinal follow-up data were limited
(54). Future studies should adopt a prospective design with
repeated imaging and clinical evaluation to enable dynamic
prediction modeling (55). Lastly, while radiomic features provide
valuable information, their direct biological correlates remain
partially understood. Ongoing efforts in imaging-pathology
correlation and multi-omics integration are essential to
further refine feature selection and enhance clinical adoption
(56, 57).

In conclusion, our study presents a predictive framework
combining HRCT-derived radiomic features and pulmonary
function data to identify patients at risk of pulmonary
fibrosis progression among coalworkers. The integrated model
demonstrated high predictive accuracy, reliable calibration, and
favorable clinical utility (58). With further external validation and
real-world testing, such a tool may support early intervention
and individualized disease monitoring in occupational respiratory
health (59).
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